
Objectives: Fluorescein angiography (FAG) is currently the most useful diagnostic modality for examining retinal circula-
tion, and it is frequently used for the evaluation of patients with diabetic retinopathy, occlusive diseases, such as retinal ve-
nous and arterial occlusions, and wet macular degeneration. This paper presents a method for objectively evaluating retinal 
circulation by quantifying circulation-related parameters. Methods: This method allows the semiautomatic preprocessing 
and registering of FAG images. The arterial input function is estimated from the registered set of FAG images using gamma-
variate fitting. Then, the parameters can be computed by deconvolution on the basis of truncated singular value decompo-
sition, and they can finally be presented as parametric color images in a combination of three colors, red, green, and blue. 
Results: After the estimation of arterial input function, the parameters of relative blood flow and mean transit time were 
computed using deconvolution analysis based on truncated singular value decomposition. Conclusions: The parametric color 
image is helpful to interpret the status of retinal blood circulation and provides quantitative data on retina ischemia without 
interobserver variability. This system easily provides the status of retinal blood circulation both qualitatively and quantitative-
ly. It also helps to standardize FAG interpretation and may contribute to network-based telemedicine systems in the future.
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I. Introduction

Fluorescein angiography (FAG) is an established dye tracing 
technique for examining retinal circulation [1]. It is useful 
for evaluating many disorders of the ocular fundus that affect 
the retina, such as diabetic retinopathy, vascular occlusions, 
and macular degeneration. The procedure involves first in-
jecting a fluorescent dye into an arm vein, which appears in 
the blood vessels of the retina in 10-15 seconds on average. 
Then, as the dye passes through the retinal blood vessels, se-
rial photographs are taken to examine retinal circulation and 
identify any circulation problems, such as swelling, leakage, 
or abnormal vessels, which the dye and its patterns will usu-
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ally reveal. 
  Most previous studies on FAG-based diagnosis of retinal 
diseases have attempted to quantify retinal blood flow on the 
basis of several different circulation parameters. These have 
included blood flow velocity, arteriovenous passage time, 
mean circulation time (MCT), difference of arterial and 
venous times to maximum intensity, time to maximum in-
tensity, and time to x% of maximum intensity. Among these, 
MCT, otherwise known as the mean transit time (MTT), is 
the most commonly used parameter. It was first defined by 
Hickam and Frayser [2] in their quantitative FAG studies. 
They used dye curves obtained by densitometric analysis 
of frames from FAG, which show the change in fluorescein 
concentration with time. MTT can be determined from such 
dye curves, as it expresses the average time spent by a tracer 
in the vascular bed or the time it takes for all blood within 
the vascular bed to be renewed. MTT is easily determined if 
the complete dye curves can be recorded. Sperber and Alm 
[3] developed an alternative technique for determining MTT 
based on an impulse-response analysis (MTTIR) from FAG. 
MTTIR allows analysis of badly defined dye curves and pro-
vides better reproducibility than the conventional extrapola-
tion of the downslope of the dye. 
  The values of these parameters can be presented numeri-
cally and in the form of color maps to aid the diagnosis of 
various vascular diseases, such as stroke and heart disease 
[4-6]. For example, parametric imaging aids radiologists in 
stroke assessment by providing a color map of cerebral blood 
flow and other perfusion-related parameters from CT im-
ages of the brain. Parametric images represent values of re-
constructed parameters for assumed tissue/activity models. 
This extends structural imaging towards functional imaging. 
Although considerable effort has been devoted to parametric 
imaging, there have been few methods proposed for para-
metric imaging using fundus FAG. In this study, a protocol 
for generating a functional parametric image of retinal circu-
lation was developed to aid the diagnosis of retinal diseases 
using FAG.

II. Methods

FAG images were acquired using a fundus camera, were 
preprocessed to remove noise and text messages irrelevant 
to analysis, and were registered to reference images semi-
automatically. At each region of interest (ROI) selected on 
retinal blood vessels, a time-intensity curve was constructed 
using a gamma-variate function. Perfusion parameters were 
extracted from the time-intensity curves using truncated 
singular value decomposition (TSVD) and presented as 

functional parametric images.

1. Image Acquisition
FAG was performed with a fundus camera (Canon CF-
60UVi; Canon Inc., Tokyo, Japan). An eye with symptoms of 
decreased vision or visual-field disturbance and evidence of 
retinal vein occlusion on fundus examination was chosen. 
After flushing with 3 mL of normal saline to ensure adequate 
passage, 3 mL of 25% sodium fluorescein was administered 
to the antecubital vein. The optic disc was focused and 
centered in the 30o observational field during angiography 
recording. Digital images were taken at 2-3 seconds inter-
vals during the first minute, 15-30 seconds intervals up to 3 
minutes, and 1-minute intervals up to 5 minutes.

2. Preprocessing of FAG Images
The background in FAG images includes noisy pixels and 
textual information, such as patient information and the date 
and time of digitizing, which are unnecessary for subsequent 
analysis and waste processing time during analysis. Hence, 
FAG images were preprocessed to remove such irrelevant in-
formation by the application of a removal mask to each FAG 
image. The removal mask was created from a reference im-
age, that is, the brightest image in a set of sequential images 
with all blood vessels completely filled with fluorescein dye. 
The same reference image was also used for the registration 
of FAG images. The steps for the preprocessing of FAG im-
ages are summarized as follows: 
  (1) Create a binary mask by applying fuzzy thresholding of 
Huang and Wang [7] to the reference image.
  (2) Perform morphological opening on the binary mask us-
ing a circle kernel of size 5. 
  (3) Apply the final binary mask to the original FAG images.

3. Registration of Sequential FAG Images
The captured FAG images are not aligned due to eye move-
ments during image acquisition. To trace the change in 
intensity over time at specified anatomical locations, sequen-
tial FAG images need to be registered prior to quantitative 
analysis. Automatic image registration is generally con-
ducted using area-based or feature-based approaches [8]. In 
area-based approaches, the pixel intensities in two images 
are compared and matched using a similarity metric, such 
as mutual information and cross correlation. Feature-based 
approaches instead perform image registration using robust 
features, such as optic discs, blood vessels, and/or Y-features 
like bifurcations of retinal vasculature.
  However, automation of FAG image registration is still 
problematic due to the characteristics of FAG images. The 
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major issue relates to the nonlinear intensity differences be-
tween sequential FAG images caused by uneven illumination 
on the retinal surface and potential retinal diseases. Leakage 
or blockage of fluorescein in various phases of FAG due to 
pathologic conditions may cause severe changes in the ap-
pearance of the retina, such as obscure vasculature patterns. 
The performance of automatic image registration is also af-
fected by low image contrast, which is a common attribute 
of images from the early arterial or late venous phases of the 
fluorescein sequence [9,10].
  In this study, we formulated a semi-automatic method for 
robust and accurate image registration. The method registers 
all images in a given set to the reference image defined in the 
preprocessing step using control points selected manually 
[11]. Since retinal images were generated by projection of the 
retinal space onto the image plane, a projective transforma-
tion was used as a transformation model for image registra-
tion. The projective transformation was computed using four 
pairs of control points manually selected in the reference and 
moving images. The control points were selected at major 
arterial bifurcations that were clearly visible in all phases of 
FAG. To assist the manual selection of control points in low-
contrast images, contrast-limited adaptive histogram equal-
ization (CLAHE) [12] was applied to all images to enhance 
the local contrast of images. The steps for image registration 
are summarized as follows:
  (1) Apply the CLAHE method of contrast enhancement to 
all FAG images. 

  (2) Select four control points at arterial bifurcations in each 
contrast-enhanced image.
  (3) Compute the parameters of the projective transforma-
tion using four pairs of corresponding control points select-
ed in the reference and moving images.
  (4) Register moving images to the reference image using 
the computed projective transformation.
  Figure 1 shows the flow diagram for image registration. 
Figure 2 shows the results of image registration.

4. Parametric Imaging
Based on the indicator dilution theory for intravascular con-
trast agents, the time-intensity curve, CROI(t), of a fluorescein 
dye in the ROI was modeled using a convolution integral as 
follows:

   CROI�t� � RBF � CAIF�τ�R�t � τ��τ�
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       (1)

where RBF is the retinal blood flow-related parameter, CAIF(t) 
is the time-intensity curve of the arterial input function 
(AIF), and R(t) is the residue function which is the rela-
tive amount of the fluorescein dye in the ROI. Assuming 
an idealized case of perfusion where a unit area bolus of a 
fluorescein dye is instantaneously injected (i.e., R(0) = 1) and 
subsequently washed out by perfusion (i.e., R(∞) = 0), RBF 
can be quantified by solving Eq. (1) through deconvolution 
between CAIF(t) and CROI(t).
  Since the coexistence of re-circulated and remaining con-

Figure 1. Flow diagram for image registration. CLAHE: contrast-limited adaptive histogram equalization.

Figure 2. The result of image registration: (A) reference image, (B) moving image, (C) registered moving image, (D/E) difference image 
before/after registration.
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trast agents affects the decreasing part of the time-intensity 
curve, CAIF(t) and CROI(t) need to be fitted to the gamma-
variate function. The parameters of the gamma-variate 
function can be estimated using the Levenberg-Marquardt 
method for nonlinear regression. 
  Because R(t) is the solution to an ill-posed problem, noise 
in the data is magnified during the application of the least 
squares method to such an extent that the solution is of no 
practical value. A well-known approach to resolve such an 
issue is regularization, for which several methods have been 
proposed to stabilize the solution. Recently, Ostergaard [5] 
introduced a regularization method known as TSVD, which 
is an algebraic approach to solving Eq. (1) based on singular 
value decomposition (SVD) [13,14].

1) Estimation of the arterial input function
With all FAG images registered, an ROI was manually de-
fined on the retinal artery near the optic disc (Figure 3A). 
The average pixel intensity of the ROI in each FAG image 
was quantified and plotted against the elapsed time (Figure 
3B). With the average pixel intensities, the time-intensity 
curve of the AIF, CAIF(t), was modeled in the form of a gam-
ma-variate function as follows:
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where t is the elapsed time after injection, K is a constant 
scale factor, AT is the arrival time of the contrast agent, 
IBase is the base intensity, and α and β are shape parameters 
that depend on the architecture of retinal vasculative and 
the blood flow, respectively. Here, IBase can be defined as the 

average pixel intensity in the ROI prior to the arrival of the 
contrast agent or a user defined value. As shown in Figure 
3B, a representative set of time-intensity data points includes 
the effects due to the recirculation of the contrast agent. 
  A re-circulation starting point was defined as the first mini-
mum point after the peak point. To eliminate the effect of re-
circulation, any data points collected after the re-circulation 
starting point were not used in the modeling. The curve 
fitting was performed using the Levenberg-Marquardt al-
gorithm for nonlinear regression. The iteration was stopped 
when the difference between successive values of χ2 was less 
than 0.01 and the value of χ2 had not increased during the 
last 8 iterations.

2) Quantification of RBF and MTT with TSVD
Assuming that the functions CAIF(t) and R(t) in Eq. (1) are 
constant over a short period of time Δt. Eq. (1) is reduced to
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where RBFx is the blood flow-related parameter at pixel x, 
Cx(t) is the concentration of tracer in the venous output, 
Rx(t) is the residue function, and ti and N denote the time 
of the i-th frame and the total number of frames of FAG, 
respectively. Assuming an idealized case of perfusion, a unit 
bolus of the contrast agent is injected as an arterial input at 
the beginning (i.e., Rx(0) = 1), and it begins to leave the vas-

Figure 3. (A) A red region of interest (ROI) at the artery area. (B) The result of gamma-variate curve fitting for estimation estimating 
of the arterial input function.
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cular network after a finite period (i.e., R drops to zero). If 
the product of RBFx and Rx(t) can be estimated, RBFx can be 
obtained at t = 0. Here, Cx(t) and CAIF(t) were estimated at N 
equally spaced time points t1, t2, …, tN with the time incre-
ment Δt. The convolution in Eq. (3) can then be formulated 
as a matrix equation: 

  c = A^b,

where
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  Note that matrix A is a Toeplitz matrix (i.e., it has constant 
diagonals, Aij = Ai-1,j-1 for all 1≤i, j≤N). Using the standard 
SVD technique, matrix A can be decomposed to
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where the orthogonal matrices U and V consist of the left 
and right singular vectors, i.e., U = (u1, …, uN) and V = (v1, 
…, vN). Here, S = diag(s1, …, sN) is an N×N diagonal matrix 
where the diagonal elements si are the corresponding non-
negative singular values of matrix A in non-increasing order, 
i.e., s1≥s2≥…≥sN≥0. With the inverse matrix A-1 and Eq. (3), 
matrix b, and consequently R(t), can be calculated as
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That is, Eq. (6) is used to solve b, which contains the ele-
ments of 
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  However, the linear solution of Eq. (6) is very sensitive to 
noise in A because the small singular values mainly repre-
sent the noise, and the reciprocal of the small singular value 
is a very large value, which amplifies the error. Using TSVD, 
the small singular values are eliminated to limit the effects 
of noise, and S-1, which represents a diagonal matrix that ap-
proximates the inverse matrix of S, can be expressed as
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for i = 0, 1, …, N. Here PSVD is the cut-off threshold, and it 
should be noted that the MTT values computed using this 
technique highly depend on the choice of PSVD; a large PSVD 
results in a smoother residue curve, with the sacrifice of less 
accurate (usually higher) MTT values, and a small PSVD will 
give more accurate MTT values, but the computed residue 
function will be less smooth. Usually, PSVD is set in the range 
of 5%-20% of the maximum singular value of S. In this pa-
per, it is set at 10% of the maximum singular value of S.

III. Results

First, the proposed model removed the noisy background 
pixels from FAG images and computed the parameters of 
the transformation using control points selected from the 
enhanced images. The system registered moving images 
to the reference image using the computed transformation 
parameters. Figure 4 shows the registration results. Figure 
4A-C show the reference, moving, and registered moving 
images, respectively. Figure 4D and E show the difference 
images between the reference image and the moving image, 

Figure 4. (A) Reference image, (B) moving image before registration, (C) moving image after registration, (D) difference image be-
tween (A) and (B), and (E) difference image between (A) and (C).



196 www.e-hir.org

Young Jae Kim et al

http://dx.doi.org/10.4258/hir.2014.20.3.191

respectively, before and after registration. Image (Figure 4D) 
shows significant differences in the edge areas of blood ves-
sels, while image (Figure 4E) shows very little difference. 
  After registering FAGs to the reference image, the AIF was 
estimated from the intensity changes within the selected 
ROIs. Figure 3A shows the rectangular ROI selected on the 
retinal artery in the vicinity of the optic disc, and Figure 3B 
shows the averaged intensities of the pixels inside the ROI 
plotted according to the time sequences. Analyzing the dot 
plot, we determined the 13th point (around 40 seconds) as 
the starting point of the recirculation phase. The AIF was es-
timated with the data up to 40 seconds by fitting the gamma-
variate function. The estimated result of AIF is 
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  After the estimation of AIF, the parameters of RBF and 
MTT were computed using deconvolution analysis based on 
TSVD. Figure 5 show the RBF and MTT parametric images 
in FAGs from patients with branch retinal vein occlusion 
(BRVO). In Figure 5A-C, BRVO occurred at the crossing 
of the retinal artery and vein below the optic disk, and cir-
culation of the retinal vein distal to the site of occlusion was 
blocked. With the blocked vein, areas of capillary nonperfu-
sion were detected in the inferior-temporal quadrant of the 

optic disk. The areas of capillary nonperfusion were well 
demarcated in the BF and MTT images in sharp contrast to 
the normally perfused superior-temporal quadrant of the 
optic disk. These images not only identify areas of capillary 
nonperfusion, but also monitor changes in areas of capillary 
nonperfusion to aid the decision to apply initial or additional 
laser treatment. Similarly in Figure 5D-F, the branch retinal 
vein draining the inferior-temporal area was blocked, and 
areas of capillary nonperfusion were detected at the same lo-
cation. In Figure 5G-I, the branch retinal vein draining the 
superior-temporal area was occluded, and areas of capillary 
nonperfusion were detected at the same location.

IV. Discussion

FAG is currently the most useful diagnostic modality for 
examining retinal circulation, and it is frequently used for 
the evaluation of patients with diabetic retinopathy, occlu-
sive diseases, such as retinal venous and arterial occlusions, 
or wet macular degeneration. However, FAG has inherent 
limitations which hinder its usefulness to physicians. First, it 
requires special training to interpret the FAG without error, 
even for ophthalmologists. Second, because FAG provides 
only black and white images, it is hard to provide an objec-
tive diagnosis without interobserver variability. The clinical 
diagnosis of retinal circulatory diseases depends completely 
on the subjective evaluation of the ophthalmologist; hence, 

Figure 5. Fluorescein angiogram images 
(A, D, G), parametric images 
of blood flow (B, E, H) and 
mean transit time (C, F, I).



197Vol. 20  •  No. 3  •  July 2014 www.e-hir.org

New Parametric Imaging Method with FAG

the objective method proposed in this study could enhance 
diagnostic accuracy and prevent inaccurate diagnosis that 
could occur due to lack of experience in interpreting FAG 
images. Third, FAG does not provide quantifying data of 
retinal blood circulation. An objective system quantifying 
retinal blood flow would also be useful in monitoring subtle 
changes within the retinal circulation to aid in the clinician’s 
decision to apply treatment or observe conservatively with-
out additional treatment. 
  In this study, a method for objectively evaluating retinal 
circulation by quantifying circulation-related parameters, 
such as MTT and BF, was proposed. Using this method, FAG 
images were preprocessed and registered semi-automatically. 
From a registered set of FAG images, the AIF was estimated 
using gamma-variate fitting. Then, the parameters were 
computed by deconvolution based on TSVD and presented 
as parametric color images. The color-coding system is help-
ful to interpret the status of retinal blood circulation, and 
it provides the quantifying data of retinal ischemia without 
interobserver variability. This system easily provides the sta-
tus of retinal blood circulation both qualitatively and quanti-
tatively. It also helps to standardize FAG interpretation, and 
it may contribute to network-based telemedicine systems in 
the future.
  The major limitation of parametric images created by the 
proposed method is the false indication of retinal nonperfu-
sion in regions near the edge of the fundus. This is due to the 
non-uniformity of illumination in FAGs caused by the eye 
geometry. The illumination in FAG images is usually high 
in the center region and decreases towards the peripheral 
regions of the fundus. In other words, the same concentra-
tion of fluorescein dye in different regions may show dif-
ferent pixel intensities due to uneven illumination. Many 
approaches for correcting the uneven illumination in the 
fundus use local contrast enhancement methods to equalize 
the non-uniformity of intensity [15-17]. These local contrast 
enhancement methods, however, are not appropriate be-
cause these methods improve the visibility of local details in 
images. To eliminate non-uniform illumination from angio-
gram images, Hipwell et al. [18] used a ‘flood’ image, which 
is the illumination mask of each digitized angiogram image. 
This image records the illumination when no negative is 
present, and it generally consists of a central ‘white’ (value 
255) region which fades towards the periphery of the image 
due to the reduced light level. Each digitized image is then 
scaled by 255 and divided by this flood image. The centre of 
the image remains unchanged, while the periphery is ampli-
fied, correcting for the reduction in illumination. Although 
this method can reduce non-uniform illumination, it does 

not guarantee brightness consistency between successive im-
ages. Hence, the accuracy of the estimation of parameters for 
retinal circulation may be reduced due to the modification 
of intensities in each individual image. In this study, these 
methods were tested, but were found to be ineffective, or 
they negatively affected the outcome.
  Another limitation of the proposed method is the potential 
error associated with manual selection of the control points 
at bifurcations of retinal blood vessels. Manual operation 
was adopted since automatic detection of control points may 
be inaccurate in FAG images which have too low contrast or 
show severe changes in the appearance of retinal vasculature 
due to pathologic conditions. Misaligned control points 
manually selected in sequential FAG images may decrease 
the accuracy of estimated parameters. This issue may be 
resolved by automatically relocating a manually selected 
control point to the center of vascular bifurcation using an 
intensity gradient map around the control point [19].
  The robust performance of deconvolution is essential for 
the accurate estimation of perfusion parameters. Since the 
results of deconvolution are sensitive to noise, we conducted 
a deconvolution based on TSVD with a threshold value fixed 
at 10% of the maximum singular value. To further improve 
the accuracy of estimated perfusion parameters, the TSVD 
method may need to be combined with robust methods for 
selecting a truncation threshold, such as generalized cross 
validation and the L-curve criterion.
  Despite the limitations of the current implementation, the 
method proposed in this study may play a major role in the 
quantification of retinal circulation. Compared to existing 
methods for the quantification of retinal circulation that 
compute parameters based only on the time-intensity curve 
of a fluorescein dye, this study incorporates an additional 
numerical deconvolution method to improve the accuracy of 
quantification. In conclusion, the proposed method in this 
study will be highly useful in evaluating the retinal condition 
of patients and diagnosing eye diseases.
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