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DNAmicroarray technology canmeasure the activities of tens of thousands of genes simultaneously, which provides an efficient way
to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect
an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to
produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this
paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble
learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying
out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we
introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into
each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier,
and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed
multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive
to class imbalance.

1. Introduction

Microarray technology allows large-scale and parallel mea-
surements for expression of around thousands, perhaps even
tens of thousands, of genes. It has been one of the most suc-
cessfulmolecular biology technologies in the postgenome era
andhas beenwidely applied to predict gene functions [1], pro-
vide invaluable information for drug discovery [2, 3], inves-
tigate gene regulatory mechanisms [4, 5], find new subtypes
of a specific tumor [6, 7], and classify cancers [8, 9]. Among
these applications, cancer classification, which has been the
subject of extensive research all around the world, is most
promising [10]. However, microarray data are known to have
some features, such as high dimension, small sample, high
noise, high redundancy, and skewed class distribution which

is called class imbalance problem. Class imbalance occurs
when examples from one class outnumber those of the other
class, which results in great underestimation of the classifi-
cation performance of the minority, thereby further affecting
the evaluation precision of the overall classification perfor-
mance. In otherwords, developing a clinical tumor diagnostic
system is meaningless if class imbalance is not considered.

Recent studies have addressed this problem in the con-
text of cancer classification based on microarray data [11–
18]. Unfortunately, most existing work has only considered
binary-class imbalance and ignored the multiclass problem,
that is, identifying multiple imbalanced tumor types or sev-
eral skewed subtypes of a special tumor. Applying traditional
supervised learning algorithms that solve minimum classi-
fication errors will provide inaccurate classification results.
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Furthermore, addressing skewedmulticlass problems ismore
difficult than dealing with binary-class imbalance problems
[19].

Generally speaking, support vectormachine (SVM) is the
best choice for classifying cancer microarray data because
of its advantages, such as its high generalization capability,
absence of localminima, and adaptability for high-dimension
and small sample data [20]. However, SVM was initially
designed for binary-class problems. Therefore, to apply SVM
to multiclass problems, it should be reconfigured for mul-
tiple binary-class problems by using a coding strategy [21].
Previous studies have presented several well-known coding
strategies, including one-against-all (OAA), one-against-one
(OAO), decision directed acyclic graph (DDAG), and error
correcting output codes (ECOC). These strategies have also
been used to classify multiclass cancer microarray data
[22–24]. Statnikov et al. [25] systematically assessed these
strategies by performing experiments and found that OAA
often produces better classification accuracy. In the present
study, we use OAA as a baseline coding strategy.We also note
that this decomposition can further damage the equilibrium
of training instances. Therefore, one approach for effective
class imbalance correction should be carried out in each
binary-class branch.

In this paper, we attempted to address the multiclass
imbalance classification problem of cancer microarray data
by using ensemble learning. Ensemble learning has been used
to improve the accuracy of feature gene selection [26] and
cancer classification [27–29]. First, our method used OAA
coding to divide multiclass problems into multiple binary-
class problems. Next, we designed an improved random
subspace generation approach called feature subspace (FSS)
to produce a large number of accurate and diverse training
subsets. We then introduced one of two correction technolo-
gies, namely, either decision threshold adjustment (THR) [17]
or random undersampling (RUS) [30], into each training
subset to dealwith class imbalance. Finally, a novel voting rule
based on counter voting was presented, which made the final
decision in ensemble learning. We evaluated the proposed
method by using eight multiclass cancer DNA microarray
datasets that have different numbers of classes, genes, and
samples, as well as class imbalance ratios. The experimental
results demonstrated that the proposed method outperforms
many traditional classification approaches because it pro-
duces more balanced and robust classification results.

The rest of this paper is organized as follows. In Section 2,
the methods referred to in this study are introduced in detail.
Section 3 briefly describes the datasets that were used.
Section 4 introduces performance evaluation metrics and
experimental settings. Results and discussions are presented
in Section 5. Section 6 summarizes the main contributions
of this paper.

2. Methods

2.1. Coding Strategies for TransformingMulticlass intoMultiple
Binary Classes. Coding strategies are often used to transform
multiclass into multiple binary-classes [21]. OAA, OAO, and
ECOC can be described by a code matrix𝑀, where each row

contains a code word assigned to each class, and each column
defines a binary partition of 𝐶 classes. Specifically, we assign
+1, −1, or 0 for each element in 𝑀. An element 𝑚

𝑖𝑗
with +1

value indicates that the 𝑖th class is labeled as positive for the
𝑗th binary classifier, −1 represents that the 𝑖th class in the 𝑗th
binary classifier is labeled as negative, and 0means that the 𝑖th
class does not participate in the induction of the 𝑗th classifier.

Without loss of generality, a problem of four classes is
assumed; that is, 𝐶 = 4. OAA generates 𝐶 classifiers in which
each one is trained to distinguish a class from the remaining
classes. The code matrix of OAA is presented in Figure 1(a).
In practical applications, OAA assigns the class label with
the highest decision output value to the test instance. Unlike
OAA, OAO trains 𝐶 × (𝐶 − 1)/2 binary classifiers and
assigns each one by using only two original classes and simply
ignoring the others. Its code matrix is shown in Figure 1(b).
The decoding rule of OAO is majority voting; that is, the test
instance is designated to the class with the most votes. ECOC
proposed by Dietterich and Bariki [31] uses error correcting
codes to denote 𝐶 classes of a multiclass problem. For each
column of the code matrix, one or several classes are denoted
as positive, and the remainder is designated as negative. In
ECOC, hamming distance is applied as decoding strategy. In
particular, when using an exhaustive code to construct the
code matrix of ECOC, it can generate more binary classifiers
than OAA and OAO. The size of ECOC is 2𝐶−1 − 1, and its
code matrix is described in Figure 1(c).

DDAG [32] has the same coding rule as OAO but uses
a totally different decoding strategy. It organizes all binary
classifiers into one hierarchical structure (see Figure 1(d)) and
makes a decision for test samples from root to leaf, which is
helpful for decreasing time complexity of the testing process.

To our knowledge, no previous work has considered the
effect of class imbalance on these coding strategies, although
some have indicated that it is, in fact, harmful [33, 34]. In this
paper, we proposed two solutions for this problem and used
OAA coding as the baseline.

2.2. Feature Subspace Generation Technology. The perfor-
mance of ensemble learning is related to two factors: accuracy
and diversity of base classifiers [35]. The generalization error
of ensemble learning 𝐸 can be calculated by using the
following equation:

𝐸 = 𝐸 − 𝐴, (1)

where 𝐸 and 𝐴 are averages of generalization errors and
diversities, respectively. Therefore, to create a successful
ensemble learning model, two factors should be considered
simultaneously. The more accurate each base classifier and
the more diverse different base classifiers, the better the clas-
sification performance of the ensemble learning. However,
these two factors are conflicting; that is, with the increase
in average accuracy, the average diversity inevitably declines,
and vice versa. Many effective ensemble learning methods
are available, including Bagging [36], AdaBoost [37], random
subspace [38] and random forest [39]. However, we have
observed that these methods are not sufficiently effective
in classifying high-dimensional data. Therefore, we used a
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Figure 1: Code matrices of different coding strategies for a classification problem with four classes, where (a) is OAA coding strategy, (b) is
OAO coding strategy, (c) is ECOC coding strategy, and (d) is DDAG decomposition strategy.

modified random subspace method [38], and proposed an
FSS generation strategy, which is described below.

DNA microarray data are known to contain numerous
noisy and redundant genes, which can negatively affect
classification performance and should thus be preliminarily
eliminated. FSS generation strategy uses hierarchical clus-
tering, which uses Pearson correlation coefficient (PCC) as
a similarity measure to delete redundant genes and signal-
to-noise ratio (SNR) feature selection method [6] to remove
noisy genes. PCC evaluates the similarity between two genes
𝑔
𝑖
and 𝑔

𝑗
by using the following equation:

PCC (𝑔
𝑖
, 𝑔
𝑗
) =

∑
𝑚

𝑘=1
(𝑔
𝑖𝑘
− 𝑔
𝑖
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𝑗𝑘
− 𝑔
𝑗
)
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(𝑔
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𝑖
)
2
√∑
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(𝑔
𝑗𝑘
− 𝑔
𝑗
)
2

,

(2)

where 𝑔
𝑖𝑘
is the expression value of the gene 𝑔

𝑖
on the 𝑘th

sample, 𝑔
𝑖
represents the mean value of 𝑔

𝑖
, and 𝑚 denotes

the number of training samples. A larger PCC between two
genes indicates that the genes have greater similarity. Using
this method ensures that all genes could be grouped into
𝐾 clusters, where 𝐾 is the number of clusters. Obviously,
redundant genes can emerge in the same clusters. For this, we
use the SNR feature selection method [6] to select differen-
tially expressed genes in each cluster, with the computational
formula listed as follows:

SNR (𝑥
𝑖
) =

𝜇+ − 𝜇
−



(𝜎
+
+ 𝜎
−
)
, (3)

where 𝜇
+
and 𝜇

−
are mean values of gene 𝑔

𝑖
in positive class

and negative class, and 𝜎
+
and 𝜎

−
are their standard devia-

tions, respectively. The extracted features are clearly closely

correlated with the classification task without being redun-
dant with each other. We call the space that merely contains
the 𝐾 extracted genes the feature space from which multiple
feature subspaces can be generated. If the dimension of fea-
ture subspace is𝐷, where𝐷 ≤ 𝐾, then a feature subspace can
be generated by using the following random project function:

𝑃 (𝑅
𝐾
) ∈ 𝑅
𝐷
. (4)

By using the random project function 𝑃, we can repeat-
edly produce multiple diverse feature subspaces. For a given
high-dimensional training set 𝑇, the pseudocode descrip-
tion of the FSS generalization algorithm is presented in
Pseudocode 1.

We also analyze the reason behind the ability of FSS
to promote equilibrium relationship between accuracy and
diversity of base classifiers. Suppose 𝑓 is one gene in feature
space that has been integrated into feature subspace FSS

𝑖
.

Then the probability that 𝑓 has simultaneously appeared in
another feature subspace FSS

𝑗
is

𝑃 (𝑓 ∈ FSS
𝑗
| 𝑓 ∈ FSS

𝑖
) =

𝐷

𝐾
. (5)

This equation means that for any two feature subspaces,
their coselection rate is, in theory, about 𝐷/𝐾. Moreover,
because any two genes in the feature space can be regarded
as approximatively nonredundant, the theoretical diversity
between two feature subspaces div can be computed by the
following:

div = (𝐾 − 𝐷)

𝐾
. (6)
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Input: training set 𝑇; Feature set 𝐹; Size of feature space 𝐾; Size of
feature subspace𝐷; Number of feature subspace 𝐿
Output: 𝐿 feature subspace training subsets
Process:
(1) Gather features of 𝐹 into 𝐾 clusters by hierarchical clustering

based on PCC: Cluster
𝑖
(1 ≤ 𝑖 ≤ 𝐾);

(2) For 𝑖 = 1 :𝐾
(3) {
(4) Select representative gene 𝑓

𝑖
in Cluster

𝑖
by SNR;

(5) }
(6) Construct feature space FS including all representive genes

extracted above;
(7) For 𝑖 = 1 to 𝐿
(8) {
(9) FSS

𝑖
= 𝑃 (FS ∈ 𝑅

𝐾
) ∈ 𝑅

𝐷;
(10) 𝑇

𝑖
= (FSS

𝑖
, 𝑇); /∗FSS: feature subspace

(11) }
(12) Output 𝐿 feature subspace training subsets

Pseudocode 1: Pseudocode description of the FSS generation algorithm.

When 𝐾 is much larger than 𝐷, diversity among the fea-
ture subspaces can be guaranteed.𝐷 is an important parame-
ter that influences the accuracy of base classifiers and should
not be assigned an overly small value. In addition, a con-
structed ensemble learning model theoretically has 𝐶𝐷

𝐾
dif-

ferent combinations, such that the number of different com-
binations is deduced to reach its peak value when 𝐷 = 𝐾/2.

2.3. Support Vector Machine and Its Correction Technologies
for Class Imbalance Problem. SVM, which is based on the
structural risk minimization theory, is one of the most
popular classification algorithms. The decision function of
SVM is listed as follows:

ℎ (𝑥) = sgn(
sv
∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏) , (7)

where sv represents the number of support vectors, 𝛼
𝑖
is the

Lagrange multiplier, 𝑏 is the bias of optimum classification
hyperplane, and 𝐾(𝑥, 𝑥

𝑖
) denotes the kernel function. Some

previous studies have found that the radial basis kernel func-
tion (RBF) generally produces better classification accuracy
than many other kernel functions [20, 30]. RBF kernel is
presented as

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp

{

{

{

−


𝑥
𝑖
− 𝑥
𝑗



2

2𝜎2

}

}

}

, (8)

where 𝜎 is the parameter that indicates the width of the RBF
kernel.

Although SVM is more robust to class imbalance than
many other machine learning methods because its classifica-
tion hyperplane only associates with a few support vectors, it
can still be,more or less, affected by skewed class distribution.
Previous studies [40, 41] have found that the classification

hyperplane can be pushed toward the minority class if the
classification data is skewed (see Figure 2(a)).

Class imbalance correction technologies of SVM can be
roughly divided into three categories: sampling [30, 40],
weighting [41, 42], and decision threshold adjustment [17],
that is, thresholdmoving. Sampling is themost direct solution
for class imbalance. It increases instances of minority class
[40] or decreases examples of majority class [30] to mediate
the skewed scaling relation.The former is called oversampling
and the latter is called undersampling. Weighting [41], which
is also known as cost-sensitive learning, assigns different
penalty factors for the samples of positive and negative
classes. Generally speaking, the penalty factor of positive
class 𝐶

+
is much larger than that of negative class 𝐶

−
.

Phoungphol et al. [42] used ramp loss function to construct
a more robust and cost-sensitive support vector machine
(Ramp-MCSVM) and used it to classify multiclass imbal-
anced biomedical data. Decision threshold adjustment based
on support vector machine (SVM-THR) directly pushes
classification hyperplane toward the majority class. Lin and
Chen [17] suggested adopting SVM-THR to classify severely
imbalanced bioinformatics data.

In this paper, to reduce time complexity, we used SVM
based on random undersampling (SVM-RUS) [30] (see
Figure 2(b)) and SVM with decision threshold adjustment
(SVM-THR) [17] (see Figure 2(c)) to deal with class imbal-
ance problem.The decision threshold is adjusted by using the
following default equation [17]:

𝜃 =
𝑚
+
− 𝑚
−

𝑚
+
+ 𝑚
−
+ 2

, (9)

where𝑚
+
and𝑚

−
are the number of examples that belong to

the positive class and the negative class, respectively. For one
test sample 𝑥

𝑖
, supposing that the original decision function

is ℎ(𝑥
𝑖
), the adjusted decision function can be represented as

ℎ

(𝑥
𝑖
) = ℎ(𝑥

𝑖
) − 𝜃.
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Table 1: Datasets used in this study.

Dataset Number of
samples

Number of
classes

Number of
genes

Imbalance
ratio Diagnostic task

Brain Tumor1 90 5 5920 15.00 5 human brain tumor types
Brain Tumor2 50 4 10367 2.14 4 malignant glioma types

Leukemia1 72 3 5327 4.22
Acute myelogenous leukemia (AML), acute lymphoblastic

leukemia (ALL) B-cell, and ALL T-cell
Leukemia2 72 3 11225 1.40 AML, ALL, and mixed-lineage leukemia (MLL)
Lung Cancer 203 5 12600 23.17 4 lung cancer types and normal tissues
SRBCT 83 4 2308 2.64 Small, round blue cell tumors (SRBCT) of childhood
11 Tumors 174 11 12533 4.50 11 various human tumor types
14 Tumors 308 26 15009 10.00 14 various human tumor types and 12 normal tissue types

(a) (b) (c)

Figure 2: Graphical representations of original SVM and SVMs based on two different correction technologies for class imbalance problem,
where (a) is original SVM modeling, (b) is SVM-RUS modeling, (c) is SVM-THR modeling. The circle points denote positive samples and
the asterisk points represent negative examples, respectively.

2.4. Ensemble Learning Framework Based on Feature Sub-
space and Counter Voting Integration Rule for Classifying
Imbalanced Multiclass Cancer Microarray Data. Ensemble
learning often provides a framework to generate multiple
weak classifiers and aggregates these by using an integration
rule to become a strong classifier. The integration rules
mainly includemajority voting andweighted voting.With the
characteristics ofmulticlass problem taken into consideration
and referring to the idea of majority voting, we propose
a novel integration rule called counter voting. For each
decomposed binary-class branch in OAA, one counter is
assigned, which indicates the proportion of test sample 𝑥



that belongs to the corresponding positive class. All counters
compete with each other to select the category of the test
sample by using the following equation:

ℎ (𝑥

) = arg max
𝑖∈{1,2,...,𝐶}

(Counter
𝑖
(𝑥

)) . (10)

The pseudo-code description and graphical representa-
tion of our proposed ensemble learning algorithms are given
in Pseudocode 2 and Figure 3, respectively. We call these
algorithms as EnSVM-OAA(THR) and EnSVM-OAA(RUS).
Figure 3 shows that if one classification task is binary, counter
voting turns into majority voting. Counter voting, rather

than majority voting or weighted voting, is used to classify
multiclass data because generating feature space on each
binary-class is more accurate than directly generating feature
space on multiple classes. Our proposed ensemble learning
framework also has the same time complexity as aggregating
𝐿 SVM-OAAs by using majority voting.

3. Datasets

Eight skewed multiclass cancer microarray datasets [6, 7, 43–
48] were used to verify the effect of our proposed ensemble
learning methods, which have 3 to 26 classes, 50 to 308
instances, 2308 to 15009 genes, and imbalance ratios in the
range of 2.14 to 23.17. These datasets are available at http://
www.gems-system.org/, and detailed information about
these data is shown in Table 1.

4. Performance Evaluation Metrics and
Experimental Settings

When one classification task is skewed, the overall classifi-
cation accuracy Acc is no longer an appropriate evaluation

http://www.gems-system.org/
http://www.gems-system.org/
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Multiclass cancer
Microarray data

Feature space 1 Feature space 2

Class 2 versus restClass 1 versus restOAA

Feature 
selection

Random 
projection

SVM-THR/
SVM-RUS

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Class C versus rest

FSS1,1 FSS1,2 FSS1,L FSS2,1 FSS2,2 FSS2,L FSSC,1 FSSC,2 FSSC,L

SVM1,1 SVM1,2 SVM1,L SVM2,1 SVM2,2 SVM2,L SVMC,1 SVMC,2 SVMC,L

Feature space C

Counter1 Counter2 CounterC

J = argmax
i

(Counteri)

Counter voting

Figure 3: The frame diagram of the ensemble learning algorithms based on feature subspace and counter voting rule for classifying
imbalanced multiclass cancer microarray data.

Input: Training set 𝑇; Feature set 𝐹; Size of feature space 𝐾; Size of
Feature subspace𝐷; Number of classes 𝐶; Number of feature subspace
𝐿; Baseline learner 𝐼; One test sample 𝑥
Output: ℎ(𝑥) which is the class label of the test sample 𝑥
Process:
(1) for 𝑖 = 1 :𝐶
(2) {
(3) Label the samples of 𝑖th class as positive and the rest samples as

Negative;
(4) External 𝐿 diverse training subsets by feature subspaces generation

algorithm (see Pseudocode 1);
(5) for 𝑗 = 1 : 𝐿
(6) {
(7) Train imbalanced base classifier 𝐼

𝑖,𝑗
by training subset 𝑇

𝑖,𝑗
using

THR or RUS, abbreviated as EnSVM-OAA(THR) and
EnSVM-OAA(RUS), respectively.

(8) }
(9) }
(10) for 𝑖 = 1 :𝐶
(11) {
(12) for 𝑗 = 1 : 𝐿
(13) {

(14) Use 𝐼
𝑖,𝑗
to classify the test sample 𝑥;

(15) }

(16) Calculate the value of Counter
𝑖
;

(17) }
(18) output ℎ(𝑥) by (10)

Pseudocode 2: Pseudocode description of the ensemble learning algorithms based on feature subspace and counter voting rule for classifying
imbalanced multiclass cancer microarray data.
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Table 2: Confusion matrix.

Predicted positive class Predicted negative class
Real positive
class True positive (TP) False negative (FN)

Real negative
class False positive (FP) True negative (TN)

metric for estimating the quality of a classifier. In this case, a
confusion matrix described in Table 2 is usually employed.

The description in Table 2 gives four baseline statistical
components, where TP and FNdenote the number of positive
examples which are accurately and falsely predicted, respec-
tively, and TN and FP represent the number of negative sam-
ples that are predicted accurately and wrongly, respectively.
Two frequently used measures for class imbalance problem,
namely,𝐹-measure and𝐺-mean, can be regarded as functions
of these four statistical components and are calculated as
follows:

𝐹-measure = 2 × Precision × Recall
Precision + Recall

,

𝐺-mean = √TPR × TNR,
(11)

where Precision, Recall, TPR, andTNRcanbe further defined
as follows:

Precision =
TP

TP + FP
,

Recall = TPR =
TP

TP + FN
,

TNR =
TN

TN + FP
.

(12)

The overall classification accuracy Acc can be calculated by
using the following equation:

Acc = TP + TN
TP + TN + FP + FN

. (13)

However, these evaluationmetrics aremerely appropriate
for estimating binary-class imbalance tasks. To extend these
metrics to multiclass, some transformations should be con-
sidered. 𝐺-mean computes the geometric mean of all classes’
accuracies and is described as follows:

𝐺-mean = (

𝐶

∏

𝑖=1

Acc
𝑖
)

1/𝐶

, (14)

where Acc
𝑖
denotes the accuracy of the 𝑖th class. 𝐹-measure

can be transformed as 𝐹-score [49], which can be calculated
by using the following formula:

𝐹-score =
∑
𝐶

𝑖=1
𝐹-measure

𝑖

𝐶
, (15)

where 𝐹-measure
𝑖
can be calculated further by using the

following equation:

𝐹-measure
𝑖
=
2 × Precision

𝑖
× Recall

𝑖

Precision
𝑖
+ Recall

𝑖

, (16)

and the Acc metric can also be transformed as follows:

Acc =
𝐶

∑

𝑖=1

(𝐴𝑐𝑐
𝑖
× 𝑃
𝑖
) , (17)

where 𝑃
𝑖
is the percentage of samples in the 𝑖th class.

To impartially and comprehensively assess the classifica-
tion performance, we use three extended measures, namely,
𝐺-mean,𝐹-score, and Acc, which are described in (14), (15),
and (17), respectively, as evaluation metrics.

We empirically performed threefold cross-validation [16]
to evaluate classification performance. Considering the ran-
domness of the sample set partition, each experiment was
randomly repeated 10 times. The final values of Acc, 𝐹-score,
and 𝐺-mean were averaged by these 10 runs.The penalty fac-
tor𝐶 and the width parameter 𝜎 of RBF kernel function were
tuned by using grid search with threefold cross-validation,
where 𝐶 ∈ [2

−2
, 2
−1
, . . . , 2

15
] and 𝜎 ∈ [2

−6
, 2
−5
, . . . , 2

5
]. In

addition, the initial dimension of feature space 𝐾 and that
of feature subspace 𝐷 are empirically assigned as 100 and 20,
respectively. 𝐿, which indicates the number of base classifiers
in each OAA branch, is also empirically assigned as 100.

To demonstrate the advantage of our methods, we evalu-
ated them in comparison with 10 other classification meth-
ods, namely, SVM-OAA, SVM-OAO, SVM-DDAG, SVM-
ECOC, single SVM-OAA classifier with THR and RUS cor-
rection strategies (OAA-SVM(THR) and OAA-SVM(RUS)),
ensemble of SVM-OAA without considering class imbalance
(EnSVM-OAA), MCSVM [41], Ramp-MCSVM [42], and
AdaBoost.NC [19]. To equitably compare the performance
of various methods, we used the same common parameters.
The other parameters used were the default ones found in
references [19, 41, 42].

5. Results and Discussions

The experimental results of 12 classification algorithms on
8 datasets are reported in Tables 3, 4 and 5, where the best
result in each dataset is highlighted in bold, the second best
is underlined, and the worst is italicized. From Tables 3 to 5,
we observe the following.

(i) SVM with various coding strategies exhibits quite
similar classification performance in terms of Acc,
𝐹-score, and 𝐺-mean evaluation metrics. Compared
with its three competitors, SVM-OAA does not show
sufficient superiority, although it simplifies transfor-
mation by decomposing each multiclass problem to
the least binary-class problems. In addition, we found
that all four traditional classification algorithms are
sensitive to class imbalance.

(ii) Some datasets are sensitive to class imbalance but
others are not, as shownby the difference betweenAcc
and 𝐺-mean values. An Acc value that is much larger
than the𝐺-mean value means that the corresponding
classifier is significantly affected by imbalanced
class distribution, which was observed in several
datasets used in the study, including Brain Tumor1,
11 Tumors, and 14 Tumors. Brain Tumor2 and
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Table 3: Accuracy of various classification methods on eight datasets, where bold represents the best result, underline denotes the second
best, and italic labels the worst one in each column, respectively.

Methods Brain Tumor1 Brain Tumor2 Leukemia1 Leukemia2 Lung Cancer SRBCT 11 Tumors 14 Tumors
SVM-OAA 0.8596 0.6840 0.9618 0.9334 0.9515 0.9992 0.8932 0.5177
SVM-OAO 0.8611 0.6600 0.9570 0.9369 0.9388 0.9763 0.8851 0.4962
SVM-DDAG 0.8427 0.6760 0.9416 0.9278 0.8987 0.9981 0.8643 0.4865
SVM-ECOC 0.8529 0.6660 0.9558 0.9543 0.9516 0.9916 0.8915 0.5098
SVM-OAA(THR) 0.7291 0.7120 0.9158 0.9621 0.9227 0.9752 0.8862 0.5426
SVM-OAA(RUS) 0.8674 0.7320 0.9596 0.9578 0.9429 0.9988 0.8916 0.5334
EnSVM-OAA 0.8755 0.6980 0.9713 0.9459 0.9571 1.0000 0.9021 0.5638
MCSVM 0.8223 0.6460 0.9351 0.9286 0.9315 0.9628 0.8437 0.4988
Ramp-MCSVM 0.8477 0.7420 0.9417 0.9338 0.9296 0.9687 0.9146 0.5012
AdaBoost.NC 0.8516 0.6820 0.9822 0.9515 0.9597 1.0000 0.8759 0.4928
EnSVM-OAA(THR) 0.7961 0.7260 0.9634 0.9726 0.9532 0.9902 0.9017 0.6246
EnSVM-OAA(RUS) 0.8837 0.7620 0.9806 0.9604 0.9611 1.0000 0.9224 0.5974

Table 4: 𝐹-score of various classification methods on eight datasets, where bold represents the best result, underline denotes the second best,
and italic labels the worst one in each column, respectively.

Methods Brain Tumor1 Brain Tumor2 Leukemia1 Leukemia2 Lung Cancer SRBCT 11 Tumors 14 Tumors
SVM-OAA 0.6524 0.6358 0.9542 0.9328 0.9068 0.9994 0.8468 0.4799
SVM-OAO 0.6732 0.6302 0.9430 0.9315 0.8976 0.9842 0.8322 0.4581
SVM-DDAG 0.6459 0.6420 0.9297 0.9162 0.8762 0.9976 0.8106 0.4564
SVM-ECOC 0.6538 0.6286 0.9418 0.9473 0.9018 0.9902 0.8528 0.4632
SVM-OAA(THR) 0.6251 0.6845 0.8665 0.9602 0.8621 0.9804 0.8453 0.5096
SVM-OAA(RUS) 0.6832 0.6732 0.9352 0.9559 0.9062 0.9992 0.8569 0.5124
EnSVM-OAA 0.6458 0.6437 0.9598 0.9437 0.8975 1.0000 0.8664 0.4907
MCSVM 0.6726 0.6388 0.9562 0.9306 0.9011 0.9782 0.8229 0.4752
Ramp-MCSVM 0.6918 0.7032 0.9478 0.9375 0.9128 0.9718 0.8776 0.4948
AdaBoost.NC 0.7014 0.6959 0.9724 0.9596 0.9216 1.0000 0.8456 0.4749
EnSVM-OAA(THR) 0.6325 0.7448 0.9457 0.9774 0.9022 0.9924 0.8768 0.5869
EnSVM-OAA(RUS) 0.7345 0.7029 0.9648 0.9617 0.9214 1.0000 0.8952 0.5637

Table 5:𝐺-mean of various classificationmethods on eight datasets, where bold represents the best result, underline denotes the second best,
and italic labels the worst one in each column, respectively.

Methods Brain Tumor1 Brain Tumor2 Leukemia1 Leukemia2 Lung Cancer SRBCT 11 Tumors 14 Tumors
SVM-OAA 0.1012 0.6021 0.9473 0.9354 0.8362 0.9984 0.7981 0.0759
SVM-OAO 0.0279 0.6109 0.9358 0.9253 0.8417 0.9722 0.8042 0.0325
SVM-DDAG 0.1469 0.6128 0.9198 0.9074 0.8158 0.9954 0.7659 0.0468
SVM-ECOC 0.1538 0.5895 0.9436 0.9446 0.8402 0.9946 0.8125 0.0256
SVM-OAA(THR) 0.5754 0.6923 0.9426 0.9658 0.9465 0.9786 0.8143 0.1463
SVM-OAA(RUS) 0.2861 0.6052 0.9369 0.9542 0.8982 0.9994 0.8269 0.1578
EnSVM-OAA 0.0288 0.5963 0.9194 0.9403 0.8540 1.0000 0.8284 0.0886
MCSVM 0.4791 0.6281 0.9335 0.9252 0.8876 0.9688 0.8042 0.1059
Ramp-MCSVM 0.5258 0.7288 0.9517 0.9387 0.9012 0.9734 0.8548 0.1472
AdaBoost.NC 0.4326 0.6644 0.9763 0.9526 0.9349 1.0000 0.8206 0.0652
EnSVM-OAA(THR) 0.6177 0.7362 0.9727 0.9718 0.9617 0.9858 0.8562 0.1742
EnSVM-OAA(RUS) 0.4025 0.6457 0.9655 0.9588 0.9165 1.0000 0.8776 0.1983
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Figure 4: Performance comparison for EnSVM-OAA(THR) algorithm based on different sizes of feature subspace on the eight imbalanced
multiclass cancer microarray datasets.



10 BioMed Research International

50 8010 3020
0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce

Size of FSS

(a) Brain-Tumor1

50 8010 3020
0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

Size of FSS

(b) Brain-Tumor2

0.9

0.92

0.94

0.96

0.98

1

Pe
rfo

rm
an

ce

50 8010 3020
Size of FSS

(c) Leukemia1

0.9

0.92

0.94

0.96

0.98

1

Pe
rfo

rm
an

ce

50 8010 3020
Size of FSS

(d) Leukemia2

0.85

0.9

0.95

1

Pe
rfo

rm
an

ce

50 8010 3020
Size of FSS

(e) Lung Cancer

0.97

0.98

0.99

1

Pe
rfo

rm
an

ce

50 8010 3020
Size of FSS

(f) SRBCT

50 8010 3020
0.5

0.6

0.7

0.8

0.9

1

Pe
rfo

rm
an

ce

Size of FSS
Acc
F-score
G-mean

(g) 11 Tumors

0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

50 8010 3020
Size of FSS

Acc
F-score
G-mean

(h) 14 Tumors

Figure 5: Performance comparison for EnSVM-OAA(RUS) algorithm based on different sizes of feature subspace on the eight imbalanced
multiclass cancer microarray datasets.
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Lung Cancer were both slightly sensitive to class
imbalance as well. We consider these results to be
related to a weighted combination of number of
classes, class imbalance ratio, and class overlapping,
as explained by previous studies [19, 50, 51].

(iii) Both THR and RUS correction technologies help
SVM-OAA classifier promote classification perfor-
mance on those sensitive datasets.Thepromotions are
better reflected by the 𝐹-score and 𝐺-mean metrics,
which are used to evaluate the balance level of classi-
fication results. Thus, the correction technologies are
useless when the classification tasks are robust to class
imbalance.

(iv) In contrast with SVM-OAA, the ensemble version
EnSVM-OAA helps to slightly improve the overall
classification accuracy Acc, with possible sacrifice of
two other evaluation metrics on most datasets, which
means that classification accuracies between majority
and minority classes are further increased.

(v) Our proposed algorithms outperform other classif-
ication algorithms, including several subtle multiclass
imbalance classification algorithms [19, 41, 42], in
terms of all evaluation criteria for most datasets and
especially on the sensitive ones. During the exper-
iments, we observed an interesting phenomenon:
EnSVM-OAA(RUS) generally has more stable
performance than its partner, although EnSVM-
OAA(THR) produces slightly better recognition
results on several datasets.We consider that the exces-
sive threshold adjustment negatively affects the recog-
nition accuracy of majority classes to a large extent,
which further affects overall prediction accuracy.
In practical applications, the decision threshold
adjustment function should be subtly designed by
considering real distribution of instances.

The classification performance of our proposed algo-
rithms is restricted by many factors, including the size of
feature space, the size of feature subspace, and the number
of base classifiers; the size of feature subspace is the most
significant factor. To clarify its influence mechanism, we
designed a group of new experiments in which the dimension
of feature subspace is assigned as 10, 20, 30, 50, and 80. The
other parameters follow the initial settings in Section 4. The
average results of 10 random runs for EnSVM-OAA(THR)
and EnSVM-OAA(RUS) are reported in Figures 4 and 5,
respectively.

Although some fluctuations were observed, Figures 4
and 5 nonetheless reveal a common trend that optimal
performances often emerge with a feature subspace of 10
to 30 dimensions. With the further increase of the feature
subspace dimension, the classification performance drops
rapidly, which indicates that selecting a feature subspace with
10 to 30 dimensions can maximize the balanced relationship
between accuracy and diversity of base classifiers. This result
can be easily explained by the following: extracting a too-
small subgroup of feature genes can negatively affect the
performance of each base classifier, whereas using too many

feature genes can negatively affect diversity among base
classifiers. In fact, in practical applications, the optimal
dimension can be determined through internal multiple-fold
cross-validation of the training sets.The experimental results
help guide the construction of the optimal classification
model.

6. Conclusions

In this paper, we attempted to address multiclass imbalanced
classification problem in tumor DNA microarray data by
using ensemble learning. The proposed solution contributes
in three ways: (1) an improved version of random subspace
called feature subspace, which is specifically designed for
high-dimensional classification tasks, is proposed to promote
a balanced relationship between accuracy and diversity of
base classifiers in ensemble learning; (2) two simple cor-
rection technologies are adopted in each branch of OAA
to alleviate the effect of class imbalance; and (3) a novel
ensemble integration strategy called counter voting, which is
based onmajority voting, is presented to output the final class
label. The empirical results show that our proposed classifi-
cation algorithms outperform many traditional classification
approaches and yield more balanced and robust classification
results.

Our goal is for the proposed algorithms to be applied
in real clinical cancer diagnostic systems based on DNA
microarray data in the future. Our future work will con-
sider the extension of correction strategies and classification
approaches to deal with this problem and will also explore
some efficient solutions with several other coding strategies.
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[49] A. Özgür, L. Özgür, and T. Güngör, “Text categorization with
class-based and corpus-based keyword selection,” Lecture Notes
in Computer Science, vol. 3733, pp. 606–615, 2005.

[50] N. Japkowicz and S. Stephen, “The class imbalance problem: a
systematic study,” Intelligent DataAnalysis, vol. 6, no. 5, pp. 429–
449, 2002.

[51] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling
for class-imbalance learning,” IEEE Transactions on Systems,
Man, and Cybernetics B, vol. 39, no. 2, pp. 539–550, 2009.


