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Abstract: Different aggregate gradations of asphalt concrete possess dissimilar skeleton structures,
leading to diverse macroscopic and mechanical characteristics. Acoustic emission (AE) technology
can realize real-time monitoring of the whole damage evolution process of materials. The objective
of the present investigation was to demonstrate the fracture characteristics of asphalt concrete with
three types of aggregate gradations, including dense-graded asphalt concrete (AC), stone mastic
asphalt (SMA), and open-graded friction course (OGFC) under indirect tensile load on account of the
acoustic emission (AE) technique. The Marshall compaction method was used to prepare specimens,
and the indirect tensile test (IDT) and AE monitoring were conducted simultaneously at different
temperatures. The corresponding AE parameters containing energy, cumulative energy, count, and
cumulative count were adopted to characterize the fracture process of asphalt concrete with different
aggregate gradations. The impact of temperature on the damage characteristics of asphalt concrete
was also assessed. Test results indicated that the AE parameters could effectively classify the damage
stages of asphalt concrete, and specimens with different aggregate gradations exhibited different
AE characteristics during failure processes. The combination of AE parameters and cumulative
AE parameters can accurately characterize the damage characteristics of asphalt concrete. SMA
specimens possessed the best overall performance among these three types of asphalt concrete in
terms of the variations in energy and cumulative energy at different temperatures. The findings
obtained in this study can provide a practical AE-based evaluation approach for demonstrating the
fracture mechanism of asphalt concrete with different aggregate gradations.

Keywords: asphalt concrete; fracture behavior; aggregate gradation; temperature effect; acous-
tic emission

1. Introduction

Asphalt concrete is a heterogeneous material consisting of multiple components,
which can be divided into dense-graded asphalt concrete (AC), stone mastic asphalt
(SMA), and open-graded friction course (OGFC), according to the varied compositions
of gradation [1]. These three kinds of asphalt concrete have been extensively employed
in pavement engineering in China. Different types of asphalt concrete possess different
features to meet the actual engineering needs. The change in gradation can cause variations
in the internal structure of asphalt concrete, showing different macro-performances [2].
Therefore, it is necessary to evaluate the damage characteristics of different types of asphalt
concrete to improve service performance pertinently.

The mechanical performance of asphalt concrete is usually characterized by a resilient
modulus, flow number, and indirect tensile strength [3,4]. Conventional approaches to
evaluating the fracture characteristics of asphalt concrete, such as the single edge notch
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beam test, edge-cracked semi-circular bending test, and disc-shaped compact tension
test [5–7], are somewhat limited, which are challenging to realize real-time monitoring
throughout the damage process of asphalt concrete. However, the emergence of acoustic
emission (AE) technology can make up for the above defects. AE is a phenomenon where
the material releases energy rapidly through transient elastic waves when cracking and
other activities that generate AE signals emerge [8]. During the failure process, the AE
technique can obtain relevant parameters of the material to achieve real-time monitoring,
and it has been applied diffusely in damage monitoring for rock [9], concrete [10], and
pressure vessels [11].

However, limited work has been undertaken to validate the applicability of AE
technology to characterize the damage mechanisms of asphalt concrete [12]. Arnold
et al. [13] discussed the cracking characteristics of asphalt concrete, including different
amounts of recycled asphalt shingles based on the AE technique. Jiao et al. [14–16] utilized
AE parameters to evaluate the fracture modes of porous asphalt concrete. Qiu et al. [17]
determined the AE waveform characteristics of asphalt concrete. McGovern et al. [18] and
Sun et al. [19] discussed the fracture performance of asphalt concrete under various aging
states with the aid of the AE technique. Li et al. [20] analyzed the influence of loading level
on the failure process of asphalt concrete combined with AE tests and indirect tensile creep
tests at low temperatures. Seo et al. [21] demonstrated the AE characterization during the
fatigue failure process of asphalt concrete with cyclic loading tests. Velasquez et al. [22]
evaluated the suitability of using taconite as aggregates in asphalt concrete with a series of
experimental works with AE monitoring. Behnia et al. [23,24] investigated the effects of
the cooling cycle and recycled asphalt pavement amounts on the cracking characteristics of
asphalt concrete using the AE approach. Hill et al. [25] adopted AE parameters to evaluate
the thermal cracking characteristics containing bio-modified asphalt concrete.

Previous research has only focused on one type of aggregate gradation to evaluate
the AE characteristics of asphalt concrete during the failure process, where the effects of
aggregate gradations on fracture characteristics of asphalt concrete with AE parameters
have been neglected. The aggregate gradation has a significant impact on the mechanical
properties of asphalt concrete [26,27]. Moreover, as a typical viscoelastic material, the
damage characteristics of asphalt concrete are sensitively related to temperature. Therefore,
the objective of this study was to investigate the AE characteristics of asphalt concrete
with different aggregate gradations under different testing temperatures during the dam-
age course.

In this study, specimens with three aggregate gradations containing AC, SMA, and
OGFC were prepared in line with the Marshall compaction method. Indirect tensile tests
(IDT) and AE tests were conducted simultaneously to explore the impact of aggregate gra-
dations on the AE parameters, including energy, cumulative energy, count, and cumulative
count during the damage process. Moreover, the temperature effect on asphalt concrete
with different aggregate gradations was also demonstrated based on AE parameters.

2. Materials and Methods
2.1. Raw Materials

The aggregates and filler were both derived from limestone, and the specific in-
dicators are listed in Table 1 following JTG E 42-2005 [28]. The 70 penetration-grade
petroleum asphalt adopted in AC and SMA, SBS modified asphalt adopted in OGFC, and
the specific indicators of these two kinds of asphalt are given in Table 2 according to JTG
E20-2011 [29]. It can be seen that all indicators for aggregates and asphalt satisfied the
specification requirements.
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Table 1. Properties of aggregates and filler.

Items Coarse
Aggregate

Fine
Aggregate Filler Technical

Criterion Method

Crushing value (%) 14.4 - - ≤26 T0316
Los Angeles abrasion loss (%) 18.6 - - ≤28 T0317
Apparent specific gravity (%) 3.21 2.95 2.73 ≥2.5 T0304

Sand equivalent (%) - 82 - ≥60 T0334
Plasticity index (%) – - 2.8 ≤4.0 T0354

Table 2. Properties of matrix asphalt (MA) and SBS-modified asphalt (SBS-MA).

Items MA Technical
Criterion SBS-MA Technical

Criterion Method

Penetration (25 ◦C, 0.1 mm) 72 60–80 64 60–80 T0604
Softening point (◦C) 47.5 ≥45 64.2 ≥55 T0606
Ductility (15 ◦C, cm) 145 ≥45 - - T0605
Ductility (5 ◦C, cm) - - 34.5 ≥30 T0605

Density (g/cm3) 1.036 - 1.065 - T0603
Flashing point (◦C) 275 ≥260 264 ≥230 T0611

2.2. Aggregate Gradations and Specimens

Asphalt concrete with three types of aggregate gradations containing AC, SMA, and
OGFC was prepared, and the maximum nominal size of each type of aggregate gradation
was 13 mm. Figure 1 illustrates the corresponding grading curves selected according to JTG
F40-2004 [30]. The optimal binder contents of AC, SMA, and OGFC, which were derived
from the Marshall mix design method, were 5.0, 5.8, and 5.3, respectively. The specimens
were double-sided compacted with 75 blows by the Marshall compaction method at
the temperature of 150 ◦C. The corresponding diameter and height of specimens were
(101.6 ± 0.2) mm and (63.5 ± 1.3) mm, respectively, which meets the requirement of ASTM
D6931 for the size of the specimens in the indirect tensile test [31]. The basic volumetric
parameters of specimens are illustrated in Table 3 following JTG E20-2011 [29].

Figure 1. Selected gradation of AC, SMA, and OGFC.

Table 3. Volumetric parameters of specimens.

Items AC-13 Technical
Criterion SMA-13 Technical

Criterion
OGFC-

13
Technical
Criterion Method

Air voids (%) 3.9 3–5 3.3 3–4 20.8 18–25 T0705
Voids in mineral aggregates (%) 13.56 ≥13 19.54 ≥17 31.73 - T0705

Voids filled with asphalt (%) 71.23 65–75 83.11 75–85 27.83 - T0705
Theoretical maximum specific density 2.522 - 2.551 - 2.602 - T0705

Bulk specific gravity 2.424 - 2.467 - 2.061 - T0705
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2.3. Testing Procedure

IDT was conducted with a universal testing machine (shown in Figure 2) produced
by Sinotest Co. Ltd., Changchun, China. With the maximum loading level of 100 kN, this
machine applied the load directly to the specimen through the electro-hydraulic servo
actuator, and the corresponding load rate was 1 mm/min. The temperature chamber
attached to the machine could realize temperature control within the range from −20 ◦C
to 60 ◦C to ensure that the tests were conducted at the specific temperature, and relevant
temperatures of IDT in this study were set to −10 ◦C and 25 ◦C, respectively. Specimens
were placed in the incubator for 6 h to ensure the homogenous temperature distribution.

Figure 2. Universal testing machine. During the IDT process, asphalt concrete released energy from a local source and
generated transient elastic waves, which is detected by the AE sensor and then amplified, processed, and recorded. By
analyzing the recorded AE parameters, the damage mechanism of asphalt concrete could be characterized. The SAEU2S
data acquisition system with six channels developed by Soundwel Technology Co. Ltd. (Beijing, China) was employed
to conduct the test. The sampling accuracy of the acquisition card was ±1 dB, and the A/D conversion type was 16 bit,
10 MS/s. In order to filter out ambient noise during the acquisition process, the threshold value was set to 40 dB.

First, the SR150M ceramic AE sensor with frequency bands ranging from 60 kHz to
400 kHz and a resonant frequency of 150 kHz was immobilized on the side of the specimen
by adhesive tape and coupled with grease. The pencil lead break was then carried out to
ensure a favorable coupling condition between the sensor and specimen, after which the
load was applied to the specimen and the AE parameters containing the energy and count
during the fracture process were recorded by the AE instrument. The whole process is
schematically presented in Figure 3.
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Figure 3. Schematic diagram of AE monitoring under indirect tensile load.

2.4. AE Parameters

The fracture behavior of the three types of asphalt concrete was characterized by
AE parameters containing energy, count, amplitude, rise time, and duration. It has been
reported that all these parameters exhibited similar variations during the damage process
of asphalt concrete [12]. In this study, the energy and count were selected to investigate the
fracture characteristics of asphalt concrete with different aggregate gradations. AE energy
is defined as the area enclosed by the oscillation curve of the AE signal and time axis,
which can reflect the intensity of AE activity. AE count is the accumulation of oscillating
pulse signals that exceed the threshold value, reflecting the intensity and frequency of
AE activity.

3. Results and Discussions
3.1. Effect of Gradation on Fracture Characteristics of Asphalt Concrete

Three types of asphalt concrete with different gradations, including AC, SMA, and
OGFC, were prepared. The nominal maximum size of an aggregate with different gra-
dations was 13 mm, and the corresponding temperature of the IDT was set to 25 ◦C. AE
parameters, including energy and count, were used to characterize the fracture behavior of
specimens with different aggregate gradations. The fracture process of asphalt concrete
can be split into several stages in terms of the variations in the AE parameters. The loads
were uniformly transformed into load levels that intuitively characterized the correlation
between mechanical and AE parameters. The value of load level can be calculated by
Equation (1).

Loadlevel =
Ft

Fm
(1)

where Ft is the real-time load and Fm is the maximum load.

3.1.1. Dense-Graded Asphalt Concrete (AC)

The AE energy distribution of AC specimens is presented in Figure 4a. The failure
process can be divided into four stages. In stage one, only a small amount of energy
appeared when the load level ranged from 0 to 0.2, which illustrated that only a small part
of micro-cracks nucleated. In stage two, the corresponding load level increased from 0.2 to
0.55, and the energy was a little higher than the previous stage, but the energy value was
still at a relatively low level, which illustrated that the micro-cracks expanded but did not
form large cracks during this stage. In stage three, the energy was dense and maintained
at a higher level when the load level increased from 0.55 to 0.95, which was related to the
steady propagation of cracks. In the last stage, when the load level reached 0.95, an abrupt
increase in energy value appeared, showing that the cracks expanded rapidly and led to
the final fracture.
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Figure 4. The energy and cumulative energy distribution of AC: (a) energy; (b) cumulative energy.

As seen in Figure 4b, the two curves exhibited a favorable correlation. The degradation
of AC specimens can also be classified into four stages. In the first stage, the cumulative en-
ergy was maintained at approximately zero. In stage two, the cumulative energy increased
gradually at a relatively low growth rate. In stage three, the growth rate of cumulative
energy was higher than the previous one, and its load level lasted from 0.55 to 0.95. In
stage four, the cumulative energy increased linearly in a short time until the final fracture
of AC specimens.

Figure 5a shows the count distribution of AC. The failure process can be split into
four stages identically. In stage one, the AE count emerged sparsely at a low level, which
was attributed to the nucleation of micro-cracks. In stage two, the AE count was kept
at a slightly higher level than that in stage one when the load level ranged from 0.2 to
0.55, manifesting a small number of propagating cracks. In stage three, the AE count was
maintained at a higher level than the previous stage when the load level increased from
0.55 to 0.95, which indicated the stable propagation of cracks. In stage four, a sudden
increase in AE count appeared when the load level reached 0.95, which was associated
with the final fracture of AC specimens.

Figure 5. The count and cumulative count distribution of AC: (a) count; (b) cumulative count.

Figure 5b represents the cumulative count distribution of AC. The two curves of load
and cumulative count demonstrated favorable consistency. The damage course of AC
specimens can be classified into four stages. In stage one, the value of the cumulative count
was near zero when the load level ranged from 0 to 0.2. In stage two, the cumulative count
rose gradually at a low-grade rate when the load level increased from 0.2 to 0.55. In stage
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three, it is evident that the cumulative count increased dramatically at a higher rate than
the previous stage when the load level increased from 0.55 to 0.95 and lasted for a relatively
long time. In stage four, the cumulative count ascended almost linearly in a short time,
indicating the final fracture of AC specimens. Combining the variations in AE parameters
(energy and count) and cumulative AE parameters (cumulative energy and cumulative
count) in AC specimens, the energy and count were susceptible to identifying the final
stage, and the cumulative energy and cumulative count were sensitive to recognizing the
first three stages.

From a structural point of view, the traditional continuous dense-grade asphalt mix-
ture is the suspend-dense structure, whose strength mainly derives from the cohesive force
of the asphalt binder to aggregates. The asphalt concrete was subjected to a tensile force
under indirect tensile load. In the initial stage, the asphalt binder and aggregate exhibited
favorable cohesion and strong integrity, the cracking activities were not vigorous, and the
phenomenon that the AE energy and count was at a relatively low level during the first
three stages also confirmed this statement. When the load exceeded the tensile strength of
specimens, final brittle fracture emerged, and the drastic increase in the AE energy and
count in the final stage also authenticated this analysis.

3.1.2. Stone Mastic Asphalt (SMA)

Figure 6a illustrates the energy distribution of SMA. The damage course can be
segmented into three stages. In stage one, the energy value was near zero before the
load level reached 0.3, which indicated that only a small number of micro-cracks formed.
In stage two, the energy emerged densely and was maintained at a relatively high level
when the load level ranged from 0.3 to 0.9, demonstrating that the micro-cracks in SMA
specimens expanded into macro-cracks steadily. In stage three, the energy value was
maintained at a higher level than the previous stage when the load level increased from 0.9
to 1, which indicated that the cracks developed steadily and accumulated continuously
until the final fracture.

Figure 6. The energy and cumulative energy distribution of SMA: (a) energy; (b) cumulative energy.

Figure 6b shows the cumulative energy distribution. The fracture course of SMA
specimens can be segmented into three stages. It can be seen that there was a limited
cumulative energy in the initial stage before the load level reached 0.3. In stage two, the
cumulative energy increased gradually when the load level increased from 0.3 to 0.9. In
the last stage, the cumulative energy continued to increase at a high growth rate until the
final fracture of SMA specimens.

As shown in Figure 7a, the damage process of SMA specimens can be split into three
stages. In stage one, only a low count emerged before the load level reached 0.3, which
was related to a small number of nucleated micro-cracks. In stage two, the AE count was
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at a relatively high level when the load level ranged from 0.3 to 0.9, indicating the stable
expansion of micro-cracks to macro-cracks. In stage three, the AE count was maintained at
a higher level than the previous stage when the load level ranged from 0.9 to 1, which was
related to the steady and accumulative development of cracks until the final fracture.

Figure 7. The count and cumulative count distribution of SMA: (a) count; (b) cumulative count.

The cumulative count distribution of SMA specimens is observed in Figure 7b. The
failure process of SMA specimens can also be classified into three stages. In stage one,
the cumulative count remained around zero before the load level reached 0.3. In stage
two, the cumulative count increased gradually as the load level increased from 0.3 to
0.9. In the last stage, the cumulative count increased faster than the previous stage in
terms of the curve slope. In terms of the comprehensive variations in AE parameters in
SMA specimens, the energy and count exhibited satisfactory classification ability during
the whole process, and it was vague for the cumulative energy and cumulative count to
distinguish the demarcation point between stage two and stage three.

SMA specimens belong to the discontinuous gradation in grading types, and the
gaps of the skeleton composed of coarse aggregates are filled with fine aggregates and
asphalt binders in reasonable proportions, leading to the formation of the stable structure
with an excellent packing effect. The internal friction and cohesion emerged to resist the
displacement of asphalt concrete when the load was applied. The significant difference in
AE characteristics between SMA and AC specimens lied in that the energy and count of
SMA specimens were more uniform than those of AC specimens, and there was no drastic
increase in AE parameters compared with AC specimens throughout the IDT process,
which is attributed to the stable skeleton-dense structure.

3.1.3. Open-Graded Friction Course (OGFC)

Figure 8a shows the energy distribution of OGFC specimens. The damage process of
OGFC specimens can be classified into four stages. In stage one, only a small amount of
energy emerged before the load level reached 0.3, representing the generation of micro-
cracks. In stage two, the energy was at a higher level than the former stage as the load
level ranged from 0.3 to 0.75, which can be considered as the propagation of micro-cracks.
There was a sudden rise when the load level reached 0.75, 0.9, and 0.98, manifesting
stress concentration resulted in large cracks in OGFC specimens. In stage three, the
energy emerged densely but was still at a low level when the load level increased from
0.75 to 0.9, which illustrated stable crack growth. In stage four, the energy exhibited a
denser distribution than the previous stage, which contributed to the final fracture of
OGFC specimens.
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Figure 8. The energy and cumulative energy distribution of OGFC: (a) energy; (b) cumulative energy.

As seen in Figure 8b, the damage process can be divided into four stages. In stage one,
it is apparent that the cumulative energy was at a low level. In stage two, the cumulative
energy increased gradually as the load level increased from 0.3 to 0.75. In stage three, the
cumulative energy ascended steadily at a higher growth rate than that of stage two. In the
last stage, the cumulative energy exhibited a more precipitous ascending trend than that of
the previous stage until the final fracture of OGFC specimens.

Figure 9a represents the count distribution of OGFC specimens. The failure course of
OGFC specimens can be classified into four stages. In stage one, only a low count appeared
when the load level ranged from 0 to 0.3, which indicated the generation of micro-cracks.
In stage two, the AE count remained at a relatively high level as the load level ranged
from 0.3 to 0.75, manifesting the propagation of cracks. In stage three, the energy was
maintained at a higher level than the previous stage when the load level increased from
0.75 to 0.9, which can be considered as the expansion of cracks. In stage four, the energy
distributed densely after the load level reached 0.9 and gradually resulted in the final
fracture of OGFC specimens.

Figure 9. The count and cumulative count distribution of OGFC: (a) count; (b) cumulative count.

As shown in Figure 9b, the damage process of OGFC specimens can be split into
four stages. In stage one, the cumulative count was maintained at a low-grade level
as the load level increased from 0 to 0.3. In stage two, the cumulative count increased
gradually as the load level increased from 0.3 to 0.75. In stage three, the cumulative count
ascended continuously with a higher rate of ascent compared with stage two when the load
level increased from 0.75 to 0.9. In stage four, the cumulative count exhibited an almost
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linear growth after the load level reached 0.9, which contributed to the final destruction of
OGFC specimens. Among the overall variations in AE parameters in OGFC specimens,
the cumulative energy and cumulative count exhibited favorable identification abilities
throughout the failure process, and it was fuzzy for energy and count to distinguish the
demarcation point between stage one and stage two.

OGFC specimens belong to the continuous open gradation in gradation type, and it is
a skeleton-void structure with large air voids, where the structure is composed of a large
number of course aggregates and a small number of fine aggregates. The voids between the
skeleton cannot be adequately filled by fine aggregates, which leads to the inability to form
a strong interlocking effect between the particles. The strength of OGFC specimens mainly
relies on the cohesive force between the binder and aggregates. The air voids of OGFC
specimens are relatively large, and the contact state between particles is stone-to-stone,
making the OGFC specimens prone to stress concentration in the IDT process. The cracks
occurred and released a considerable quantity of AE energy when the stress concentration
accumulated to a critical extent. Thus, the energy and count mutation points of OGFC
specimens were intermittently distributed throughout the IDT process.

The combined analysis of AE parameters and cumulative AE parameters enables
the accurate classification of the fracture process in asphalt concrete. These three types of
asphalt concrete exhibited different fracture characteristics during the failure process owing
to their dissimilar skeletal structures. The internal damage of AC specimens developed
slowly in the early loading stages but accumulated sharply in the final stage until they were
completely destroyed. The SMA specimens displayed a steady development of internal
damage under loading until the final fracture. The OGFC specimens were accompanied by
localized damage throughout the failure process due to stress concentration.

3.2. Effect of Testing Temperature on Fracture Characteristics of Asphalt Concrete

Energy and cumulative energy were employed to assess the influence of testing
temperature on the damage characteristics of specimens. The IDT and AE tests were
conducted simultaneously at the temperatures of −10 ◦C and 25 ◦C, respectively. Time
data were converted into time levels to characterize the variation in AE parameters visually
with temperature. The value of the time level can be calculated by Equation (2).

Timelevel =
t
to

(2)

where t is the loading time and to is the overall loading time.

3.2.1. Dense-Graded Asphalt Concrete (AC)

Figure 10a illustrates the energy distribution of AC specimens. The energy value at
−10 ◦C was much higher than that at 25 ◦C, which was ascribed to the viscoelastic attribute
of asphalt concrete. Compared with high temperatures, the asphalt concrete was more
brittle and exhibited more intense AE activities at low temperatures. Besides, the variations
in energy versus time level were significantly influenced by temperature. The energy of
AC specimens began to emerge densely approximately at the time levels of 0.45 and 0.2 at
−10 ◦C and 25 ◦C, respectively.

As seen in Figure 10b, the initial rising point of cumulative energy at −10 ◦C lagged
behind that at 25 ◦C, the cumulative energy began to rise at the time level of 0.5 at −10 ◦C,
while it started to rise at the time level of 0.2 at 25 ◦C. The variation in energy and cumula-
tive energy versus time level at different temperatures displayed favorable consistency.

As mentioned above, the AC specimens possess the suspend-dense structure, whose
strength mainly derives from the cohesive force of asphalt binder to aggregates. The
change in temperature leads to the variety of cohesion between binders and aggregates,
which affects the mechanical performance of specimens. Thus, the change in temperature
significantly affects the AE parameters of asphalt concrete during its failure process.
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Figure 10. The energy and cumulative energy distribution of AC at −10 ◦C and 25 ◦C: (a) energy; (b)
cumulative energy.

3.2.2. Stone Mastic Asphalt (SMA)

Figure 11a shows the energy distribution. Similarly, the energy value at −10 ◦C was
much higher than that at 25 ◦C. The energy of SMA specimens began to emerge densely
at the time levels of 0.35 and 0.25 at −10 ◦C and 25 ◦C, respectively, and the variations in
energy versus time level exhibited favorable consistency at these two temperatures.

Figure 11. The energy and cumulative energy distribution of SMA at −10 ◦C and 25 ◦C: (a) energy;
(b) cumulative energy.

The cumulative energy distribution is presented in Figure 11b, the two curves at
−10 ◦C and 25 ◦C showed a similar tendency, and the initial rising point of cumulative
energy at −10 ◦C was slightly later than that at 25 ◦C. Besides, the area surrounded by the
two curves can be employed to characterize the temperature stability of specimens. The
smaller the area, the better the temperature stability of specimens. Conversely, the larger
the area, the worse the temperature stability of specimens. As seen in Figures 10b and 11b,
the area enclosed by the two curves of SMA specimens was significantly smaller than that
of AC specimens, indicating that the SMA specimens possess better temperature stability
than AC specimens.

The strength of SMA specimens mainly derives from internal friction and cohesion.
The change in temperature affects the cohesion of SMA specimens to a certain extent, but
SMA specimens rely more on the internal friction of the skeleton-embedded structure to
bear the load. Thus, the variation in energy and cumulative energy versus time is less
affected by temperature.
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3.2.3. Open-Graded Friction Course (OGFC)

The energy distribution of OGFC specimens is illustrated in Figure 12a, and the energy
value at −10 ◦C was much higher than that at 25 ◦C. The energy of OGFC specimens began
to emerge densely approximately at the time level of 0.25 at −10 ◦C. However, at 25 ◦C,
the energy emerged densely at the initial stage of IDT and lasted until the final fracture,
and the energy value at 25 ◦C occurred continuously earlier than that at −10 ◦C.

Figure 12. The energy and cumulative energy distribution of OGFC at −10 ◦C and 25 ◦C: (a) energy;
(b) cumulative energy.

Figure 12b shows the cumulative energy distribution of OGFC specimens at −10 ◦C
and 25 ◦C, where the initial rising point of cumulative energy at −10 ◦C lagged significantly
behind that at 25 ◦C, the curve at −10 ◦C started to rise at the time level of 0.3, while it
started to rise at the initial time level at 25 ◦C. As seen in Figures 10b, 11b and 12b, the
area enclosed by two cumulative energy curves at −10 ◦C and 25 ◦C of OGFC specimens
was larger than that of SMA specimens and close to that of AC specimens, indicating
that the SMA specimens possess the best temperature stability among the three types of
asphalt concrete.

The strength of OGFC specimens mainly relies on the cohesive force between binders
and aggregates. The change in temperature leads to the change in cohesion between
the binder and aggregates, causing the fluctuation in mechanical properties. Thus, the
temperature shows a significant impact on the AE parameters of OGFC specimens during
the IDT process.

The AE technique provides a new method to estimate the temperature stability of
asphalt concrete. Combining the variations in AE parameters of these three types of asphalt
concrete at different temperatures, it can be seen that the AE activities at −10 ◦C were
more intense and the internal damage of asphalt concrete developed later compared to
25 ◦C. In addition, the SMA specimens exhibited the best temperature stability based on
the AE parameter analysis. Compared with the traditional mechanical parameters, the AE
parameters were more sensitive to the internal damage of asphalt concrete, which could
help us understand the fracture mechanisms of asphalt concrete comprehensively.

4. Conclusions

In this study, the fracture characteristics of asphalt concrete with three aggregate
gradations, including AC, SMA, and OGFC, under IDT using the AE technique were
demonstrated, and the temperature effects of asphalt concrete characterized by AE param-
eters were also discussed. The most relevant conclusions are:

1. Asphalt concrete with different aggregate gradations exhibited different fracture char-
acteristics based on AE monitoring, and the comprehensive analysis of AE parameters
and cumulative AE parameters can realize accurate identification of the damage
process of asphalt concrete.
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2. The damage fracture of AC, SMA, and OGFC specimens can be divided into four,
three, and four stages due to AE parameters, respectively. As for AC specimens, the
fracture characteristics were manifested by the sudden fracture due to insufficient
cohesion under critical load. The fracture process of SMA specimens was character-
ized by the stable propagation of cracks owing to the stable skeleton-dense structure.
Due to the high voids content, the fracture characteristics of OGFC specimens were
represented as the local failure caused by the stress concentration related to the
skeleton-void structure throughout the IDT process.

3. The energy and cumulative energy of AC, SMA, and OGFC specimens varied with
temperature, and the SMA specimens displayed the best overall performance among
these three kinds of asphalt concrete in terms of the distribution of AE parameters at
different temperatures.
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