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1. Introduction

Neurons in the brain are constantly flickering with
activity, which can be spontaneous or in response
to stimuli [LBH09]. Because of positive feedback
loops and the potential for runaway excitation,
real neural networks often possess an abundance
of inhibition that serves to shape and stabilize the
dynamics [FY11, KAY14, YMSL05]. The excita-
tory neurons in such networks exhibit intricate

patterns of connectivity, whose structure controls
the allowed patterns of activity. A central ques-
tion in neuroscience is thus: how does network
connectivity shape dynamics?

For a given model, this question becomes a
mathematical challenge. The goal is to develop
a theory that directly relates properties of a non-
linear dynamical system to its underlying graph.
Such a theory can provide insights and hypotheses
about how network connectivity constrains activ-
ity in real brains. It also opens up new possibilities
for modeling neural phenomena in a mathemati-
cally tractable way.

Here we describe a class of inhibition-
dominated neural networks corresponding to di-
rected graphs, and introduce some of the theory
that has been developed to study them. The heart
of the theory is a set of parameter-independent
graph rules that enables us to directly predict fea-
tures of the dynamics from combinatorial prop-
erties of the graph. Specifically, graph rules allow
us to constrain, and in some cases fully determine,
the collection of stable and unstable fixed points
of a network based solely on graph structure.

Stable fixed points are themselves static at-
tractors of the network, and have long been
used as a model of stored memory patterns
[Hop82,Hop84]. In contrast, unstable fixed points
have been shown to play an important role in
shaping dynamic (non-static) attractors, such as
limit cycles [PMMC22]. By understanding the
fixed points of simple networks, and how they re-
late to the underlying architecture, we can gain
valuable insight into the high-dimensional nonlin-
ear dynamics of neurons in the brain.

For more complex architectures, built from
smaller component subgraphs, we present a series
of gluing rules that allow us to determine all fixed
points of the network by gluing together those of
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the components. These gluing rules are reminis-
cent of sheaf-theoretic constructions, with fixed
points playing the role of sections over subnet-
works.

First, we review some basics of recurrent neu-
ral networks and a bit of historical context.

Basic network setup. A recurrent neural net-
work is a directed graph G together with a pre-
scription for the dynamics on the vertices, which
represent neurons (see Figure 1A). To each ver-
tex i we associate a function xi(t) that tracks the
activity level of neuron i as it evolves in time.
To each ordered pair of vertices (i, j) we assign
a weight, Wij , governing the strength of the influ-
ence of neuron j on neuron i. In principle, there
can be a nonzero weight between any two nodes,
with the graph G providing constraints on the al-
lowed values Wij , depending on the specifics of the
model.

Figure 1: (A) Recurrent network setup. (B) A Ramón y
Cajal drawing of real cortical neurons.

The dynamics often take the form of a system
of ODEs, called a firing rate model [DA01, ET10,
SY12]:

τi
dxi
dt

= −xi + ϕ

 n∑
j=1

Wijxj + bi

 , (1)

= −xi + ϕ(yi),

for i = 1, . . . , n. The various terms in the equation
are illustrated in Figure 1, and can be thought of
as follows:

• xi = xi(t) is the firing rate of a single neuron
i (or the average activity of a subpopulation
of neurons);

• τi is the “leak” timescale, governing how
quickly a neuron’s activity exponentially de-
cays to zero in the absence of external or re-
current input;

• W is a real-valued matrix of synaptic inter-
action strengths, with Wij representing the
strength of the connection from neuron j to
neuron i;

• bi = bi(t) is a real-valued external input to
neuron i that may or may not vary with time;

• yi = yi(t) =
∑n

j=1Wijxj(t)+ bi(t) is the total
input to neuron i as a function of time; and

• ϕ : R→ R is a nonlinear, but typically mono-
tone increasing function.

Of particular importance for this article is the
family of threshold-linear networks (TLNs). In
this case, the nonlinearity is chosen to be the pop-
ular threshold-linear (or ReLU) function,

ϕ(y) = [y]+ = max{0, y}.

TLNs are common firing rate models that have
been used in computational neuroscience for
decades [SY12, TSSM97, HSM+00, BF22]. The
use of threshold-linear units in neural mod-
eling dates back at least to 1958 [HR58].
In the last 20 years, TLNs have also been
shown to be surprisingly tractable mathematically
[XHS02, HSS03, CDI13, CM16, MDIC16, MC18,
CGM19a, CGM19b, PLACM22], though much of
the theory remains under-developed. We are es-
pecially interested in competitive or inhibition-
dominated TLNs, where the W matrix is non-
positive so the effective interaction between any
pair of neurons is inhibitory. In this case, the ac-
tivity remains bounded despite the lack of satu-
ration in the nonlinearity [MDIC16]. These net-
works produce complex nonlinear dynamics and
can possess a remarkable variety of attractors
[MDIC16,MC18,PLACM22,PMMC22].

Firing rate models of the form (1) are exam-
ples of recurrent networks because the W matrix
allows for all pairwise interactions, and there is no
constraint that the architecture (i.e., the underly-
ing graph G) be feedforward. Unlike deep neural
networks, which can be thought of as classifiers
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implementing a clustering function, recurrent net-
works are primarily thought of as dynamical sys-
tems. And the main purpose of these networks is
to model the dynamics of neural activity in the
brain. The central question is thus:

Question 1. Given a firing rate model defined
by (1) with network parameters (W, b) and un-
derlying graph G, what are the emergent network
dynamics? What can we say about the dynamics
from knowledge of G alone?

We are particularly interested in understand-
ing the attractors of such a network, including
both stable fixed points and dynamic attractors
such as limit cycles. The attractors are important
because they comprise the set of possible asymp-
totic behaviors of the network in response to dif-
ferent inputs or initial conditions (see Figure 2).

Figure 2: Attractor neural networks. (A) For sym-
metric Hopfield networks and symmetric inhibitory TLNs,
trajectories are guaranteed to converge to stable fixed point
attractors. Sample trajectories are shown, with the basin
of attraction for the blue stable fixed point outlined in blue.
(B) For asymmetric TLNs, dynamic attractors can coexist
with (static) stable fixed point attractors.

Note that Question 1 is posed for a fixed con-
nectivity matrix W , but of course W can change
over time (e.g., as a result of learning or train-
ing of the network). Here we restrict ourselves to
considering constant W matrices; this allows us
to focus on understanding network dynamics on a
fast timescale, assuming slowly varying synaptic
weights. Understanding the dynamics associated
to changing W is an important topic, currently
beyond the scope of this work.

Historical interlude: memories as attrac-
tors. Attractor neural networks became popu-
lar in the 1980s as models of associative mem-
ory encoding and retrieval. The best-known

example from that era is the Hopfield model
[Hop82, Hop84], originally conceived as a variant
on the Ising model from statistical mechanics. In
the Hopfield model, the neurons can be in one of
two states, si ∈ {±1}, and the activity evolves
according to the discrete time update rule:

si(t+ 1) = sgn

 n∑
j=1

Wijsj(t)− θi

 .

Hopfield’s famous 1982 result is that the dynamics
are guaranteed to converge to a stable fixed point,
provided the interaction matrix W is symmetric:
that is, Wij = Wji for every i, j ∈ {1, . . . , n}.
Specifically, he showed that the “energy” function,

E = −1

2

∑
i,j

Wijsisj +
∑
i

θisi,

decreases along trajectories of the dynamics, and
thus acts as a Lyapunov function [Hop82]. The
stable fixed points are local minima of the energy
landscape (Figure 2A). A stronger, more general
convergence result for competitive neural networks
was shown in [CG83].

These fixed points are the only attractors of
the network, and they represent the set of mem-
ories encoded in the network. Hopfield networks
perform a kind of pattern completion: given an
initial condition s(0), the activity evolves until it
converges to one of multiple stored patterns in the
network. If, for example, the individual neurons
store black and white pixel values, this process
could input a corrupted image and recover the
original image, provided it had previously been
stored as a stable fixed point in the network by ap-
propriately selecting the weights of the W matrix.
The novelty at the time was the nonlinear phe-
nomenon of multistability: namely, that the net-
work could encode many such stable equilibria and
thus maintain an entire catalogue of stored mem-
ory patterns. The key to Hopfield’s convergence
result was the requirement that W be a symmet-
ric interaction matrix. Although this was known
to be an unrealistic assumption for real (biologi-
cal) neural networks, it was considered a tolera-
ble price to pay for guaranteed convergence. One
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did not want an associative memory network that
wandered the state space indefinitely without ever
recalling a definite pattern.

Twenty years later, Hahnloser, Seung, and
others followed up and proved a similar conver-
gence result in the case of symmetric inhibitory
threshold-linear networks [HSS03]. Specifically,
they found a Lyapunov-like function

L =
1

2
xT (I −W )x− bTx,

following the notation in (1) with ϕ(y) = [y]+. For
fixed b, it can easily be shown that L is strictly
decreasing along trajectories of the TLN dynam-
ics, and minima of L correspond to steady states
– provided W is symmetric and I −W is copos-
itive [HSS03, Theorem 1]. More results on the
collections of stable fixed points that can be si-
multaneously encoded in a symmetric TLN can
be found in [CDI12,CDI13,CM16], including some
unexpected connections to Cayley-Menger deter-
minants and classical distance geometry.

In all of this work, stable fixed points have
served as the model for encoded memories. In-
deed, these are the only types of attractors that
arise for symmetric Hopfield networks or symmet-
ric TLNs. Whether or not guaranteed convergence
to stable fixed points is desirable, however, is a
matter of perspective. For a network whose job
it is to perform pattern completion or classifica-
tion for static images (or codewords), as in the
classical Hopfield model, this is exactly what one
wants. But it is also important to consider memo-
ries that are temporal in nature, such as sequences
and other dynamic patterns of activity. Sequential
activity, as observed in central pattern generator
circuits (CPGs) and spontaneous activity in hip-
pocampus and cortex, is more naturally modeled
by dynamic attractors such as limit cycles. This
requires shifting attention to the asymmetric case,
in order to be able to encode attractors that are
not stable fixed points (Figure 2B).

Beyond stable fixed points. When the sym-
metry assumption is removed, TLNs can support
a rich variety of dynamic attractors such as limit
cycles, quasiperiodic attractors, and even strange
(chaotic) attractors. Indeed, this richness can al-

ready be observed in a special class of TLNs called
combinatorial threshold-linear networks (CTLNs),
introduced in Section 3. These networks are de-
fined from directed graphs, and the dynamics are
almost entirely determined by the graph structure.
A striking feature of CTLNs is that the dynamics
are shaped not only by the stable fixed points,
but also the unstable fixed points. In particular,
we have observed a direct correspondence between
certain types of unstable fixed points and dynamic
attractors (see Figure 3) [PMMC22]. This is re-
viewed in Section 4.

Figure 3: Stable and unstable fixed points. (A) Stable
fixed points are attractors of the network. (B-C) Unsta-
ble fixed points are not themselves attractors, but certain
unstable fixed points seem to correspond to dynamic at-
tractors (B), while others function solely as tipping points
between multiple attractors (C).

Despite exhibiting complex, high-
dimensional, nonlinear dynamics, recent work has
shown that TLNs – and especially CTLNs – are
surprisingly tractable mathematically. Motivated
by the relationship between fixed points and
attractors, a great deal of progress has been made
on the problem of relating fixed point structure to
network architecture. In the case of CTLNs, this
has resulted in a series of graph rules: theorems
that allow us to rule in and rule out potential
fixed points based purely on the structure of the
underlying graph [CGM19a, MC18, PLACM22].
In Section 5, we give a novel exposition of graph
rules, and introduce several elementary graph
rules from which the others can be derived.

Inhibition-dominated TLNs and CTLNs also
display a remarkable degree of modularity.
Namely, attractors associated to smaller networks
can be embedded in larger ones with minimal dis-
tortion [PMMC22]. This is likely a consequence of
the high levels of background inhibition: it serves
to stabilize and preserve local properties of the
dynamics. These networks also exhibit a kind of
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compositionality, wherein fixed points and attrac-
tors of subnetworks can be effectively “glued” to-
gether into fixed points and attractors of a larger
network. These local-to-global relationships are
given by a series of theorems we call gluing rules,
given in Section 6.

2. TLNs and hyperplane arrangements

For firing rate models with threshold-nonlinearity
ϕ(y) = [y]+ = max{0, y}, the network equa-
tions (1) become

dxi
dt

= −xi +

 n∑
j=1

Wijxj + bi


+

(2)

= −xi + [yi]+,

for i = 1, . . . , n. We also assume Wii = 0 for each
i. Note that the leak timescales have been set to
τi = 1 for all i. We thus measure time in units of
this timescale.

For constant W matrix and input vector b, the
equations

yi =

n∑
j=1

Wijxj + bi = 0,

define a hyperplane arrangement H = H(W, b) =
{H1, . . . ,Hn} in Rn. The i-th hyperplane Hi is
defined by yi = ~ni · x + bi = 0, with normal vec-
tor ~ni = (Wi1, . . . ,Win), population activity vec-
tor x = (x1, . . . , xn), and affine shift bi. IfWij 6= 0,
then Hi intersects the j-th coordinate axis at the
point xj = −bi/Wij . Hi is parallel to the i-th axis.

The hyperplanes H partition the positive or-
thant Rn≥0 into chambers. Within the interior of
any chamber, each point x is on the plus or mi-
nus side of each hyperplane Hi. The equations
thus reduce to a linear system of ODEs, with the
equation for each i = 1, . . . , n being either

dxi
dt

= −xi + yi = −xi +

n∑
j=1

Wijxj + bi, if yi > 0,

or
dxi
dt

= −xi, if yi ≤ 0.

In particular, TLNs are piecewise-linear dynami-

cal systems with a different linear system, Lσ, gov-
erning the dynamics in each chamber [MDIC16].

A fixed point of a TLN (2) is a point x∗ ∈
Rn that satisfies dxi/dt|x=x∗ = 0 for each i ∈
{1, . . . , n}. In particular, we must have

x∗i = [y∗i ]+ for all i = 1, . . . , n, (3)

where y∗i is yi evaluated at the fixed point. We typ-
ically assume a nondegeneracy condition on (W, b)
[CGM19a, MDIC16], which guarantees that each
linear system is nondegenerate and has a single
fixed point. This fixed point may or may not lie
within the chamber where its corresponding lin-
ear system applies. The fixed points of the TLN
are precisely the fixed points of the linear systems
that lie within their respective chambers.

Figure 4: TLNs as a patchwork of linear systems.
(A) The connectivity matrix W , input b, and differential
equations for a TLN with n = 2 neurons. (B) The state
space is divided into chambers (regions) Rσ, each having
dynamics governed by a different linear system Lσ. The
chambers are defined by the hyperplanes {Hi}i=1,2, with
Hi defined by yi = 0 (gray lines).

Figure 4 illustrates the hyperplanes and cham-
bers for a TLN with n = 2. Each chamber, de-
noted as a region Rσ, has its own linear system
of ODEs, Lσ, for σ = ∅, {1}, {2}, or {1, 2}. The
fixed point corresponding to each linear system is
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denoted by x∗, in matching color. Note that only
chamber R{2} contains its own fixed point (in red).

This fixed point, x∗ = [0, b2]
T , is thus the only

fixed point of the TLN.
Figure 5 shows an example of a TLN on n = 3

neurons. The W matrix is constructed from a 3-
cycle graph and bi = θ = 1 for each i. The dynam-
ics fall into a limit cycle where the neurons fire in
a repeating sequence that follows the arrows of the
graph. This time, the TLN equations define a hy-
perplane arrangement in R3, again with each hy-
perplane Hi defined by yi = 0 (Figure 5C). An ini-
tial condition near the unstable fixed point in the
all + chamber (where yi > 0 for each i) spirals out
and converges to a limit cycle that passes through
four distinct chambers. Note that the threshold
nonlinearity is critical for the model to produce
nonlinear behavior such as limit cycles; without
it, the system would be linear. It is, nonetheless,
nontrivial to prove that the limit cycle shown in
Figure 5 exists. A recent proof was given for a spe-
cial family of TLNs constructed from any k-cycle
graph [BCRR21].

The set of all fixed points FP(W, b). A cen-
tral object that is useful for understanding the dy-
namics of TLNs is the collection of all fixed points
of the network, both stable and unstable. The
support of a fixed point x∗ ∈ Rn is the subset of
active neurons,

suppx∗
def
= {i | x∗i > 0}.

Our nondegeneracy condition (that is generically
satisfied) guarantees we can have at most one fixed
point per chamber of the hyperplane arrangement
H(W, b), and thus at most one fixed point per sup-
port. We can thus label all the fixed points of a
given network by their supports:

FP(W, b)
def
= {σ ⊆ [n] | σ = suppx∗, for some (4)

fixed pt x∗ of the TLN (W, b)},

where
[n]

def
= {1, . . . , n}.

For each support σ ∈ FP(W, b), the fixed point
itself is easily recovered. Outside the support,
x∗i = 0 for all i 6∈ σ. Within the support, x∗ is
given by:

x∗σ = (I −Wσ)−1bσ.

Here x∗σ and bσ are the column vectors obtained
by restricting x∗ and b to the indices in σ, and
Wσ is the induced principal submatrix obtained
by restricting rows and columns of W to σ.

From (3), we see that a fixed point with
suppx∗ = σ must satisfy the “on-neuron” con-
ditions, y∗i > 0 for all i ∈ σ, as well as the “off-
neuron” conditions, y∗k ≤ 0 for all k /∈ σ, to en-
sure that x∗i > 0 for each i ∈ σ and x∗k = 0 for
each k /∈ σ. Equivalently, these conditions guar-
antee that the fixed point x∗ of Lσ lies inside its
corresponding chamber, Rσ. Note that for such a
fixed point, the values x∗i for i ∈ σ depend only
on the restricted subnetwork (Wσ, bσ). Therefore,
the on-neuron conditions for x∗ in (W, b) are sat-
isfied if and only if they hold in (Wσ, bσ). Since
the off-neuron conditions are trivially satisfied in
(Wσ, bσ), it follows that σ ∈ FP(Wσ, bσ) is a nec-
essary condition for σ ∈ FP(W, b). It is not,
however, sufficient, as the off-neuron conditions
may fail in the larger network. Satisfying all the
on- and off-neuron conditions, however, is both
necessary and sufficient to guarantee σ ∈ FP(G)
[MC18,CGM19a].

Conveniently, the off-neuron conditions are in-
dependent and can be checked one neuron at a
time. Thus,

σ ∈ FP(W, b)⇔ σ ∈ FP(Wσ∪k, bσ∪k) for all k /∈ σ.

When σ ∈ FP(Wσ, bσ) satisfies all the off-neuron
conditions, so that σ ∈ FP(W, b), we say that σ
survives to the larger network; otherwise, we say
σ dies.

The fixed point corresponding to σ ∈
FP(W, b) is stable if and only if all eigenvalues
of −I + Wσ have negative real part. For com-
petitive (or inhibition-dominated) TLNs, all fixed
points – whether stable or unstable – have a sta-
ble manifold. This is because competitive TLNs
have Wij ≤ 0 for all i, j ∈ [n]. Applying the
Perron-Frobenius theorem to −I+Wσ, we see that
the largest magnitude eigenvalue is guaranteed to
be real and negative. The corresponding eigen-
vector provides an attracting direction into the
fixed point. Combining this observation with the
nondegeneracy condition reveals that the unstable
fixed points are all hyperbolic (i.e., saddle points).

6



Figure 5: A network on n = 3 neurons, its hyperplane arrangement, and limit cycle. (A) A TLN whose
connectivity matrix W is dictated by a 3-cycle graph, together with the TLN equations. (B) The TLN from A produces
firing rate activity in a periodic sequence. (C) (Left) The hyperplane arrangement defined by the equations yi = 0, with
a trajectory initialized near the fixed point shown in black. (Right) A close-up of the trajectory, spiraling out from the
unstable fixed point and falling into a limit cycle. Different colors correspond to different chambers of the hyperplane
arrangement through which the trajectory passes.

3. Combinatorial threshold-linear
networks

Combinatorial threshold-linear networks (CTLNs)
are a special case of competitive (or inhibition-
dominated) TLNs, with the same threshold
nonlinearity, that were first introduced in
[MDIC16, MC18]. What makes CTLNs special is
that we restrict to having only two values for the
connection strengths Wij , for i 6= j. These are ob-
tained as follows from a directed graph G, where
j → i indicates that there is an edge from j to i
and j 6→ i indicates that there is no such edge:

Wij =


0 if i = j,
−1 + ε if j → i in G,
−1− δ if j 6→ i in G.

(5)

Additionally, CTLNs typically have a constant ex-
ternal input bi = θ for all i in order to ensure the
dynamics are internally generated rather than in-
herited from a changing or spatially heterogeneous
input.

A CTLN is thus completely specified by the
choice of a graph G, together with three real pa-
rameters: ε, δ, and θ. We additionally require that

δ > 0, θ > 0, and 0 < ε <
δ

δ + 1
. When these con-

ditions are met, we say the parameters are within
the legal range. Note that the upper bound on ε
implies ε < 1, and so the W matrix is always ef-
fectively inhibitory. For fixed parameters, only the
graph G varies between networks. The network in
Figure 5 is a CTLN with the standard parameters

ε = 0.25, δ = 0.5, and θ = 1.
We interpret a CTLN as modeling a network

of n excitatory neurons, whose net interactions
are effectively inhibitory due to a strong global
inhibition (Figure 6). When j 6→ i, we say j
strongly inhibits i; when j → i, we say j weakly
inhibits i. The weak inhibition is thought of as
the sum of an excitatory synaptic connection and
the background inhibition. Note that because
−1 − δ < −1 < −1 + ε, when j 6→ i, neuron j
inhibits i more than it inhibits itself via its leak
term; when j → i, neuron j inhibits i less than
it inhibits itself. These differences in inhibition
strength cause the activity to follow the arrows of
the graph.

Figure 6: CTLNs. A neural network with excitatory pyra-
midal neurons (triangles) and a background network of in-
hibitory interneurons (gray circles) that produces a global
inhibition. The corresponding graph (right) retains only
the excitatory neurons and their connections.

The set of fixed point supports of a CTLN
with graph G is denoted as:

FP(G, ε, δ)
def
= {σ ⊆ [n] | σ = suppx∗ for some

fixed pt x∗ of the associated CTLN}.
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FP(G, ε, δ) is precisely FP(W, b), where W and b
are specified by a CTLN with graph G and param-
eters ε and δ. Note that FP(G, ε, δ) is independent
of θ, provided θ is constant across neurons as in a
CTLN. It is also frequently independent of ε and
δ. For this reason we often refer to it as FP(G),
especially when a fixed choice of ε and δ is under-
stood.

The legal range condition, ε <
δ

δ + 1
, is moti-

vated by a theorem in [MDIC16]. It ensures that
single directed edges i→ j are not allowed to sup-
port stable fixed points {i, j} ∈ FP(G, ε, δ). This
allows us to prove the following theorem connect-
ing a certain graph structure to the absence of
stable fixed points. Note that a graph is oriented
if for any pair of nodes, i → j implies j 6→ i (i.e.,
there are no bidirectional edges). A sink is a node
with no outgoing edges.

Theorem 3.1. [MDIC16, Theorem 2.4] Let G be
an oriented graph with no sinks. Then for any
parameters ε, δ, θ in the legal range, the associated
CTLN has no stable fixed points. Moreover, the
activity is bounded.

The graph in Figure 5A is an oriented graph
with no sinks. It has a single fixed point, FP(G) =
{123}, irrespective of the parameters (note that we
use “123” as shorthand for the set {1, 2, 3}). This
fixed point is unstable and the dynamics converge
to a limit cycle (Figure 5C).

Even when there are no stable fixed points,
the dynamics of a CTLN are always bounded
[MDIC16]. In the limit as t → ∞, we can bound
the total population activity as a function of the
parameters ε, δ, and θ:

θ

1 + δ
≤

n∑
i=1

xi ≤
θ

1− ε
. (6)

In simulations, we observe a rapid convergence
to this regime. Figure 7 depicts four solutions for
the same CTLN on n = 100 neurons. The graph G
was generated as a directed Erdos-Renyi random
graph with edge probability p = 0.2; note that it is
not an oriented graph. Since the network is deter-
ministic, the only difference between simulations
is the initial conditions. While panel A appears to
show chaotic activity, the solutions in panels B, C

and D all settle into a fixed point or a limit cycle
within the allotted time frame. The long transient
of panel B is especially striking: around t = 200,
the activity appears as though it will fall into the
same limit cycle from panel D, but then escapes
into another period of chaotic-looking dynamics
before abruptly converging to a stable fixed point.
In all cases, the total population activity rapidly
converges to lie within the bounds given in (6),
depicted in gray.

Fun examples. Despite their simplicity,
CTLNs display a rich variety of nonlinear dy-
namics. Even very small networks can exhibit
interesting attractors with unexpected properties.
Theorem 3.1 tells us that one way to guarantee
that a network will produce dynamic – as opposed
to static – attractors is to choose G to be an
oriented graph with no sinks. The following
examples are of this type.

The Gaudi attractor. Figure 8 shows two solu-
tions to a CTLN for a cyclically symmetric tourna-
ment1 graph on n = 5 nodes. For some initial con-
ditions, the solutions converge to a somewhat bor-
ing limit cycle with the firing rates x1(t), . . . , x5(t)
all peaking in the expected sequence, 12345 (bot-
tom middle). For a different set of initial condi-
tions, however, the solution converges to the beau-
tiful and unusual attractor displayed at the top.

Symmetry and synchrony. Because the pat-
tern of weights in a CTLN is completely deter-
mined by the graph G, any symmetry of the graph
necessarily translates to a symmetry of the differ-
ential equations, and hence of the vector field. It
follows that the automorphism group of G also
acts on the set of all attractors, which must re-
spect the symmetry. For example, in the cycli-
cally symmetric tournament of Figure 8, both the
Gaudi attractor and the “boring” limit cycle be-
low it are invariant under the cyclic permutation
(12345): the solution is preserved up to a time
translation.

Another way for symmetry to manifest itself
in an attractor is via synchrony. The network in
Figure 9A depicts a CTLN with a graph on n = 5
nodes that has a nontrivial automorphism group

1A tournament is a directed graph in which every pair
of nodes has exactly one (directed) edge between them.
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Figure 7: Dynamics of a CTLN network on n = 100 neurons. The graph G is a directed Erdos-Renyi random
graph with edge probability p = 0.2 and no self loops. The CTLN parameters are ε = 0.25, δ = 0.5, and θ = 1. Initial
conditions for each neuron, xi(0), are randomly and independently chosen from the uniform distribution on [0, 0.1]. (A-D)
Four solutions from the same deterministic network, differing only in the choice of initial conditions. In each panel, the
top plot shows the firing rate as a function of time for each neuron in grayscale. The middle plot shows the summed
total population activity,

∑n
i=1 xi, which quickly becomes trapped between the horizontal gray lines – the bounds in

equation (6). The bottom plot shows individual rate curves for all 100 neurons, in different colors. (A) The network
appears chaotic, with some recurring patterns of activity. (B) The solution initially appears to be chaotic, like the one
in A, but eventually converges to a stable fixed point supported on a 3-clique. (C) The solution converges to a limit
cycle after t = 300. (D) The solution converges to a different limit cycle after t = 200. Note that one can observe brief
“echoes” of this limit cycle in the transient activity of panel B.

C3, cyclically permuting the nodes 2, 3 and 4. In
the corresponding attractor, the neurons 2, 3, 4
perfectly synchronize as the solution settles into
the limit cycle. Notice, however, what happens for
the network in Figure 9B. In this case, the limit

cycle looks very similar to the one in A, with the
same synchrony among neurons 2, 3 and 4. How-
ever, the graph is missing the 4→ 5 edge, and so
the graph has no nontrivial automorphisms. We
refer to this phenomenon as surprise symmetry.

Figure 8: Gaudi attractor. A CTLN for a cyclically symmetric tournament on n = 5 nodes produces two distinct
attractors, depending on initial conditions. We call the top one the Gaudi attractor because the undulating curves are
reminiscent of work by the architect from Barcelona.
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Figure 9: Symmetry and synchrony. (A) A graph with
automorphism group C3 has an attractor where neurons
2, 3, and 4 fire synchronously. The overall sequence of acti-
vation is denoted 1(234)5, indicating that neurons 2, 3, 4 fire
synchronously after neuron 1 and before 5, repeating peri-
odically. (B) The symmetry is broken due to the dropped
4 → 5 edge. Nevertheless, the attractor still respects the
(234) symmetry with nodes 2, 3, and 4 firing synchronously.
Note that both attractors are very similar limit cycles, but
the one in B has longer period. (Simulations used the stan-
dard parameters: ε = 0.25, δ = 0.5, θ = 1.)

On the flip side, a network with graph sym-
metry may have multiple attractors that are ex-
changed by the group action, but do not individu-
ally respect the symmetry. This is the more famil-
iar scenario of spontaneous symmetry breaking.

Emergent sequences. One of the most reliable
properties of CTLNs is the tendency of neurons
to fire in sequence. Although we have seen exam-
ples of synchrony, the global inhibition promotes
competitive dynamics wherein only one or a few
neurons reach their peak firing rates at the same
time. The sequences may be intuitive, as in the
networks of Figures 8 and 9, following obvious cy-
cles in the graph. However, even for small net-
works the emergent sequences may be difficult to
predict.

The network in Figure 10A has n = 7 neu-
rons, and the graph is a tournament with no non-
trivial automorphisms. The corresponding CTLN
appears to have a single, global attractor, shown
in Figure 10B. The neurons in this limit cycle fire
in a repeating sequence, 634517, with 5 being the
lowest-firing node. This sequence is highlighted in
black in the graph, and corresponds to a cycle in
the graph. However, it is only one of many cycles
in the graph. Why do the dynamics select this se-

quence and not the others? And why does neuron
2 drop out, while all others persist? This is par-
ticularly puzzling given that node 2 has in-degree
three, while nodes 3 and 5 have in-degree two.

Figure 10: Emergent sequences can be difficult to
predict. (A) (Left) The graph of a CTLN that is a tour-
nament on 7 nodes. (Right) The same graph, but with the
cycle corresponding to the sequential activity highlighted
in black. (B) A solution to the CTLN that converges to a
limit cycle. This appears to be the only attractor of the
network for the standard parameters.

Indeed, local properties of a network, such as
the in- and out-degrees of individual nodes, are in-
sufficient for predicting the participation and or-
dering of neurons in emergent sequences. Nev-
ertheless, the sequence is fully determined by the
structure of G. We just have a limited understand-
ing of how. Recent progress in understanding se-
quential attractors has relied on special network
architectures that are cyclic like the ones in Fig-
ures 8 and 9 [PLACM22]. Interestingly, although
the graph in Figure 10 does not have such an ar-
chitecture, the induced subgraph generated by the
high-firing nodes 1, 3, 4, 6, and 7 is isomorphic to
the graph in Figure 8. This graph, as well as the
two graphs in Figure 9, have corresponding net-
works that are in some sense irreducible in their
dynamics. These are examples of graphs that we
refer to as core motifs [PMMC22].

4. Minimal fixed points, core motifs, and
attractors

Stable fixed points of a network are of obvious in-
terest because they correspond to static attractors
[HSS03,CDI13,CM16,CGM19b]. One of the most
striking features of CTLNs, however, is the strong
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connection between unstable fixed points and dy-
namic attractors [MC18,PMMC22,PLACM22].

Question 2. For a given CTLN, can we predict
the dynamic attractors of the network from its un-
stable fixed points? Can the unstable fixed points
be determined from the structure of the underly-
ing graph G?

Throughout this section, G is a directed graph
on n nodes. Subsets σ ⊆ [n] are often used to
denote both the collection of vertices indexed by σ
and the induced subgraph G|σ. The corresponding
network is assumed to be a nondegenerate CTLN
with fixed parameters ε, δ, and θ.

Figure 11 provides two example networks to
illustrate the relationship between unstable fixed
points and dynamic attractors. Any CTLN with
the graph in panel A has three fixed points, with
supports FP(G) = {4, 123, 1234}. The collection
of fixed point supports can be thought of as a par-
tially ordered set, ordered by inclusion. In our ex-
ample, 4 and 123 are thus minimal fixed point sup-
ports, because they are minimal under inclusion.
It turns out that the corresponding fixed points
each have an associated attractor (Figure 11B).
The one supported on 4, a sink in the graph, yields
a stable fixed point, while the 123 (unstable) fixed
point, whose induced subgraph G|123 is a 3-cycle,
yields a limit cycle attractor with high-firing neu-
rons 1, 2, and 3. Figure 11C depicts all three fixed
points in the state space. Here we can see that the
third one, supported on 1234, acts as a “tipping
point” on the boundary of two basins of attrac-
tion. Initial conditions near this fixed point can
yield solutions that converge either to the stable
fixed point or the limit cycle.

Figure 11D-F provides another example net-
work, called “baby chaos,” in which all fixed points
are unstable. The minimal fixed point supports,
125, 235, 345 and 145, all correspond to core mo-
tifs (embedded 3-cycles in the graph). The corre-
sponding attractors are chaotic, and are depicted
as firing rate curves (panel E) and trajectories in
the state space (panel F). Note that the graph has
an automorphism group that exchanges core mo-
tifs and their corresponding attractors.

Not all minimal fixed points have correspond-
ing attractors. In [PMMC22] we saw that the key

property of such a σ ∈ FP(G) is that it be mini-
mal not only in FP(G) but also in FP(G|σ), corre-
sponding to the induced subnetwork restricted to
the nodes in σ. In other words, σ is the only fixed
point in FP(G|σ). This motivates the definition of
core motifs.

Definition 4.1. Let G be the graph of a CTLN
on n nodes. An induced subgraph G|σ is a core
motif of the network if FP(G|σ) = {σ}.

When the graph G is understood, we sometimes
refer to σ itself as a core motif if G|σ is one. The
associated fixed point is called a core fixed point.
Core motifs can be thought of as “irreducible” net-
works because they have a single fixed point which
has full support. Since the activity is bounded and
must converge to an attractor, the attractor can
be said to correspond to this fixed point. A larger
network that contains G|σ as an induced subgraph
may or may not have σ ∈ FP(G). When the core
fixed point does survive, we say refer to the embed-
ded G|σ as a surviving core motif, and we expect
the associated attractor to survive. In Figure 11,
the surviving core motifs are G|4 and G|123, and
they precisely predict the attractors of the net-
work.

The simplest core motifs are cliques. When
these survive inside a network G, the correspond-
ing attractor is always a stable fixed point sup-
ported on all nodes of the clique [CGM19a].
In fact, we conjectured that any stable fixed
point for a CTLN must correspond to a maxi-
mal clique of G – specifically, a target-free clique
[CGM19a,CGM19b].

Up to size 4, all core motifs are parameter-
independent. For size 5, 37 of 45 core motifs are
parameter-independent. Figure 12 shows the com-
plete list of all core motifs of size n ≤ 4, together
with some associated attractors. The cliques all
correspond to stable fixed points, the simplest
type of attractor. The 3-cycle yields the limit
cycle attractor in Figure 5, which may be dis-
torted when embedded in a larger network (see
Figure 11B). The other core motifs whose fixed
points are unstable have dynamic attractors. Note
that the 4-cycu graph has a (23) symmetry, and
the rate curves for these two neurons are syn-
chronous in the attractor. This synchrony is also
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Figure 11: Core motifs of CTLNs correspond to attractors. (A) The graph of a CTLN. The fixed point supports
are given by FP(G) = {4, 123, 1234}, irrespective of parameters ε, δ, θ. (B) Solutions to the CTLN in A using the standard
parameters θ = 1, ε = 0.25, and δ = 0.5. (Top) The initial condition was chosen as a small perturbation of the fixed point
supported on 123. The activity quickly converges to a limit cycle where the high-firing neurons are the ones in the fixed
point support. (Bottom) A different initial condition yields a solution that converges to the static attractor corresponding
to the stable fixed point on node 4. (C) The three fixed points are depicted in a three-dimensional projection of the
four-dimensional state space. Perturbations of the fixed point supported on 1234 produce solutions that either converge
to the limit cycle or to the stable fixed point from B. (D) A network on n = 5 nodes whose fixed point supports are
also independent of the CTLN parameters. (E) The four core motifs, supported on 125, 235, 345 and 145, each have a
corresponding chaotic attractor. (F) A projection of the four chaotic attractors (black trajectories) together with all nine
fixed points of the network (pink dots), which are all unstable.

Figure 12: Small core motifs. For each of these graphs, FP(G) = {[n]}, where n is the number of nodes. Attractors
are shown for CTLNs with the standard parameters ε = 0.25, δ = 0.5, and θ = 1.

evident in the 4-ufd attractor, despite the fact that
this graph does not have the (23) symmetry. Per-
haps the most interesting attractor, however, is
the one for the fusion 3-cycle graph. Here the

123 3-cycle attractor, which does not survive the
embedding to the larger graph, appears to “fuse”
with the stable fixed point associated to 4 (which
also does not survive). The resulting attractor can
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Figure 13: Coexistence of attractors. Stable fixed points supported on 48 and 189, a limit cycle corresponding to
236, and a chaotic attractor for 345. All attractors can be easily accessed via an initial condition near the corresponding
fixed point.

be thought of as binding together a pair of smaller
attractors.

Figure 13A depicts a larger example of a net-
work whose fixed point structure FP(G) is predic-
tive of the attractors. Note that only four supports
are minimal: 48, 189, 236, and 345. The first two
correspond to surviving cliques, and the last two
correspond to 3-cycles with surviving fixed points.
An extensive search of attractors for this network
reveals only four attractors, corresponding to the
four surviving core motifs. Figure 13B shows tra-
jectories converging to each of the four attractors.
The cliques yield stable fixed points, as expected,
while the 3-cycles correspond to dynamic attrac-
tors: one limit cycle, and one strange or chaotic
attractor.

We have performed extensive tests on whether
or not core motifs predict attractors in small net-
works. Specifically, we decomposed all 9608 non-
isomorphic directed graphs on n = 5 nodes into
core motif components, and used this to predict
the attractors [CMP+20]. We found that 1053
of the graphs have surviving core motifs that are
not cliques; these graphs were thus expected to
support dynamic attractors. The remaining 8555
graphs contain only cliques as surviving core mo-
tifs, and were thus expected to have only stable
fixed point attractors. Overall, we found that core
motifs correctly predicted the set of attractors in
9586 of the 9608 graphs. Of the 22 graphs with
mistakes, 19 graphs have a core motif with no cor-
responding attractor, and 3 graphs have no core
motifs for the chosen parameters [CMP+20].

Across the 1053 graphs with core motifs that

are not cliques, we observed a total of 1130 dy-
namic attractors. Interestingly, these fall into dis-
tinct equivalence classes determined by (a) the
core motif, and (b) the details of how the core
motif is embedded in the larger graph. In the
case of oriented graphs on n = 5 nodes, we per-
formed a more detailed analysis of the dynamic
attractors to determine a set of attractor families
[PMMC22]. Here we observed a striking modular-
ity of the embedded attractors, wherein the pre-
cise details of an attractor remained nearly identi-
cal across large families of non-isomorphic graphs
with distinct CTLNs. Figure 14 gives a sampling
of these common attractors, together with corre-
sponding graph families. Graph families are de-
picted via “master graphs,” with solid edges being
shared across all graphs in the family, and dashed
edges being optional. Graph counts correspond to
non-isomorphic graphs. See [PMMC22] for more
details.

5. Graph rules

We have seen that CTLNs exhibit a rich variety
of nonlinear dynamics, and that the attractors are
closely related to the fixed points. This opens up
a strategy for linking attractors to the underlying
network architecture G via the fixed point sup-
ports FP(G). Our main tools for doing this are
graph rules.

Throughout this section, we will use greek let-
ters σ, τ, ω to denote subsets of [n] = {1, . . . , n}
corresponding to fixed point supports (or poten-
tial supports), while latin letters i, j, k, ` denote
individual nodes/neurons. As before, G|σ denotes
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Figure 14: Modularity of attractors. For each attractor family, one or more “master graphs” are shown. The
master graphs represent a collection of graphs where the solid edges are shared by all graphs and the dashed edges are
optional. For example, the master graph corresponding to att 4 represents 7 distinct graphs, all having the same attractor
corresponding to the common core motif G|123, embedded so that node 4 receives an edge from 3 but does not send any
edge back to G|123. The other families, att 5, att 6, and att 10, yield attractors supported on the same core motif, G|123,
but with different embeddings that alter the shape of the attractors. Note that this analysis only considered oriented
graphs with no sinks; so, for example, the master graph for att 4 represents only 7 graphs, not 8, as node 5 is required
to have at least one outgoing edge. Adapted from [PMMC22].

the induced subgraph obtained from G by restrict-
ing to σ and keeping only edges between vertices
of σ. The fixed point supports are:

FP(G)
def
= {σ ⊆ [n] | σ = suppx∗ for some

fixed pt x∗ of the associated CTLN}.

The main question addressed by graph rules is:

Question 3. What can we say about FP(G) from
knowledge of G alone?

For example, consider the graphs in Figure 15.
Can we determine from the graph alone which sub-
graphs will support fixed points? Moreover, can
we determine which of those subgraphs are core
motifs that will give rise to attractors of the net-
work? We saw in Section 4 (Figure 12) that cycles
and cliques are among the small core motifs; can
cycles and cliques produce core motifs of any size?
Can we identify other graph structures that are
relevant for either ruling in or ruling out certain
subgraphs as fixed point supports? The rest of
Section 5 focuses on addressing these questions.

Note that implicit in the above questions

Figure 15: Graphs for which FP(G) is completely deter-
mined by graph rules.

is the idea that graph rules are parameter-
independent: that is, they directly relate the struc-
ture of G to FP(G) via results that are valid for all
choices of ε, δ, and θ (provided they lie within the
legal range). In order to obtain the most powerful
results, we also require that our CTLNs be non-
degenerate. As has already been noted, nondegen-
eracy is generically satisfied for TLNs [CGM19a].
For CTLNs, it is satisfied irrespective of θ and for
almost all legal range choices of ε and δ (i.e., up
to a set of measure zero in the two-dimensional
parameter space for ε and δ).

5.1. Examples of graph rules

We’ve already seen some graph rules. For exam-
ple, Theorem 3.1 told us that if G is an oriented
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graph with no sinks, the associated CTLN has no
stable fixed points. Such CTLNs are thus guar-
anteed to only exhibit dynamic attractors. Here
we present a set of eight simple graph rules, all
proven in [CGM19a], that are easy to understand
and give a flavor of the kinds of theorems we have
found.

We will use the following graph theoretic ter-
minology. A source is a node with no incoming
edges, while a sink is a node with no outgoing
edges. Note that a node can be a source or sink
in an induced subgraph G|σ, while not being one
in G. An independent set is a collection of nodes
with no edges between them, while a clique is a set
of nodes that is all-to-all bidirectionally connected.
A cycle is a graph (or an induced subgraph) where
each node has exactly one incoming and one out-
going edge, and they are all connected in a single
directed cycle. A directed acyclic graph (DAG) is a
graph with a topological ordering of vertices such
that i 6→ j whenever i > j; such a graph does not
contain any directed cycles. Finally, a target of
a graph G|σ is a node k such that i → k for all
i ∈ σ \ {k}. Note that a target may be inside or
outside G|σ.

The graph rules presented here can be found,
with detailed proofs, in [CGM19a]. We also sum-
marize them in Table 1 and Figure 16.

Examples of graph rules:

Rule 1 (independent sets): If G|σ is an indepen-
dent set, then σ ∈ FP(G) if and only if each i ∈ σ
is a sink in G.

Rule 2 (cliques): If G|σ is a clique, then σ ∈
FP(G) if and only if there is no node k of G, k /∈ σ,
such that i → k for all i ∈ σ. In other words,
σ ∈ FP(G) if and only if G|σ is a target-free clique.
If σ ∈ FP(G), the corresponding fixed point is
stable.

Rule 3 (cycles): If G|σ is a cycle, then σ ∈ FP(G)
if and only if there is no node k of G, k /∈ σ,
such that k receives two or more edges from σ.
If σ ∈ FP(G), the corresponding fixed point is
unstable.

Rule 4 (sources): (i) If G|σ contains a source j ∈
σ, with j → k for some k ∈ [n], then σ /∈ FP(G).

(ii) Suppose j /∈ σ, but j is a source in G. Then
σ ∈ FP(G|σ∪j) if and only if σ ∈ FP(G|σ).

Rule 5 (targets): (i) If σ has target k, with k ∈ σ
and k 6→ j for some j ∈ σ (j 6= k), then σ /∈
FP(G|σ) and thus σ /∈ FP(G). (ii) If σ has target
k 6∈ σ, then σ /∈ FP(G|σ∪k) and thus σ /∈ FP(G).

Rule 6 (sinks): If G has a sink s /∈ σ, then σ ∪
{s} ∈ FP(G) if and only if σ ∈ FP(G).

Rule 7 (DAGs): If G is a directed acyclic
graph with sinks s1, . . . , s`, then FP(G) = {∪si |
si is a sink in G}, the set of all 2` − 1 unions of
sinks.

Rule 8 (parity): For any G, |FP(G)| is odd.

In many cases, particularly for small graphs,
our graph rules are complete enough that they can
be used to fully work out FP(G). In such cases,
FP(G) is guaranteed to be parameter-independent
(since the graph rules do not depend on ε and δ).
As an example, consider the graph on n = 5 nodes
in Figure 15A; we will show that FP(G) is com-
pletely determined by graph rules. Going through
the possible subsets σ of different sizes, we find
that for |σ| = 1 only 3, 4 ∈ FP(G) (as those are
the sinks). Using Rules 1, 2, and 4, we see that the
only |σ| = 2 elements in FP(G) are the clique 15
and the independent set 34. A crucial ingredient
for determining the fixed point supports of sizes
3 and 4 is the sinks rule, which guarantees that
135, 145, and 1345 are the only supports of these
sizes. Finally, notice that the total number of fixed
points up through size |σ| = 4 is odd. Using Rule
8 (parity), we can thus conclude that there is no
fixed point of full support – that is, with |σ| = 5. It
follows that FP(G) = {3, 4, 15, 34, 135, 145, 1345};
moreover, this result is parameter-independent be-
cause it was determined purely from graph rules.
Although the precise values of the fixed points will
change for different choices of the parameters ε, δ
and θ, the set of supports FP(G) is invariant.

We leave it as an exercise to use graph rules
to show that FP(G) = {134} for the graph in Fig-
ure 15B, and FP(G) = {4, 12, 124} for the graph
in Figure 15C. For the graph in C, it is necessary
to appeal to a more general rule for uniform in-
degree subgraphs, which we review next.
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Figure 16: A sampling of graph rules. (A) Independent sets, cliques, and cycles all yield full-support fixed points in
isolation. When embedded in a larger graph, the survival of these fixed points is dictated by Rules 1-3. (B) Illustration
of Rules 4(i) and 4(ii), pertaining to a source node j that lies inside or outside σ. The solid j → k edge is mandatory
in Rule 4(i); dashed edges are optional. (C) Illustration of Rules 5(i) and 5(ii), pertaining to a target node k that lies
inside or outside of σ. (D) The only fixed point supports in a DAG are sinks and unions of sinks.

Rule name G|σ structure graph rule

Rule 1 independent set σ ∈ FP(G|σ), and σ ∈ FP(G)⇔ σ is a union of sinks

Rule 2 clique σ ∈ FP(G|σ), and σ ∈ FP(G)⇔ σ is target-free

Rule 3 cycle σ ∈ FP(G|σ), and σ ∈ FP(G)⇔ each k /∈ σ

receives at most one edge i→ k with i ∈ σ

Rule 4(i) ∃ a source j ∈ σ σ /∈ FP(G) if j → k for some k ∈ [n]

Rule 4(ii) ∃ a source j 6∈ σ σ ∈ FP(G|σ∪j)⇔ σ ∈ FP(G|σ)

Rule 5(i) ∃ a target k ∈ σ σ /∈ FP(G|σ) and σ /∈ FP(G) if k 6→ j for some j ∈ σ

Rule 5(ii) ∃ a target k 6∈ σ σ 6∈ FP(G|σ∪k) and σ /∈ FP(G)

Rule 6 ∃ a sink s /∈ σ σ ∪ {s} ∈ FP(G)⇔ σ ∈ FP(G)

Rule 7 DAG FP(G) = {∪si | si is a sink in G}

Rule 8 arbitrary |FP(G)| is odd

Table 1: Graph rules connect properties of a graph G to the fixed point supports, FP(G), of the
associated CTLN. Each rule refers to the structure of the induced subgraph G|σ in order to determine
whether σ ∈ FP(G|σ) and/or σ ∈ FP(G).

Rules 1-7, and many more, all emerge as corol-
laries of more general rules. In the next few sub-
sections, we will introduce the uniform in-degree
rule, graphical domination, and simply-embedded

subgraphs. Then, in Section 5.5, we will pool to-
gether the more general rules into a complete set
of elementary graph rules from which all others
follow.
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5.2. Uniform in-degree rule

It turns out that Rules 1, 2, and 3 (for independent
sets, cliques, and cycles) are all corollaries of a
single rule for graphs of uniform in-degree.

Definition 5.1. We say that G|σ has uniform in-
degree d if every node i ∈ σ has d incoming edges
from within G|σ.

Note that an independent set has uniform in-
degree d = 0, a cycle has uniform in-degree d =
1, and an n-clique is uniform in-degree with d =
n − 1. But, in general, uniform in-degree graphs
need not be symmetric. For example, the induced
subgraph G|145 in Figure 15A is uniform in-degree,
with d = 1.

Figure 17: (A) All uniform in-degree graphs of size n = 3.
(B) The fixed point survival rule in Theorem 5.2.

For CTLNs, a fixed point x∗ with support σ
satisfies:

(I −Wσ)x∗σ = θ1σ,

where 1σ is a vector of all 1’s restricted to the
index set σ. If G|σ has uniform in-degree d, then
the row sums of I −Wσ are identical, and so 1σ is
an eigenvector. In particular,

x∗σ =
θ

R
1σ,

where R is the (uniform) row sum for the matrix
I −Wσ. For in-degree d, we compute

R = 1 + d(1− ε) + (|σ| − d− 1)(1 + δ).

Uniform in-degree fixed points with support σ

thus have the same value for all i ∈ σ:

x∗i =
θ

|σ|+ δ(|σ| − d− 1)− εd
. (7)

(See also [CGM19a, Lemma 18].) From the deriva-
tion, it is clear that this formula holds for all uni-
form in-degree graphs, even those that are not
symmetric.

We can use the formula (7) to verify that the
on-neuron conditions, x∗i > 0 for each i ∈ σ, are
satisfied for ε, δ, θ within the legal range. Using
it to check the off-neuron conditions, we find that
for k /∈ σ,

y∗k =
∑
i∈σ

Wkix
∗
i + θ,

=
∑
i→k

(−1 + ε)x∗i +
∑
i 6→k

(−1− δ)x∗i + θ,

= θ

(
dk(−1 + ε) + (|σ| − dk)(−1− δ)
|σ|+ δ(|σ| − d− 1)− εd

+ 1

)
,

where dk = |{i ∈ σ | i → k}|. From here, it is
not difficult to see that the off-neuron condition,
y∗k ≤ 0, will be satisfied if and only if dk ≤ d. This
gives us the following theorem.

Theorem 5.2 ([CGM19a]). Let G|σ be an induced
subgraph of G with uniform in-degree d. For k /∈
σ, let dk denote the number of edges i → k for
i ∈ σ. Then σ ∈ FP(G|σ), and

σ ∈ FP(G|σ∪k) ⇔ dk ≤ d.

In particular, σ ∈ FP(G) if and only if there does
not exist k /∈ σ such that dk > d.

Figure 17 gives examples of uniform in-degree
graphs and illustrates the survival condition in
Theorem 5.2.

5.3. Graphical domination

We have seen that uniform in-degree graphs sup-
port fixed points that have uniform firing rates
(equation (7)). More generally, fixed points can
have very different values across neurons. How-
ever, there is some level of “graphical balance”
that is required of G|σ for any fixed point support
σ. For example, it can be shown that if σ con-
tains a pair of neurons j, k that have the property
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that all neurons sending edges to j also send edges
to k, and j → k but k 6→ j, then σ cannot be a
fixed point support. Intuitively, this is because k
is receiving a strict superset of the inputs to j,
and this imbalance rules out their ability to coex-
ist in the same fixed point support. This property
motivates the following definition.

Definition 5.3. We say that k graphically domi-
nates j with respect to σ in G if the following three
conditions all hold:

1. For each i ∈ σ \ {j, k}, if i→ j then i→ k.

2. If j ∈ σ, then j → k.

3. If k ∈ σ, then k 6→ j.

We refer to this as “inside-in” domination if j, k ∈
σ (see Figure 18A). In this case, we must have
j → k and k 6→ j. If j ∈ σ, k /∈ σ, we call
it “outside-in” domination (Figure 18B). On the
other hand, “inside-out” domination is the case
where k ∈ σ, j /∈ σ, and “outside-out” domination
refers to j, k /∈ σ (see Figure 18C-D).

Figure 18: Graphical domination: four cases. In all
cases, k graphically dominates j with respect to σ. In par-
ticular, the set of vertices of σ \ {j, k} sending edges to k
(red ovals) always contains the set of vertices sending edges
to j (blue ovals).

What graph rules does domination give us?
Intuitively, when inside-in domination is present,
the “graphical balance” necessary to support a
fixed point is violated, and so σ /∈ FP(G). When
k outside-in dominates j, with j ∈ σ and k /∈ σ,
again there is an imbalance, and this time it guar-
antees that neuron k turns on, since it receives

all the inputs that were sufficient to turn on neu-
ron j. Thus, there cannot be a fixed point with
support σ since node k will violate the off-neuron
conditions. We can draw interesting conclusions
in the other cases of graphical domination as well,
as Theorem 5.4 shows.

Theorem 5.4 ([CGM19a]). Suppose k graphically
dominates j with respect to σ in G. Then the fol-
lowing all hold:

1. (inside-in) If j, k ∈ σ, then σ /∈ FP(G|σ) and
thus σ /∈ FP(G).

2. (outside-in) If j ∈ σ, k /∈ σ, then σ /∈
FP(G|σ∪k) and thus σ /∈ FP(G).

3. (inside-out) If k ∈ σ, j /∈ σ, then σ ∈
FP(G|σ) ⇒ σ ∈ FP(G|σ∪j).

4. (outside-out) If j, k 6∈ σ, then σ ∈
FP(G|σ∪k) ⇒ σ ∈ FP(G|σ∪j).

The four cases of Theorem 5.4 are illustrated
in Figure 18. This theorem was originally proven
in [CGM19a]. Here we provide a more elemen-
tary proof, using only the definition of CTLNs and
ideas from Section 2.

Proof. Suppose that k graphically dominates j
with respect to σ in G. To prove statements 1 and
2 in the theorem, we will also assume that there
exists a fixed point x∗ of the associated CTLN
with support supp(x∗) = σ. This will allow us to
arrive at a contradiction.

If x∗ is a fixed point, we must have x∗i = [y∗i ]+
for all i ∈ [n] (see equation (3) from Section 2).
Recalling that Wjj = Wkk = 0, and that x∗i = 0
for i /∈ σ, it follows that for any j, k ∈ [n], we have:

y∗j =
∑

i∈σ\{j,k}

Wjix
∗
i +Wjkx

∗
k + θ,

y∗k =
∑

i∈σ\{j,k}

Wkix
∗
i +Wkjx

∗
j + θ.

Since k graphically dominates j with respect
to σ, we know that Wji ≤Wki for all i ∈ σ \ {j, k}.
This is because the off-diagonal values W`i are ei-
ther −1 + ε, for i → `, or −1 − δ, for i 6→ `; and
−1 + ε > −1 − δ. It now follows from the above
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equations that y∗j −Wjkx
∗
k ≤ y∗k −Wkjx

∗
j . Equiv-

alently,

y∗j +Wkjx
∗
j ≤ y∗k +Wjkx

∗
k. (8)

We will refer frequently to (8) in what follows.
There are four cases of domination to consider.
We begin with the first two:

1. (inside-in) If j, k ∈ σ, then x∗j = y∗j > 0
and x∗k = y∗k > 0, and so at the fixed point
we must have (1 + Wkj)x

∗
j ≤ (1 + Wjk)x

∗
k.

But domination in this case implies j → k
and k 6→ j, so that Wkj = −1 + ε and
Wjk = −1 − δ. Plugging this in, we obtain
εx∗j ≤ −δx∗k. This results in a contradiction,
since x∗j , x

∗
k > 0 and ε, δ > 0. We conclude

that σ /∈ FP(G). More specifically, since
the contradiction involved only the on-neuron
conditions, it follows that σ /∈ FP(G|σ).

2. (outside-in) If j ∈ σ and k /∈ σ, then x∗j =
y∗j > 0 and x∗k = 0, with y∗k ≤ 0. It follows
from (8) that (1+Wkj)x

∗
j ≤ 0. Since this case

of domination also has j → k, we obtain (1 +
Wkj)x

∗
j = εx∗j ≤ 0, a contradiction. Again,

we can conclude that σ /∈ FP(G), and more
specifically that σ /∈ FP(G|σ∪k).

This completes the proof of statements 1 and 2.
To prove statements 3 and 4, we assume only

that σ ∈ FP(G|σ), so that a fixed point x∗ with
support σ exists in the restricted network G|σ, but
does not necessarily extend to larger networks.
Whether or not it extends depends on whether
y∗i ≤ 0 for all i /∈ σ.

3. (inside-out) If j 6∈ σ and k ∈ σ, then x∗j = 0
and x∗k = y∗k > 0, and so (8) becomes y∗j ≤
(1 +Wjk)x

∗
k. Domination in this case implies

k 6→ j, so we obtain y∗j ≤ −δx∗k < 0. This
shows that j is guaranteed to satisfy the re-
quired off-neuron condition. We can thus con-
clude that σ ∈ FP(G|σ∪j).

4. (outside-out) If j, k /∈ σ, then x∗j = x∗k = 0,
and so (8) tells us that y∗j ≤ y∗k. This is true
irrespective of whether or not j → k or k → j
(and both are optional in this case). Clearly,
if y∗k ≤ 0 then y∗j ≤ 0. We can thus conclude
that if σ ∈ FP(G|σ∪k), then σ ∈ FP(G|σ∪j).

Rules 4, 5, and 7 are all consequences of The-
orem 5.4. To see how, consider a graph with a
source j ∈ σ that has an edge j → k for some
k ∈ [n]. Since j is a source, it has no incoming
edges from within σ. If k ∈ σ, then k inside-in
dominates j and so σ /∈ FP(G). If k /∈ σ, then
k outside-in dominates j and again σ /∈ FP(G).
Rule 4(i) immediately follows. We leave it as an
exercise to prove Rules 4(ii), 5(i), 5(ii), and 7.

5.4. Simply-embedded subgraphs and covers

Finally, we introduce the concept of simply-
embedded subgraphs. This is the last piece we
need before presenting the complete set of elemen-
tary graph rules.

Definition 5.5 (simply-embedded). We say that
a subgraph G|τ is simply-embedded in G if for each
k /∈ τ , either

(i) k → i for all i ∈ τ , or

(ii) k 6→ i for all i ∈ τ .

In other words, while G|τ can have any internal
structure, the rest of the network treats all nodes
in τ equally (see Figure 19A). By abuse of no-
tation, we sometimes say that the corresponding
subset of vertices τ ⊆ [n] is simply-embedded in
G.

Figure 19: Simply-embedded subgraphs.

We allow τ = [n] as a trivial case, meaning
that G is simply-embedded in itself. At the other
extreme, all singletons τ = {i} and the empty set
τ = ∅ are simply-embedded in G, also for trivial
reasons. Note that a subset of a simply-embedded
set, ω ⊂ τ , need not be simply-embedded. This is
because nodes in τ \ ω may not treat those in ω
equally.
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Now let’s consider the CTLN equations for
neurons in a simply-embedded subgraph G|τ , for
τ ⊂ [n]. For each i ∈ τ , the equations for the
dynamics can be rewritten as:

dxi
dt

= −xi +

∑
j∈τ

Wijxj +
∑
k 6∈τ

Wikxk + θ


+

,

where the term
∑

k 6∈τ Wikxk is identical for all i ∈
τ . This is because Wik = −1 + ε, if k → i, and
Wik = −1 − δ if k 6→ i; so the fact that k treats
all i ∈ τ equally means that the matrix entries
{Wik}i∈τ are identical for fixed k. We can thus
define a single time-varying input function,

µτ (t) =
∑
k 6∈τ

Wikxk(t) + θ, for i ∈ τ,

that is the same independent of the choice of i ∈ τ .
This gives us:

dxi
dt

= −xi +

∑
j∈τ

Wijxj + µτ (t)


+

, for each i ∈ τ.

In particular, the neurons in τ evolve according
to the dynamics of the local network G|τ in the
presence of a time-varying input µτ (t), in lieu of
the constant θ.

Suppose we have a fixed point x∗ of the full
network G, with support σ ∈ FP(G). At the fixed
point,

µ∗τ =
∑
k 6∈τ

Wikx
∗
k + θ =

∑
k∈σ\τ

Wikx
∗
k + θ,

which is a constant. We can think of this as a new
choice of the CTLN input parameter, θ̃ = µ∗τ , with
the caveat that we may have θ̃ ≤ 0. It follows that
the restriction of the fixed point to τ , x∗τ , must be a
fixed point of subnetworkG|τ . If θ̃ ≤ 0, this will be
the zero fixed point corresponding to ∅ support. If
θ̃ > 0, this fixed point will have nonempty support
σ∩τ ∈ FP(G|τ ). From these observations, we have
the following key lemma (see Figure 19B):

Lemma 5.6. Let G|τ be simply-embedded in G.
Then for any σ ⊆ [n],

σ ∈ FP(G) ⇒ σ ∩ τ ∈ FP(G|τ ) ∪ {∅}.

What happens if we consider more than one
simply-embedded subgraph? Lemma 5.7 shows
that intersections of simply-embedded subgraphs
are also simply-embedded. However, the union of
two simply-embedded subgraphs is only guaran-
teed to be simply-embedded if the intersection is
nonempty. (It is easy to find a counterexample if
the intersection is empty.)

Lemma 5.7. Let τ1, τ2 ⊆ [n] be simply-embedded
in G. Then τ1 ∩ τ2 is simply-embedded in G. If
τ1 ∩ τ2 6= ∅, then τ1 ∪ τ2 is also simply-embedded
in G.

Proof. If τ1 ∩ τ2 = ∅, then the intersection is triv-
ially simply-embedded. Assume τ1 ∩ τ2 6= ∅, and
consider k /∈ τ1 ∩ τ2. If k /∈ τ1, then k treats all
vertices in τ1 equally and must therefore treat all
vertices in τ1 ∩ τ2 equally. By the same logic, if
k /∈ τ2 then it must treat all vertices in τ1 ∩ τ2
equally. It follows that τ1∩ τ2 is simply-embedded
in G.

Next, consider τ1 ∪ τ2 for a pair of subsets
τ1, τ2 such that τ1 ∩ τ2 6= ∅. Let j ∈ τ1 ∩ τ2 and
k /∈ τ1 ∪ τ2. If k → j, then k → i for all i ∈ τ1
since k /∈ τ1; moreover, k → ` for all ` ∈ τ2 since
k /∈ τ2. If, on the other hand, k 6→ j, then by the
same logic k 6→ i for any i ∈ τ1 and k 6→ ` for any
` ∈ τ2. It follows that τ1 ∪ τ2 is simply-embedded
in G.

If we have two simply-embedded subgraphs,
G|τi and G|τj , we know that for any σ ∈ FP(G), σ
must restrict to a fixed point σi = σ∩ τi and σj =
σ ∩ τj in each of those subgraphs. But when can
we glue together such a σi ∈ FP(G|τi) and σj ∈
FP(G|τj ) to produce a larger fixed point support
σi ∪ σj in FP(G|τi∪τj )?

Lemma 5.8 precisely answers this question. It
uses the following notation:

F̂P(G)
def
= FP(G) ∪ {∅}.

Lemma 5.8 (pairwise gluing). Suppose G|τi , G|τj
are simply-embedded in G, and consider σi ∈
F̂P(G|τi) and σj ∈ F̂P(G|τj ) that satisfy σi ∩ τj =
σj ∩ τi (so that σi, σj agree on the overlap τi ∩ τj).
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Then
σi ∪ σj ∈ F̂P(G|τi∪τj )

if and only if one of the following holds:

(i) τi ∩ τj = ∅ and σi, σj ∈ F̂P(G|τi∪τj ), or

(ii) τi ∩ τj = ∅ and σi, σj /∈ F̂P(G|τi∪τj ), or

(iii) τi ∩ τj 6= ∅.

Parts (i-ii) of Lemma 5.8 are essentially the
content of [CGM19a, Theorem 14]. Part (iii) can
also be proven with similar arguments.

5.5. Elementary graph rules

In this section we collect a set of elementary
graph rules from which all other graph rules can
be derived. The first two elementary rules arise
from general arguments about TLN fixed points
stemming from the hyperplane arrangement pic-
ture. They hold for all competitive/inhibition-
dominated nondegenerate TLNs, as does Elem
Rule 3 (aka Rule 8). The last three elementary
graph rules are specific to CTLNs, and recap re-
sults from the previous three subsections. As
usual, G is a graph on n nodes and FP(G) is the
set of fixed points supports.

There are six elementary graph rules:

Elem Rule 1 (unique supports): For a given G,
there is at most one fixed point per support
σ ⊆ [n]. The fixed points can therefore be
labeled by the elements of FP(G).

Elem Rule 2 (restriction/lifting): Let σ ⊆ [n].
Then

σ ∈ FP(G) ⇔ σ ∈ FP(G|σ) and

σ ∈ FP(G|σ∪k) for all k /∈ σ.

Moreover, whether σ ∈ FP(G|σ) survives to
σ ∈ FP(G|σ∪k) depends only on the outgoing
edges i → k for i ∈ σ, not on the backward
edges k → i.

Elem Rule 3 (parity): The total number of fixed
points, |FP(G)|, is always odd.

Elem Rule 4 (uniform in-degree): If G|σ has uni-
form in-degree d, then

(a) σ ∈ FP(G|σ), and

(b) σ ∈ FP(G|σ∪k) ⇔ dk ≤ d in G|σ∪k.

In particular, σ ∈ FP(G) ⇔ there does not
exist k /∈ σ that receives more than d edges
from σ.

Elem Rule 5 (domination): Suppose k graphi-
cally dominates j with respect to σ.

(a) (inside-in) If j, k ∈ σ, then σ /∈ FP(G|σ)
and thus σ /∈ FP(G).

(b) (outside-in) If j ∈ σ, k /∈ σ, then
σ /∈ FP(G|σ∪k) and thus σ /∈ FP(G).

(c) (inside-out) If k ∈ σ, j /∈ σ, then
σ ∈ FP(G|σ) ⇒ σ ∈ FP(G|σ∪j).

(d) (outside-out) If j, k 6∈ σ, then
σ ∈ FP(G|σ∪k) ⇒ σ ∈ FP(G|σ∪j).

Elem Rule 6 (simply-embedded): Suppose that
G|τi , G|τj are simply-embedded in G, and re-

call the notation F̂P(G) = FP(G) ∪ {∅}.
We have the following restriction and gluing
rules:

(a) (restriction) σ ∈ FP(G) ⇒ σ ∩ τi ∈
F̂P(G|τi).

(b) (pairwise gluing) If σi ∈ F̂P(G|τi), σj ∈
F̂P(G|τj ), and σi ∩ τj = σj ∩ τi (so that
σi, σj agree on the overlap τi ∩ τj), then

σi ∪ σj ∈ F̂P(G|τi∪τj ) if and only if one
of the following holds:

i. τi ∩ τj = ∅ and σi, σj ∈ F̂P(G|τi∪τj ),
ii. τi ∩ τj = ∅ and σi, σj /∈ F̂P(G|τi∪τj ),
iii. τi ∩ τj 6= ∅.
Moreover, if τi ∩ τj 6= ∅, we are also
guaranteed that G|τi∪τj and G|τi∩τj are
simply-embedded in G. Thus, σi ∩ σj ∈
F̂P(G|τi∩τj ). If, additionally, σi ∩ σj 6=
τi ∩ τj , then σi, σj ∈ F̂P(G|τi∪τj ).

(c) (lifting) If {τ1, . . . , τN} is a simply-
embedded cover of G and σ ∩ τi ∈
FP(G|τi) for each i ∈ [N ], then

σ ∈ FP(G) ⇔ σ ∈ FP(G|σ).
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Figure 20: Elementary Rule 6. (A) Sets τi, τj are from a simply-embedded cover of G. If σ ∈ FP(G), then σ ∩ τj ∈
F̂P(G|τj ), per Elem Rule 6(a). Note that we also have σ∩τi ∈ F̂P(G|τi), since σ∩τi = ∅ is included in F̂P(G|τi). (B) Two

sets, σi ∈ F̂P(G|τi) and σj ∈ F̂P(G|τj ), that agree on the nonempty overlap τi ∩ τj . We thus have the pairwise gluing,

σi∪σj ∈ F̂P(G|τi∪τj ), per Elem Rule 6(b)iii. (C) When τi∩τj = ∅, we obtain pairwise gluing σi∪σj ∈ F̂P(G|τi∪τj ) if either

σi, σj both survive to be elements of F̂P(G|τi∪τj ), per Elem Rule 6(b)i, or if they both die so that σi, σj /∈ F̂P(G|τi∪τj ),
per Elem Rule 6(b)ii. (D) A concrete example of Elem Rule 6(b)i-ii at work. We can fully determine FP(G) in this case,
via pairwise gluing. (E) A concrete example of Elem Rule 6(b)iii at work. Note that this graph is the same as the core
motif 4-ufd in Figure 12. (F) Another example where FP(G) can be fully determined using Elem Rule 6(b)iii.

Elem Rule 6 is illustrated in Figure 20. It col-
lects several results related to simply-embedded
graphs. Elem Rule 6(a) is the same as Lemma 5.6,
while Elem Rule 6(b) is given by Lemmas 5.7
and 5.8. Note that this rule is valid even if σi
or σj is empty. Elem Rule 6(c) applies to simply-
embedded covers of G, a notion we will define in
the next section (see Definition 6.1, below). The
forward direction, σ ∈ FP(G) ⇒ σ ∈ FP(G|σ),
follows from Elem Rule 2. The backwards direc-
tion is the content of [CGM19a, Lemma 8].

6. Gluing rules

So far we have seen a variety of graph rules and
the elementary graph rules from which they are
derived. These rules allow us to rule in and rule
out potential fixed points in FP(G) from purely
graph-theoretic considerations. In this section, we
consider networks whose graph G is composed of
smaller induced subgraphs, G|τi , for i ∈ [N ] =
{1, . . . , N}. What is the relationship between
FP(G) and the fixed points of the components,
FP(G|τi)?

It turns out we can obtain nice results if the
induced subgraphs G|τi are all simply-embedded
in G. In this case, we say that G has a simply-

embedded cover.

Definition 6.1 (simply-embedded covers). We
say that U = {τ1, . . . , τN} is a simply-embedded
cover of G if each τi is simply-embedded in G, and
for every vertex j ∈ [n], there exists an i ∈ [N ]
such that j ∈ τi. In other words, the τi’s are a
vertex cover of G. If the τi’s are all disjoint, we
say that U is a simply-embedded partition of G.

Every graph G has a trivial simply-embedded
cover, with N = n, obtained by taking τi = {i}
for each i ∈ [n]. This is also a simply-embedded
partition. At the other extreme, since the full set
of vertices [n] is a simply-embedded set, we also
have the trivial cover with N = 1 and τ1 = [n].
These covers, however, do not yield useful in-
formation about FP(G). In contrast, nontrivial
simply-embedded covers can provide strong con-
straints on, and in some cases fully determine, the
set of fixed points FP(G). Some of these con-
straints can be described via gluing rules, which
we explain below.

In the case that G has a simply-embedded
cover, Lemma 5.6 tells us that all “global” fixed
point supports in FP(G) must be unions of “local”
fixed point supports in the FP(G|τi), since every
σ ∈ FP(G) restricts to σ ∩ τi ∈ FP(G|τi) ∪ {∅}.
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But what about the other direction?

Question 4. When does a collection of local
fixed point supports {σi}, with each nonempty
σi ∈ FP(G|τi), glue together to form a global fixed
point support σ = ∪σi ∈ FP(G)?

To answer this question, we develop some no-
tions inspired by sheaf theory. For a graph G
on n nodes, with a simply-embedded cover U =
{τ1, . . . , τN}, we define the gluing complex as:

FG(U)
def
= {σ = ∪iσi | σ 6= ∅, σi ∈ FP(G|τi) ∪ {∅},

and σi ∩ τj = σj ∩ τi for all i, j ∈ [N ]}.

In other words, FG(U) consists of all σ ⊆ [n]
that can be obtained by gluing together local fixed
point supports σi ∈ FP(G|τi). Note that in order
to guarantee that σi = σ∩τi for each i, it is neces-
sary that the σi’s agree on overlaps τi ∩ τj (hence
the last requirement). This means that FG(U) is
equivalent to:

FG(U) = {σ 6= ∅ | σ ∩ τi ∈ F̂P(G|τi) ∀ τi ∈ U},

using the notation F̂P(G|τi) = FP(G|τi) ∪ {∅}.
It will also be useful to consider the case where

σ∩ τi is not allowed to be empty for any i. In this
case, we define

F∗G(U)
def
= {σ ⊆ [n] | σ ∩ τi ∈ FP(G|τi) ∀ τi ∈ U}.

Translating Lemma 5.6 into the new notation
yields the following:

Lemma 6.2. A CTLN with graph G and simply-
embedded cover U satisfies

FP(G) ⊆ FG(U).

The central question addressed by gluing rules
(Question 4) thus translates to: What elements of
FG(U) are actually in FP(G)?

Some examples. Before delving into this ques-
tion, we make a few observations. First, note that
although FG(U) is never empty (it must contain
FP(G)), the set F∗G(U) may be empty.

For example, in Figure 21A, F∗G(U) = ∅, be-
cause the only option for σ ∩ τ1 is {123}, and this

would imply 3 ∈ σ∩τ2; but there is no such option
in FP(G|τ2). On the other hand, if we are allowed
σ ∩ τi = ∅, we can choose σ = {4} and satisfy

both σ ∩ τ1 ∈ F̂P(G|τ1) and σ ∩ τ2 ∈ F̂P(G|τ2).
In fact, this is the only such choice and there-
fore FG(U) = {4}. Since |FP(G)| ≥ 1, it follows
from Lemma 6.2 that FP(G) = {4}. In this case,
FP(G) = FG(U).

Figure 21: Two networks with simply-embedded covers.

Figure 21B displays another graph, G, that
has a simply-embedded cover U with three com-
ponents, τ1, τ2, and τ3. Each set of local fixed
point supports, FP(G|τi) (shown at the bottom of
Figure 21B), can easily be computed using graph
rules. Applying the definitions, we obtain:

F∗G(U) = {12346, 123456},
FG(U) = {12346, 123456, 1234, 12345, 56, 5, 6}.

Since FP(G) ⊆ FG(U), this narrows down the list
of candidate fixed point supports in FP(G). Us-
ing Elem Rule 5 (domination), we can eliminate
supports 56 and 5, since 6 dominates 5 with re-
spect to every σ ⊆ [n]. On the other hand, Elem
Rule 4 (uniform in-degree) allows us to verify that
1234, 12345, and 123456 are all fixed point sup-
ports of G, while Rule 1 and Rule 6 (sinks) tell
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us that 6, 12346 ∈ FP(G). We can thus conclude
that FP(G) = {12346, 123456, 1234, 12345, 6} (
FG(U).

Note that for both graphs in Figure 21, we
have F∗G(U) ⊆ FP(G) ⊆ FG(U). While the second
containment is guaranteed by Lemma 6.2, the first
one need not hold in general.

As mentioned above, the central gluing ques-
tion is to identify what elements of FG(U) are
in FP(G). Our strategy to address this question
will be to identify architectures where we can it-
erate the pairwise gluing rule, Lemma 5.8 (a.k.a.
Elem Rule 6(b)). Iteration is possible in a simply-
embedded cover U = {τi} provided the unions at
each step, τ1 ∪ τ2 ∪ · · · ∪ τ`, are themselves simply-
embedded (this may depend on the order). Fortu-
nately, this is the case for several types of natural
constructions, including connected unions, disjoint
unions, clique unions, and linear chains, which we
consider next. Finally, we will examine the case of
cyclic unions, where pairwise gluing rules cannot
be iterated, but for which we find an equally clean
characterization of FP(G). All five architectures
result in theorems, which we call gluing rules, that
are summarized in Table 2.

6.1. Connected unions

Recall that the nerve of a cover U = {τi}Ni=1 is the
simplicial complex:

N (U)
def
= {α ⊆ [N ] |

⋂
i∈α

τi 6= ∅}.

The nerve keeps track of the intersection data of
the sets in the cover. We say that a vertex cover
U = {τi}Ni=1 of G is connected if its nerve is a con-
nected simplicial complex. This means one can
“walk” from any τi to any other τj through a se-
quence of steps between τi’s that overlap. (Note
that a connected nerve does not imply a connected
G, or vice versa.)

Any graph G admits vertex covers that are
connected. Having a connected cover that is also
simply-embedded, however, is quite restrictive.
We call such architectures connected unions:

Definition 6.3. A graph G is a connected union
of induced subgraphs {G|τi} if {τ1, . . . , τN} is a

simply-embedded cover of G that is also con-
nected.

If G has a connected simply-embedded cover,
then without loss of generality we can enumerate
the sets τ1, . . . , τN in such a way that each partial
union τ1 ∪ τ2 ∪ · · · ∪ τ` is also simply-embedded
in G, by ensuring that τ` ∩ (τ1 ∪ · · · ∪ τ`−1) 6= ∅
for each ` (see Lemma 5.7). This allows us to
iterate the pairwise gluing rule, Elem Rule 6(b)iii.
In fact, by analyzing the different cases with the
σi empty or nonempty, we can determine that all
gluings of compatible fixed points supports {σi}
are realized in FP(G). This yields our first gluing
rule theorem:

Theorem 6.4. If G is a connected union of sub-
graphs {G|τi}Ni=1, with U = {τi}Ni=1, then

FP(G) = FG(U).

It is easy to check that this theorem exactly
predicts FP(G) for the graphs in Figure 20E,F and
Figure 21A.

Example. To see the power of Theorem 6.4,
consider the graph G on n = 8 nodes in Fig-
ure 22. G is a rather complicated graph, but it
has a connected, simply-embedded cover {τ1 =
123, τ2 = 345, τ3 = 5678} with subgraphs G|τi
given in Figure 22A. Note that for this graph,
the simply-embedded requirement automatically
determines all additional edges in G. For exam-
ple, since 2→ 3 in G|τ1 , and 3 ∈ τ2, we must also
have 2 → 4, 5. In contrast, 1 6→ 3 in G|τ1 , and
hence we must have 1 6→ 4 and 1 6→ 5.

Using simple graph rules, it is easy to com-
pute FP(G|τ1) = {123}, FP(G|τ2) = {34, 5, 345},
and FP(G|τ3) = {567, 678, 5678}, as these are
small graphs. It would be much more difficult
to compute the full network’s FP(G) in this way.
However, because G is a connected union, Theo-
rem 6.4 tells us that FP(G) = FG(U). By simply
checking compatibility on overlaps of the possible
σi = σ ∩ τi ∈ FP(G|τi), we can easily compute:

FP(G) = FG(U) = {1234, 1234678, 1234567,

12345678, 567, 5678, 678}.
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Figure 22: Connected union example. (A) Component subgraphs and their fixed point supports. (B) The full network
G, with FP(G) computed using Theorem 6.4. The minimal fixed point supports, 1234, 567, and 678, all correspond to
core motifs. Vertices are colored to match the rate curves in C. (C) Several solutions to a CTLN with graph G and
parameters ε = 0.51, δ = 1.76, and θ = 1. The top three panels show that initial conditions near each of the minimal
(core) fixed points produce solutions x(t) that fall into corresponding attractors. The bottom panel shows the solution
for an initial condition near the full-support fixed point. Interestingly, even though the initial conditions for x1, x2, x3
and x4 are lower than those of the other nodes, the solution quickly converges to the attractor corresponding to the core
motif G|1234 (same as in the top panel).

Note that the minimal fixed point supports,
1234, 567, and 678, are all core motifs: G|1234 is a
4-ufd graph, while the others are 3-cycles. More-
over, they each have corresponding attractors, as
predicted from our previous observations about
core motifs [PMMC22]. The attractors are shown
in Figure 22C.

6.2. Disjoint unions, clique unions, cyclic
unions, and linear chains

Theorem 6.4 gave us a nice gluing rule in the case
where G has a connected simply-embedded cover.
At the other extreme are simply-embedded parti-
tions. If U = {τi}Ni=1 is a simply-embedded parti-
tion, then all τi’s are disjoint and the nerve N (U)
is completely disconnected, consisting of the iso-
lated vertices 1, . . . , N .

The following graph constructions all arise
from simply-embedded partitions.

Definition 6.5. Consider a graph G with induced
subgraphs {G|τi} corresponding to a vertex parti-
tion U = {τ1, . . . , τN}. Then

– G is a disjoint union if there are no edges be-
tween τi and τj for i 6= j. (See Figure 23A.)

– G is a clique union if it contains all possible

edges between τi and τj for i 6= j. (See Fig-
ure 23B.)

– G is a linear chain if it contains all possible
edges from τi to τi+1, for i = 1, . . . , N − 1, and
no other edges between distinct τi and τj . (See
Figure 23C.)

– G is a cyclic union if it contains all possible
edges from τi to τi+1, for i = 1, . . . , N − 1, as
well as all possible edges from τN to τ1, but no
other edges between distinct components τi, τj .
(See Figure 23D.)

Note that in each of these cases, U is a simply-
embedded partition of G.

Since the simply-embedded subgraphs in a
partition are all disjoint, Lemma 5.8(i-ii) applies.
Consequently, fixed point supports σi ∈ FP(G|τi)
and σj ∈ FP(G|τj ) will glue together if and only if
either σi and σj both survive to yield fixed points
in FP(G), or neither survives. For both disjoint
unions and clique unions, it is easy to see that all
larger unions of the form τ1∪τ2∪· · ·∪τ` are them-
selves simply-embedded. We can thus iteratively
use the pairwise gluing Lemma 5.8. For disjoint
unions, Lemma 5.8(i) applies, since every σi ∈
FP(G|τi) survives in G. This yields our first gluing

theorem. Recall that F̂P(G) = FP(G) ∪ {∅}.
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Figure 23: Disjoint unions, clique unions, cyclic unions, and linear chains. In each architecture, the {τi} form a
simply-embedded partition of G. Thick edges between components indicate directed edges between every pair of nodes
in the components.

s-e architecture fixed point supports |FP(G)| theorem

connected union FP(G) = FG(U) depends on overlaps Thm 6.4

disjoint union FP(G) = FG(U)
∏N
i=1(|FP(G|τi)|+ 1)− 1 Thm 6.6

= {∪i σi | σi ∈ F̂P(G|τi) ∀i} \ {∅}

clique union FP(G) = F∗G(U)
∏N
i=1 |FP(G|τi)| Thm 6.7

= {∪i σi | σi ∈ FP(G|τi) ∀i ∈ [N ]}

linear chain FP(G) = FP(G|τN ) |FP(G|τN )| Thm 6.8

cyclic union FP(G) = F∗G(U)
∏N
i=1 |FP(G|τi)| Thm 6.7

= {∪i σi | σi ∈ FP(G|τi) ∀i ∈ [N ]}

Table 2: Summary of gluing rules. For each simply-embedded architecture, FP(G) is given in
terms of the FP(G|τi)’s for component subgraphs.

Theorem 6.6. [CGM19a, Theorem 11] If G is a
disjoint union of subgraphs {G|τi}Ni=1, with U =
{τi}Ni=1, then

FP(G) = FG(U)

= {∪Ni=1σi | σi ∈ F̂P(G|τi) ∀ i ∈ [N ]} \ {∅}.

Note that this looks identical to the result for
connected unions, Theorem 6.4. One difference
is that compatibility of σi’s need not be checked,
since the τi’s are disjoint, so FG(U) is particularly
easy to compute. In this case the size of FP(G)
is also the maximum possible for a graph with a
simply-embedded cover U :

|FP(G)| =
N∏
i=1

(|FP(G|τi)|+ 1)− 1.

On the other hand, for clique unions, we must
apply Lemma 5.8(ii), which shows that only glu-
ings involving a nonempty σi from each compo-
nent are allowed. Hence FP(G) = F∗G(U). Inter-
estingly, the same result holds for cyclic unions,
but the proof is different because the simply-
embedded structure does not get preserved under
unions, and hence Lemma 5.8 cannot be iterated.
These results are combined in the next theorem.

Theorem 6.7. [CGM19a, Theorems 12 and 13] If
G is a clique union or a cyclic union of subgraphs
{G|τi}Ni=1, with U = {τi}Ni=1, then

FP(G) = F∗G(U)

= {∪Ni=1σi | σi ∈ FP(G|τi) ∀ i ∈ [N ]}.

In this case, |FP(G)| =
∏N
i=1 |FP(G|τi)|.

Finally, we consider linear chain architectures.
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In the case of a linear chain (Figure 23C), the glu-
ing sequence must respect the ordering τ1, . . . , τN
in order to guarantee that the unions τ1∪τ2∪· · ·∪τ`
are all simply-embedded. (In the case of disjoint
and clique unions, the order didn’t matter.) Now
consider the first pairwise gluing, with τ1 and
τ2. Each σ1 ∈ FP(G|τ1) has a target in τ2, and
hence does not survive to FP(G|τ1∪τ2) (by Rule
5(ii)). On the other hand, any σ2 ∈ FP(G|τ2)
has no outgoing edges to τ1, and is thus guar-
anteed to survive. Elem Rule 6(b) thus tells us
that σ1 ∪ σ2 /∈ FP(G|τ1∪τ2) unless σ1 = ∅. There-
fore, FP(G|τ1∪τ2) = FP(G|τ2). Iterating this pro-
cedure, adding the next τi at each step, we see
that FP(G|τ1∪···∪τ`) = FP(G|τ`). In the end, we
obtain our fourth gluing theorem:

Theorem 6.8. [PLACM22] If G is a linear chain
of subgraphs {G|τi}Ni=1, then

FP(G) = FP(G|τN ).

Clearly, |FP(G)| = |FP(G|τN )| in this case.
Table 2 summarizes the gluing rules for con-

nected unions, disjoint unions, clique unions,
cyclic unions, and linear chains.

6.3. Applications of gluing rules to core motifs

Using the above results, it is interesting to re-
visit the subject of core motifs. Recall that core
motifs of CTLNs are subgraphs G|σ that sup-
port a unique fixed point, which has full-support:
FP(G|σ) = {σ}. We denote the set of surviving
core motifs by

FPcore(G)
def
= {σ ∈ FP(G) | G|σ is a core motif of G}.

For small CTLNs, we have seen that core
motifs are predictive of a network’s attractors
[PMMC22]. We also saw this in Figure 22, with
attractors corresponding to the core motifs in a
CTLN for a connected union.

What can gluing rules tell us about core mo-
tifs? Consider the architectures in Table 2. In the
case of disjoint unions, we know that we can never
obtain a core motif, since |FP(G)| = |FG(U)| ≥ 3
whenever there is more than one component sub-
graph. In the case of connected unions, however,

we have a nice result in the situation where all
components τi are core motifs. In this case, the
additional compatibility requirement on overlaps
forces FP(G) = FG(U) = {[n]}.

Corollary 6.9. If G is a connected union of core
motifs, then G is a core motif.

Proof. Let G|τ1 , . . . , G|τN be the component core
motifs for the connected union G, a graph on n
nodes. Since U = {τi} is a connected cover, and
each component has FP(G|τi) = {τi}, the only
possible σ ∈ FG(U) arises from taking σi = τi
in each component, so that σ = [n]. (By com-
patibility, taking an empty set in any compo-
nent forces choosing an empty set in all compo-
nents, yielding σ = ∪σi = ∅, which is not allowed
in FG(U).) Applying Theorem 6.4, we see that
FP(G) = FG(U) = {[n]}. Hence, G is a core mo-
tif.

As of this writing, we have no good reason to
believe the converse is true. However, we have yet
to find a counterexample.

In the case of clique unions and cyclic unions,
however, FP(G) = F∗G(U), and gluing in empty
sets is again not allowed on components. In these
cases, we obtain a similar result, and the converse
is also true.

Corollary 6.10. Let G be a clique union or a
cyclic union of components τ1, . . . , τN . Then

FPcore(G) = {∪Ni=1σi | σi ∈ FPcore(G|τi)}.

In particular, G is a core motif if and only if every
G|τi is a core motif.

Proof. We will prove the second statement. The
expression for FPcore(G) easily follows from this
together with Elem Rule 6(c). Let G be a clique
union or a cyclic union for a simply-embedded
partition U = {τi}. Theorem 6.7 tells us that
FP(G) = F∗G(U). Observe that any σ ∈ F∗G(U)
must have nonempty σi = σ ∩ τi ∈ FP(G|τi) for
each i. (⇐) If each G|τi is a core motif, it follows
that σi = τi for each i, and hence FP(G) = {[n]}.
(⇒) If the component graphs are not all core, then
FP(G) will necessarily have more than one fixed
point and G cannot be core.
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Going back to Figure 12, we can now see
that all core motifs up to size n = 4 are either
clique unions, cyclic unions, or connected unions
of smaller core motifs. For example, the 4-cycu
graph is the cyclic union of a singleton (node 1),
a 2-clique (nodes 2 and 3), and another singleton
(node 4). The fusion 3-cycle is a clique union of
a 3-cycle and a singleton. Finally, the 4-ufd is the
connected union of a 3-cycle and a 2-clique. Infi-
nite families of core motifs can be generated in this
way, each having their own particular attractors.

6.4. Modeling with cyclic unions

The power of graph rules is that they enable us to
reason mathematically about the graph of a CTLN
and make surprisingly accurate predictions about
the dynamics. This is particularly true for cyclic
unions, where the dynamics consistently appear
to traverse the components in cyclic order. Con-
sequently, these architectures are useful for mod-
eling a variety of phenomena that involve sequen-
tial attractors. This includes the storage and re-
trieval of sequential memories, as well as CPGs
responsible for rhythmic activity, such as locomo-
tion [MB01,YMSL05].

Recall that the attractors of a network tend
to correspond to core motifs in FPcore(G). Using
Corollary 6.10, we can easily engineer cyclic unions
that have multiple sequential attractors. For ex-
ample, consider the cyclic union in Figure 24A,
with FPcore(G) comprised of all cycles of length
5 that contain exactly one node per component.
For parameters ε = 0.75, δ = 4, the CTLN yields
a limit cycle (Figure 24B), corresponding to one
such core motif, with sequential firing of a node
from each component. By symmetry, there must
be an equivalent limit cycle for every choice of 5
nodes, one from each layer, and thus the network is
guaranteed to have m5 limit cycles. Note that this
network architecture, increased to 7 layers, could
serve as a mechanism for storing phone numbers
in working memory (m = 10 for digits 0− 9).

As another application of cyclic unions, con-
sider the graph in Figure 25A which produces the
quadruped gait ‘bound’ (similar to gallop), where
we have associated each of the four colored nodes
with a leg of the animal. Notice that the clique

Figure 24: The phone number network. (A) A cyclic
union with m neurons per layer (component), and all m2

feedforward connections from one layer to the next. (B) A
limit cycle for the corresponding CTLN (with parameters
ε = 0.75, δ = 4).

between pairs of legs ensures that those nodes co-
fire, and the cyclic union structure guarantees that
the activity flows forward cyclically. A similar net-
work was created for the ‘trot’ gait, with appro-
priate pairs of legs joined by cliques.

Figure 25: A Central Pattern Generator circuit for
quadruped motion. (A) (Left) A cyclic union architec-
ture on 6 nodes that produces the ‘bound’ gait. (Right)
The limit cycle corresponding to the bound gait. (B) The
graph on 8 nodes is formed from merging together architec-
tures for the individual gaits, ‘bound’ and ‘trot’. Note that
the positions of the two hind legs (LH, RH) are flipped for
ease of drawing the graph.

Figure 25B shows a network in which both the
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‘bound’ and ‘trot’ gaits can coexist, with the net-
work selecting one pattern (limit cycle) over the
other based solely on initial conditions. This net-
work was produced by essentially overlaying the
two architectures that would produce the desired
gaits, identifying the two graphs along the nodes
corresponding to each leg. Notice that within this
larger network, the induced subgraphs for each
gait are no longer perfect cyclic unions (since they
include additional edges between pairs of legs),
and are no longer core motifs. And yet the com-
bined network still produces limit cycles that are
qualitatively similar to those of the isolated cyclic
unions for each gait. It is an open question when
this type of merging procedure for cyclic unions
(or other types of subnetworks) will preserve the
original limit cycles within the larger network.

7. Conclusions

Recurrent network models such as TLNs have his-
torically played an important role in theoretical
neuroscience; they give mathematical grounding
to key ideas about neural dynamics and connec-
tivity, and provide concrete examples of networks
that encode multiple attractors. These attractors
represent the possible responses, e.g. stored mem-
ory patterns, of the network.

In the case of CTLNs, we have been able to
prove a variety of results, such as graph rules,
about the fixed point supports FP(G) – yield-
ing valuable insights into the attractor dynam-
ics. Many of these results can be extended be-
yond CTLNs to more general families of TLNs,
and potentially to other threshold nonlinearities.
The reason lies in the combinatorial geometry of
the hyperplane arrangements. In addition to the
arrangements discussed in Section 2, there are
closely related hyperplane arrangements given by
the nullclines of TLNs, defined by dxi/dt = 0 for
each i. It is easy to see that fixed points corre-
spond to intersections of nullclines, and thus the
elements of FP(W, b) are completely determined
by the combinatorial geometry of the nullcline
arrangement. Intuitively, the combinatorial ge-
ometry of such an arrangement is preserved un-
der small perturbations of W and b. This al-
lows us to extend CTLN results and study how

FP(W, b) changes as we vary the TLN parameters
Wij and bi. These ideas, including connections
to oriented matroids, were further developed in
[CLM20].

In addition to gluing rules, we have also stud-
ied graphs with simply-embedded covers and re-
lated structures in order to predict the sequential
attractors of a network [PLACM22]. This has led
us to introduce the notions of directional graphs
and directional covers, allowing us to generalize
cyclic unions and DAGs. In particular, we were
able to prove various nerve theorems for CTLNs,
wherein the dynamics of a network with a direc-
tional cover can be described via the dynamics of
a reduced network defined on the nerve [SEP+22].

Finally, although the theory of TLNs and
CTLNs has progressed significantly in recent
years, many open questions remain. We end with
a partial list.

7.1. Open Questions

We group our open questions into four categories.

The first category concerns the bifurcation theory
of TLNs, focusing on changes in FP(W, b) as one
varies W or b:

1. Recall the definition, in equation (4), of
FP(W, b) for an arbitrary TLN (W, b). How
does the set of fixed point supports change as
we vary W or b? What are the possible bi-
furcations? For example, what pairs of sup-
ports, {σ, τ}, can disappear or co-appear at
the same time?

This first question is very general. The next
two questions focus on special cases where
partial progress has already been made.

2. If we look beyond CTLNs, but constrain the
W matrix to respect a given architecture G,
how does this constrain the possibilities for
FP(W, b)?

In the case of constant bi = θ across neurons,
we have identified robust motifs, graphs for
which FP(W, b) is invariant across all com-
patible choices of W [CLM19]. What graphs
allow only a few possibilities for FP(W, b)?
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What are the most flexible graphs for which
FP(W, b) can vary the most?

3. What happens if we fix W and vary b ∈ Rn?
What features of the connectivity matrix W
control the repertoire of possible fixed point
regimes, FP(W, b)? What W matrices allow
a core motif region, for which FP(W, b) =
{[n]}? And how do the dynamic attractors
of a network change as we transition between
different regions in b-space?

The second category concerns the relationship be-
tween TLNs and the geometry of the associated
hyperplane arrangements:

4. To what extent does the hyperplane arrange-
ment of a TLN, as described in Section 2,
determine its dynamics? What are all the
(W, b) choices that have the same hyperplane
arrangement? Same nullcline arrangement?

5. What happens if we change the nonlinearity
in equation (1) from ϕ(y) = [y]+ to a sigmoid
function, a threshold power-law nonlinearity
[MT02], or something else? Can we adapt the
proofs and obtain similar results for FP(W, b)
and FP(G) in these cases?

Note that the combinatorial geometry ap-
proach in [CLM20] suggests that the results
should not depend too heavily on the details
of the nonlinearity. Instead, it is the resulting
arrangement of nullclines that is essential for
determining the fixed points.

The third category concerns graph rules, core mo-
tifs, and the corresponding attractors:

6. What other graph rules or gluing rules follow
from the elementary graph rules? We believe
our current list is far from exhaustive.

7. Classify all core motifs for CTLNs. We al-
ready have a classification for graphs up to
size n = 5 [CMP+20], but beyond this lit-
tle is known. Note that gluing rules allow
us to construct infinite families of core mo-
tifs from gluing together smaller component
cores (see Section 6.3). Are there other fam-
ilies of core motifs that cannot be obtained

via gluing rules? What can we say about the
corresponding attractors?

8. Computational evidence suggests a strong
correspondence between core motifs and the
attractors of a network, at least in the case
of small CTLNs [PMMC22, CMP+20]. Can
we make this correspondence precise? Under
what conditions does the correspondence be-
tween surviving core fixed points and attrac-
tors hold?

9. How does symmetry affect the attractors of
a network? The automorphism group of
a graph G naturally acts on an associated
CTLN by permuting the variables, {xi}. This
translates to symmetries of the defining vec-
tor field (2), and a group action on the set
of attractors. The automorphism group can
either fix attractors or permute them. More-
over, a network may also have “surprise sym-
metry,” as in Figure 9, where the attrac-
tors display additional symmetry that was
not present in the original graph G. How do
we make sense of these various phenomena?

Finally, the fourth category collects various con-
jectures about dynamic behaviors that we have
observed in simulations.

10. In [MDIC16, CGM19b] we conjectured that
all stable fixed points of a CTLN correspond
to target-free cliques. While [CGM19b] pro-
vides proofs of this conjecture in special cases,
the general question remains open.

11. The Gaudi attractor from Figure 8 appears
to have constant total population activity. In
other words,

∑5
i=1 xi(t) appears to be con-

stant in numerical experiments, once the tra-
jectory has converged to the attractor. Can
we prove this? For what other (non-static)
TLN/CTLN attractors is the total population
activity conserved?

12. Prove that the “baby chaos” network in Fig-
ure 11D-F is chaotic. I.e., prove that the in-
dividual attractors are chaotic (or strange),
in the same sense as the Lorenz or Rossler
attractors.
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13. A proper source of a graph G is a source node
j that has at least one outgoing edge, j →
k for k 6= j. In numerical experiments, we
have observed that proper sources of CTLNs
always seem to “die” – that is, their activity
xj(t) tends to zero as t → ∞, regardless of
initial conditions. Can we prove this?

Some progress on this question was made in
[Lie22], but the general conjecture remains
open. Note that although the sources Rule
4(i) guarantees that proper sources do not ap-
pear in any fixed point support of FP(G), this
alone does not imply that the activity at such
nodes converges to zero.

14. In our classification of attractors for small
CTLNs, we observed that if two CTLNs with
distinct graphs have the “same” attractor,
as in Figure 14, then this attractor is pre-
served for the entire family of TLNs whose
W matrices linearly interpolate between the
two CTLNs (and have the same constant
bi = θ for all i). In other words, the attrac-
tor persists for all TLNs (Wt, θ) with Wt =
(1− t)W0 + tW1 and t ∈ [0, 1], where W0 and
W1 are the two CTLN connectivity matrices.
(Note that the interpolating networks Wt for
t ∈ (0, 1) are not CTLNs.) Can we prove this?

More generally, we conjecture that if the
same attractor is present for a set of TLNs
(W1, b), . . . , (Wm, b), then it is present for all
TLNs (W, b) with W in the convex hull of the
Wi matrices.
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