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Abstract

CD34+ cells maintain vascular homeostasis and predict cardiovascular outcomes. We previ-

ously evaluated the association of CD34+ cells with cardiovascular disease (CVD) events

over 23 months, but long-term CVD outcomes in relation to levels of CD34+ cells in patients

on maintenance hemodialysis are unclear. Herein, we analyzed the long-term predictive

potential levels of CD34+ cells for CVD outcomes and all-cause mortality. Between March

2005 and May 2005, we enrolled 215 patients on maintenance hemodialysis at Nagoya

Kyoritsu Hospital and followed them up to 12.8 years. According to the CD34+ cell counts,

patients were classified into the lowest, medium, and highest tertiles. Levels of CD34+ cells

were analyzed in association with four-point major adverse CV events (MACEs), CVD

death, and all-cause mortality. In univariate analysis age, smoking habit, lower geriatric

nutrition risk index, lower calcium × phosphate product, and lower intact parathyroid hor-

mone were significantly associated with the lowest tertile. Whereas, in multivariate analysis,

age and smoking habit were significantly associated with the lowest tertile. Among 139

(64.7%) patients who died during a mean follow-up period of 8.0 years, 39 (28.1%) patients

died from CVD. Patients in the lowest tertile had a significantly lower survival rate than those

in the medium and highest tertiles (p� 0.001). Using multivariable analyses, the lowest ter-

tile was significantly associated with four-point MACEs (hazard ratio 1.80, p = 0.023) and

CVD death (hazard ratio 2.50, p = 0.011). In conclusion, our long-term observational study

revealed that a low level of CD34+ cells in the circulation predicts CVD outcomes among

patients on maintenance hemodialysis.
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Introduction

Cardiovascular disease (CVD) is the main reason for death in patients on maintenance hemo-

dialysis (HD)[1]. However, risk assessment for CVD cannot be fully explained using conven-

tional risk factors including hypertension, glucose intolerance, an abnormal lipid profile, and

uremia-related risk factors such as hemodynamic overload, deterioration of calcium metabo-

lism, etc[2–5]. Therefore, development of biomarkers to improve individual risk prediction

among patients receiving maintenance HD is needed.

Over more than a decade, many studies have demonstrated that endothelial progenitor cells

(EPCs), in particular, circulating CD34+ cells, play an essential role in angiogenesis and vascu-

lar homestasis[6–11]. A reduction in EPCs including the CD34+ cell count may predict future

CVD events in patients with coronary artery disease, type 2 diabetes, and metabolic syndrome

[12–16]. Focusing on patients with end-stage renal disease, we and others have separately eval-

uated the significance of the circulating CD34+ cell count to predict CVD outcomes in patients

on maintenance HD[17,18], but the association of circulating CD34+ cells with patient out-

comes combined with CVD-related mortality was not fully demonstrated because few CVD

deaths occurred during the short follow-up of 2 years[17,18]. Therefore, further studies are

needed to evaluate the long-term predictive potential of CD34+ cells, especially in patients

with a strong concern regarding CVD events such as those on maintenance dialysis.

To fill this knowledge gap, we examined the long-term association between CD34+ cells

and CVD events in patients on maintenance HD by extending the follow-up period of our pre-

vious study (from an average of 23 months to an average of 8.0 years). We also explored

whether the associations are consistent for all-cause mortality. Additionally, we assessed fac-

tors associated with low levels of CD34+ cells.

Materials and methods

Study population

We enrolled all consecutive patients who received maintenance HD at Nagoya Kyoritsu Hos-

pital between March 2005 and May 2005. Patients with infectious diseases, malignant diseases,

and a vascular event within 30 days after estimation of the number of circulating CD34+ cells

were excluded from this study, leaving a final study sample of 215 patients.

Study design and follow-up

This was a pseudoprospective study design[13]. All baseline data, such as demographics, dialy-

sis vintage, and comorbidities, were recorded at the time of CD34+ cell estimations as reported

previously[18], and follow-up data were gathered retrospectively from electronic medical rec-

ords from December 2017 to baseline. The routine assessment of patients undergoing three

rounds of HD and standardization of medical records in the electronic database permitted this

gathering of information[13]. Patients were observed for CVD by routine screening tests

including electrocardiogram and chest X-ray, which were performed every month. Echocardi-

ography examination and a treadmill exercise tolerance test were performed annually. Patients

with unusual clinical findings in routine tests or with signs and symptoms of coronary artery

disease underwent angiography as described previously[18].

Outcome definition

The outcomes of interest were four-point major adverse CV events (four-point MACEs), CVD

death, and all-cause mortality. The four-point MACE was a composite of CVD-related events

that included CVD death, nonfatal myocardial infarction, nonfatal stroke, and hospitalization
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for heart failure or unstable angina[13]. CVD death was defined as sudden death, death that

occurred following acute myocardial infarction, stroke within 2–4 weeks, or any other CVD

causes (e.g., valvular heart disease, arrhythmias, pulmonary embolism, or intervention)[13].

We also considered all-cause mortality as an outcome. Patients were followed until death, loss

to follow-up, renal transplantation, recovery from dialysis therapy, or end of follow-up on

December 2017 (i.e., administrative censoring). Previous events were determined according to

the medical records and interviews with patients. Causes of death were determined by exami-

nation of hospital records, autopsy reports, and medical files of the patients’ general practition-

ers[18].

Measurement of circulating CD34+ cells

The absolute count of CD34+ cells, which included endothelial lineage and immature hemato-

poietic stem cells in peripheral blood was measured with flow cytometry according to the

International Society of Hematotherapy and Graft Engineering guidelines as reported in our

prior study[18]. The reproducibility of flow cytometry method is shown in our previous paper

[18] Relative CD34+ cell counts were determined as the ratio of circulating CD34+ cells to

white blood cells (WBC). In this paper, we used the levels of relative CD34+ cells[13], which

were classified into the lowest (<0.06), medium (�0.06 and <0.09), and highest (�0.09) ter-

tiles according to the relative CD34+ cell counts.

Statistical analyses

Data were summarized as the mean ± standard deviation (SD) or as the number (frequency).

Variables with a skewed distribution were transformed to logarithmic form for analysis. The

mean ± SD values of continuous variables among tertiles were compared with a one-way anal-

ysis of variance test, and categorical variables were assessed with the Kruskal-Wallis H test.

Logistic regression analysis was conducted to examine the relationship between the lowest ter-

tile as a dependent variable and each of clinical parameters, biochemical markers, and medica-

tion as an independent variable. The goodness of fit of multivariate model was tested by

Hosmer-Lemeshow test. Survival curves were plotted with the Kaplan-Meier method, and the

differences in survival rates among tertiles were evaluated with the Log-rank test. Furthermore,

a restricted cubic spline curve was plotted to show the nonlinear relationship between CD34+

cell counts and four-point MACEs. We compared patients in the lowest tertile vs. the medium

plus the highest tertiles to evaluate the risk of a low CD34+ cell count. Association of CD34+

cell levels with CVD outcomes and all-cause mortality was evaluated with Cox hazard regres-

sion analysis adjusted for several confounding factors such as age, sex, diabetes mellitus, smok-

ing habit, history of CVD, geriatrics nutritional risk index (GNRI), hemoglobin, C-reactive

protein, and intact parathyroid hormone (iPTH) all of which were considered clinically impor-

tant. Competing risk regression analysis was used to assess the independent risk of two fail-

ures: CVD death as the event of interest, and non-CVD death as a competing risk. The

proportional hazards assumption for covariates was tested using scaled Schoenfeld residuals.

All statistical analyses were conducted with STATA 14.2/SE (Stata Corp.2015, College Station,

TX, USA). Differences were considered significant when the p-value was<0.05.

Ethical considerations

This study was conducted based on the guidelines of the Declaration of Helsinki Principles,

and written informed consent from all participants was obtained before blood sample collec-

tion. The ethics committee of the Nagoya University Graduate School of Medicine approved

the study protocol (ID: 2014–0422).
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Results

Baseline characteristics

Table 1 shows the baseline demographic, clinical, biochemical, and medication data according

to the levels of relative CD34+ cells. The mean ratio of CD34+ cells to WBC was 0.09 (range,

0.01 to 0.35 for all study patients). Patients in the lowest tertile were more likely to be older,

have higher prevalence of pCVD, and to smoke than patients in the medium and highest ter-

tiles. However, no statistically significant differences were found regarding male gender, body

mass index, dialysis vintage, diabetes mellitus status, or hypertension. The levels of the follow-

ing biochemical markers were lower among patients in the lowest tertile: calcium × phosphate

product (Ca × Pi), iPTH, serum albumin, and GNRI. Although we found no significant

Table 1. Baseline characteristics of study participants according to CD34+ tertiles.

Circulating CD34+ cell levels

Characteristics All (n = 215) Lowest Tertile (n = 71) Medium Tertile (n = 72) Highest Tertile (n = 72) p value

Demographic and clinical

Follow-up (year) 8.0±4.6 6.4±4.6 8.7±4.3 8.8±4.5 0.002�

Male gender [n (%)] 122 (57) 41 (57) 35 (49) 46 (64) 0.178

Age (year) 64.9±11.2 68.0±8.6 64.1±11.5 62.8±12.6 0.016�

Body mass index (kg/m2) 20.8±3.2 20.5±2.8 20.9±3.6 21.0±3.2 0.617

Dialysis-vintage (year) 8.0±7.2 7.0±6.8 8.4±7.7 8.7±7.0 0.311

Diabetes [n (%)] 105 (49) 41 (57) 30 (42) 34 (47) 0.150

Hypertension [n (%)] 155 (72) 54 (75) 49 (68) 52 (72) 0.556

History of CVD [n (%)] 94 (44) 37 (52) 32 (44) 25 (35) 0.110

Smoking habit [n (%)] 62 (29) 30 (42) 17 (24) 15 (21) 0.007�

Biochemical markers

Relative CD34+ cells 0.09±0.06 0.04±0.01 0.07±0.01 0.15±0.05 < 0.001�

Hemoglobin (g/dl) 10.4±1.2 10.2±1.2 10.4±1.0 10.6±1.4 0.147

WBC (103/μl) 5.9±1.9 5.3±1.7 5.9±1.5 6.6±2.1 0.329

C-reactive protein (mg/dl) 0.45±1.01 0.63±1.05 0.29±0.40 0.43±1.33 0.129

HDL cholesterol (mg/dl) 41.3±13.9 40.3±11.9 43.4±17.2 40.1±11.8 0.271

LDL cholesterol (mg/dl) 76.2.±27.0 78.5±26.7 74.6±28.6 75.5±26.1 0.673

Ca x Pi 59.8±11.9 47.5±12.0 49.0±11.5 52.8±11.7 0.020�

Intact-PTH (ng/ml) 123.1±114.7 95.7±65.5 136.2±150.6 137.0±107.8 0.048�

Kt/Vurea 1.5±0.2 1.5±0.3 1.4±0.3 1.5±0.2 0.108

HbA1c (%) 6.1±1.6 6.5±2.0 6.2±1.5 5.6±1.1 0.064

Albumin (g/dl) 3.6±0.3 3.5±0.3 3.6±0.3 3.6±0.3 0.013�

GNRI 92.8±7.6 90.9±7.0 93.7±8.0 93.7±7.6 0.044�

Medications

Erythropoietin (u/kg) 96.7±67.8 110.4±63.4 91.1±65.9 88.9±72.5 0.114

Statins [n (%)] 27 (13) 10 (14) 8 (11) 9 (13) 0.866

ACE-inhibitor [n (%)] 37 (17) 14 (19) 9 (13) 14 (19) 0.432

ARB [n (%)] 85 (39) 33 (46) 20 (28) 32 (44) 0.043�

Ca++ antagonist [n (%)] 132 (61) 48 (67) 42 (58) 42 (58) 0.424

Β-blocker [n (%)] 45 (21) 21 (29) 17 (24) 7 (10) 0.011�

Data are summarized in mean ± SD or, for binary variables, number (frequency). Tertiles are ordered from lowest relative levels of CD34+ cells to highest levels: lowest

tertile <0.06; middle tertile�0.06 and <0.09; and highest tertile�0.09.

�P<0.05: statistically significant association

https://doi.org/10.1371/journal.pone.0223390.t001
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differences, hemoglobin and the white blood cell count tended to be low, and HbA1c tended

to be high, in the lowest tertile. In contrast, we found no intergroup differences in C-reactive

protein, high- or low-density lipoprotein-cholesterol, and the quantity of HD (kt/v = dialyzer

clearance of urea x dialysis time/ volume of distribution of urea).

Factors associated with the lowest tertile of CD34+ cell levels

We examined the ability of certain variables to predict the lowest tertile of relative CD34+ cell

levels. In univariable analysis, factors that were significantly associated with the lowest tertile

were age (odds ratio (OR) 1.04, 95% confidence interval (CI) 1.01–1.07), smoking habit (OR

2.63, 95% CI 1.42–4.86), lower GNRI (OR 0.95, 95% CI 0.91–0.99), lower Ca × Pi (OR 0.98,

95% CI 0.95–0.99), lower iPTH (OR 0.99, 95% CI 0.98–0.99), and erythropoietin (OR 1.01,

95% CI 1.00–1.01). Whereas, in multivariable analysis age and smoking habits were signifi-

cantly associated with the lowest tertile of CD34+ cell levels (Table 2).

Associations of CD34+ cell levels with CV outcomes and all-cause mortality

Among 139 (64.7%) patients who died during the mean observation period of 8.0 ± 4.6 years,

39 (28.1%) patients died from CVD, and 100 (71.9%) patients died from non-CVD causes. The

crude mortality rate was 8.0 per 100 patient-years. Kaplan-Meier analyses showed a signifi-

cantly lower survival rate in patients with the lowest level of CD34+ cells than in those with the

medium and highest levels of CD34+ cells (Figs 1 and 2; log-rank p� 0.001). No significant

difference was found in the survival rate between the highest and medium tertiles. In addition,

the restricted cubic spline curve demonstrated that patients with a lower CD34+ cell count had

an elevated risk of four-point MACEs (Fig 3).

In unadjusted Cox hazard regression, the lowest tertile, history of CVD, and C-reactive pro-

tein were associated with four-point MACEs. In multivariable Cox hazard models, the lowest

tertile (HR 1.80, 95% CI 1.08–2.99, p = 0.023) and history of CVD (HR2.63, 95% CI 1.22–4.40,

p< 0.001) were independent factors associated with four-point MACEs, even after adjusting

Table 2. Associated factors with the lowest level of CD34+ cells using logistic regression analysis.

Univariable Multivariable

Characteristics OR (95% CI) P value OR (95% CI) P value

Male gender 1.06 (0.60–1.89) 0.835 0.50 (0.23–1.06) 0.072

Age (year) 1.04 (1.01–1.07) 0.006� 1.04 (1.00–1.08) 0.031�

Smoking habit 2.63 (1.42–4.86) 0.002� 4.77 (2.16–10.57) < 0.001�

Diabetes 1.71 (0.96–3.03) 0.068 1.49 (0.74–3.01) 0.261

History of CVD 1.66 (0.94–2.95) 0.083 0.87 (0.40–1.89) 0.724

C-reactive protein (mg/dl) 1.29 (0.96–1.74) 0.095 1.14 (0.78–1.66) 0.489

Hemoglobin (g/dl) 0.80 (0.63–1.03) 0.077 0.88 (0.65–1.19) 0.399

GNRI 0.95 (0.91–0.99) 0.014� 0.97 (0.93–1.02) 0.278

CaxPi 0.98 (0.95–0.99) 0.048� 0.99 (0.96–1.02) 0.455

iPTH (ng/ml) 0.99 (0.98–0.99) 0.012� 0.99 (0.99–1.00) 0.184

Erythropoietin (unit/Kg) 1.01 (1.00–1.01) 0.039� 1.00 (0.99–1.01) 0.485

ACE-inhibitor 1.29 (0.62–2.70) 0.494 1.14 (0.50–2.59) 0.758

Angiotensin receptor antagonist 1.54 (0.86–2.74) 0.145 1.47 (0.76–2.84) 0.256

Statins 1.23 (0.53–2.83) 0.636 1.04 (0.39–2.80) 0.940

OR odd ratio

�P<0.05: statistically significant association

https://doi.org/10.1371/journal.pone.0223390.t002
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for gender, age, diabetes, smoking habit, hemoglobin, GNRI, C-reactive protein, and iPTH.

Similarly, in unadjusted Cox hazard regression, the lowest tertile, age, history of CVD, hemo-

globin, GNRI, and C-reactive protein were associated with CVD death. In multivariable Cox

hazard models, the lowest tertile (HR 2.50, 95% CI 1.23–5.10, p = 0.011), and history of CVD

(HR 4.67, 95%CI 2.07–10.52, p< 0.001) were significant predictors of CVD-death (Table 3).

The lowest tertile was also significantly associated with all-cause mortality in the univariable

Cox hazard model (HR 1.88, 95% CI 1.34–2.64, p< 0.001), but the association was attenuated

and not significant when adjusted for above mentioned confounding factors (HR 1.15, 95% CI

0.78–1.68, p = 0.481) (Table 4).

Using the Fine and Gray competing regression model, treating non-CVD death as a com-

peting risk, the results showed a significantly higher Sub-hazard ratio (SHR) of CVD death in

patients in the lowest tertile compared to those in the medium and highest tertiles (SHR 2.68,

95% CI 1.30–5.52, p = 0.008) (Table 5).

Discussion

This study shows that reduced levels of CD34+ cells predict CVD outcomes defined as four-

point MACEs and CVD death in a cohort of 215 patients on maintenance HD over an average

of 8.0 years of follow-up. The HRs of four-point MACEs and CVD death for the lowest vs.

medium plus highest tertiles were 1.80 and 2.50, respectively, after accounting for a number of

potential confounders. In our study, reduced levels of CD34+ cell counts were not significantly

associated with all-cause mortality in the adjusted model. Age and smoking habit showed a sig-

nificant association with low CD34+ cell counts. To the best of our knowledge, this investiga-

tion utilized the longest follow-up period in patients on maintenance HD. In our study, more

Fig 1. (A and B). Cumulative event-free survival for 4-point MACEs, and CVD-death according to the lowest, medium, and

highest relative CD34+ cell tertiles.

https://doi.org/10.1371/journal.pone.0223390.g001
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than 50% of four-point MACEs and CVD deaths occurred after 5.3 years of follow-up, which

supports the need to implement a longer-term observational study.

Several factors affect the number of EPCs, such as age, smoking, type 2 diabetes, and CVD

[19]. Indeed, our study showed similar results for these factors. The inverse significant associa-

tion between levels of CD34+ cell with age and smoking in HD patients may be due to persis-

tent endothelial injury and exhaustion of migration of progenitor cells in the bone marrow

that lead to an eventual depletion in the CD34+ cell count[20,21]. However, the mean number

of absolute CD34+ cell in HD patients in this cohort was 0.49 ± 0.32 cells(/μl) as shown in our

previous paper[18], which was much lower compared to that in non-HD patients without DM

(mean CD34+ cell count 1.2 ± 0.1 cells (/μl) as reported in a previous study[22]. These severely

low CD34+ cell counts are consistent with a previous study that investigated patients undergo-

ing maintenance HD[17]. Importantly, uremic toxins are considered to be a cause of the

decline in circulating CD34+ cells[23]. Therefore, low CD34+ cell counts are considered a char-

acteristic of patients on maintenance HD therapy and maybe a meaningful predictive factor.

Some drugs such as angiotensin II receptor antagonist, statin and erythropoietin have been

shown to affect the number of circulating CD34+ cell[24,25]. However, there was no favorable

effect of these drugs on the levels of CD34+ cells in our cohort, probably because chronic HD

patients had low capacity to produce CD34+ cells.

The Kaplan-Meier curves clearly showed patients with lowest tertile has significantly low

survival rate than those in the medium and highest tertiles, but no significant difference was

found in the survival rate between medium and highest tertile. In addition, no cut-off has been

established for CD34+ cell counts relative to white blood cells to determine a high risk of CVD

Fig 2. Cumulative survival rate for all-cause mortality according to the lowest, medium, and highest relative CD34+ cell tertiles.

https://doi.org/10.1371/journal.pone.0223390.g002
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Fig 3. Log relative hazard of 4-point MACEs for relative CD34+ cell counts in the restricted cubic spline curve. The reference is

the cut-off point between the lowest and medium tertiles; the two vertical dotted lines indicate the cut-off for these tertiles (0.06 and

0.09, respectively). The graph has three knots that are truncated at the 1st and 99th percentiles.

https://doi.org/10.1371/journal.pone.0223390.g003

Table 3. The hazard ratio of associated factors for cardiovascular outcomes.

four-point MACEs CVD-death
Characteristics Univariable Multivariable Univariable Multivariable

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value
Lowest relative CD34+ tertile vs.

medium+highest tertiles

2.24 (1.42–3.52) 0.001� 1.80 (1.08–2.99) 0.023� 3.63 (1.93–6.86) <0.001� 2.50 (1.23–5.10) 0.011�

Male gender 1.21 (0.76–1.92) 0.424 1.12 (0.65–1.93) 0.683 1.01 (0.54–1.89) 0.979 1.00 (0.47–2.14) 0.991

Age-per 10 years 1.01(0.99–1.03) 0.178 1.00 (0.98–1.03) 0.948 1.39 (1.03–1.87) 0.030� 0.99 (0.96–1.03) 0.748

Dialysis-vintage (year) 1.01 (0.98–1.04) 0.443 - - 1.02 (0.97–1.06) 0.489 - -

Diabetes 1.56 (1.99–2.46) 0.058 1.18 (0.71–1.97) 0.526 1.28 (0.69–2.41) 0.437 1.03 (0.50–2.15) 0.930

Hypertension 1.51 (0.87–2.62) 0.144 - - 1.46 (0.67–3.19) 0.337 - -

Smoking habit 1.56 (0.97–2.51) 0.068 1.27 (0.72–2.23) 0.411 1.30 (0.66–2.56) 0.452 1.19 (0.53–2.68) 0.673

History of CVD 2.77 (1.73–4.44) < 0.001� 2.63 (1.22–4.40) <0.001� 5.95 (2.82–12.55) <0.001� 4.67 (2.07–10.52) <0.001�

Hemoglobin (g/dl) 0.91 (0.75–1.10) 0.313 0.99 (0.81–1.21) 0.942 0.69 (0.52–0.91) 0.010� 0.91 (0.67–1.24) 0.557

GNRI 0.99 (0.96–1.02) 0.451 1.01 (0.97–1.05) 0.614 0.92 (0.88–0.97) 0.002� 0.96 (0.90–1.01) 0.125

C-reactive protein (mg/dl) 1.22 (1.03–1.45) 0.021� 1.15 (0.95–1.41) 0.161 1.44 (1.14–1.82) 0.002� 1.30 (0.99–1.69) 0.056

iPTH 1.00 (0.99–1.00) 0.145 1.00 (0.99–1.00) 0.744 0.99 (0.99–1.001) 0.289 1.00 (0.99–1.00) 0.821

MACEs Major adverse cardiovascular disease, HR hazard ratio, CI confidence interval

�p< 0.05: statistically significant association

https://doi.org/10.1371/journal.pone.0223390.t003
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outcomes. Especially in patients receiving maintenance HD therapy, we need to carefully

interpret the value because of the gap reported between patients who are and who are not

receiving HD therapy. In our current study, we evaluated the association between CD34+ cell

counts and four-point MACEs using a restricted cubic spline curve and found a dose-response

association with an intensively increased risk in patients with low CD34+ cell counts. These

findings supported our comparison of the lowest tertile of CD34+ cells with the others

(medium and highest tertile) with the cut-off of 0.06.

We need to discuss why reduced levels of CD34+ cells predict CVD outcomes. Increasing

evidence documents that circulating EPCs including CD34+ cells play a potential role in main-

tenance of endothelial integrity, function, and postnatal neovascularization[26–28]. However,

the detailed mechanism is still unclear regarding whether low numbers of EPCs directly cause

CVD events or are associated with chronic inflammation, hematopoietic exhaustion, and bone

marrow abnormalities which lead to the occurrence of CVD[29] Basically, patients receiving

HD therapy have 20 times elevated risk of CVD outcomes than in the general population[30].

Because traditional CVD risk factors, such as gender, age, smoking, diabetes, and CKD-related

risk factors (i.e. anemia, chronic kidney disease-mineral bone disorder, GNRI; an index for

assessing nutritional status, C-reactive protein; a marker of inflammation) are common in this

population[30], we performed multivariate analyses adjusting the level of CD34+ cells with all

these variables. We found that level of relative CD34+ cells and history of CVD were indepen-

dent risk factors for future CVD outcomes. Therefore, we hypothesized that levels of CD34+

Table 4. Hazard ratio of associated factors for all-cause mortality.

Characteristics Univariable Multivariable
HR (95% CI) P value HR (95% CI) P value

Lowest relative CD34+ tertile vs. medium+highest tertiles 1.88 (1.34–2.64) < 0.001� 1.15 (0.78–1.68) 0.481

Male gender 1.42 (1.00–1.99) 0.047� 1.39 (0.92–2.08) 0.115

Age-per 10 years 1.58 (1.35–1.85) < 0.001� 1.03 (1.01–1.05) < 0.001�

Dialysis-vintage (year) 1.01 (0.98–1.03) 0.550 - -

Diabetes 1.36 (0.97–1.90) 0.072 1.13 (0.77–1.64) 0.531

Hypertension 1.05 (0.72–1.53) 0.805 - -

Smoking habit 1.35 (0.95–1.94) 0.099 1.45 (0.95–2.23) 0.087

History of CVD 1.98 (1.42–2.77) < 0.001� 1.33 (0.92–1.92) 0.125

Hemoglobin (g/dl) 0.79 (0.68–0.91) 0.002� 0.93 (0.79–1.09) 0.376

GNRI 0.92 (0.90–0.95) < 0.001� 0.94 (0.92–0.97) < 0.001�

C-reactive protein (mg/dl) 1.35 (1.18–1.54) < 0.001� 1.17 (1.02–1.35) 0.028�

iPTH (ng/dl) 0.99 (0.99–0.99) 0.038� 0.99 (0.99–1.00) 0.539

HR hazard ratio, CI confidence interval

�p<0.05: statistically significant association

https://doi.org/10.1371/journal.pone.0223390.t004

Table 5. Hazard and Sub-hazard ratio of CVD-death in the lowest tertile of relative CD34+ cells by Cox regression and competing regression analysis.

Multivariable models HR (95% CI) P value SHR (95% CI) P value

Lowest CD34+ tertile vs. medium+highest tertiles 2.50 (1.23–5.10) 0.011� 2.68 (1.30–5.52) 0.008�

HR hazard ratio, SHR sub hazard ratio, CI confidence interval, CD34+ levels were adjusted for male gender, age, diabetes, smoking, pCVD, hemoglobin, GNRI, C-

reactive protein, and iPTH.

�P<0.05: statistically significant association

https://doi.org/10.1371/journal.pone.0223390.t005
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cell counts have a causal effect for CVD outcomes. Further studies are needed to elucidate the

exact protective mechanism of CD34+ cells in chroninc HD patients. In contrast, low levels of

CD34+ cells did not predict all-cause mortality in this study. We do not have information

about the specific causes of non-CVD deaths that will be needed to assess the details of this

observation. Nonetheless, these findings were consistent with previous studies[12,13,17].

Regarding cell surface markers, we measured only CD34 for three reasons: quantification

method with single antibody staining for CD34+ cells is easy, the results are highly reproduc-

ible [18,31], and among EPCs phenotypes (CD34+, CD133+, KDR+) the subset of CD34+ circu-

lating cells showed good correlation with cardiovascular parameter[31]. Furthermore, it is

reported that the administration of CD34+ cells after stroke improves neurogenesis through

angiogenesis in a mouse model[32]. Also, the circulating CD34+ cell count is noteworthy

because accumulating evidence[15,22,31,33] supports CD34+ cells use in cell therapy for car-

diac and limb ischemia in human[34,35].

In this paper, we used the levels of relative CD34+ cells rather than level of absolute CD34+

cells among patients on HD because circulating CD34+ cell count in per unit of volum (μl),

can be artificially affected by hemodilution and hemoconcentration, which are more common

among HD patients[13]. We also analyzed the effect of lowest vs. medium plus highest levels

of absolute CD34+ cell and the absolute number of CD34+ cells, as a continouos value, in asso-

ciation with CVD outcomes and all-cuase mortality. We did not find any significant associa-

tion. The data are shown in the S1 Table. Therefore, we concluded that the ratio of CD34 to

white blood cells in patients subjected to day-to-day changes in body fluids reflects a more

accurate and an independent predictive factor for CVD outcomes in HD patients.

One of the strong points of the present study compared to previous reports are the longest

follow-up period of up to 12.8 years. We found that the relative CD34+ cell count was an inde-

pendent predictive factor of four-point MACEs and CVD death in patients on maintenance

HD. In addition, to reduce the bias generated by non-CVD deaths, we analyzed the SHR of

CVD death vs. non-CVD death as a competing risk. Again, the resluts demonstrated that a low

level of relative CD34+ cells was strongly related to future CVD deaths.

We acknowledge limitations of this study. First, we do not have detailed information about

non-CVD death that will be needed to explore the reason why we did not observe an associa-

tion between relative CD34+ cell counts and all-cause mortality. Second, this study does not

have the anatomic data such as coronary calcium scoring or plaque burden on coronary CT

angiography or ultrasound of atherosclerotic changes of carotid arteries. Third, this study had

a small sample size and was conducted in a single health center.

In summary, a low level of CD34+ cells in the circulation predicts long-term CVD outcomes

among patients on maintenance HD. Further studies are needed to assess whether interven-

tions such as ceasing smoking will increase CD34+ cell number and improve patient

outcomes.

Supporting information

S1 Table. This table shows hazard ratio of lowest CD34+ cells level and continuous value of

CD34+ cells for CVD outcomes and all-cause mortality.
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