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ABSTRACT

A fundamental question in microarray analysis is the
estimation of the number of expressed probes in
different RNA samples. Negative control probes
available in the latest microarray platforms, such
as Illumina whole genome expression BeadChips,
provide a unique opportunity to estimate the
number of expressed probes without setting a
threshold. A novel algorithm was proposed in this
study to estimate the number of expressed probes
in an RNA sample by utilizing these negative
controls to measure background noise. The perfor-
mance of the algorithm was demonstrated by
comparing different generations of Illumina
BeadChips, comparing the set of probes targeting
well-characterized RefSeq NM transcripts with
other probes on the array and comparing pure
samples with heterogenous samples. Furthermore,
hematopoietic stem cells were found to have a
larger transcriptome than progenitor cells. Aire
knockout medullary thymic epithelial cells were
shown to have significantly less expressed probes
than matched wild-type cells.

INTRODUCTION

Statistical analysis of microarray gene expression experi-
ments has so far focused mostly on identifying genes
which are differentially expressed between different condi-
tions (1,2). However, there is an even more fundamental
question which has so far been largely neglected, which is
to detect which transcripts are actually expressed in each
sample. Understanding how the size of the transcriptome

varies with cell type and circumstance is of fundamental
biological interest (3–5). For example, does the
pluripotency of stem cells imply a greater number of
distinct expressed transcripts than in committed cells (3).
There are also technical implications, for example because
most microarray normalization algorithms assume
that different samples express similar numbers of tran-
scripts (6).

Technologies that sequence randomly sampled tran-
scripts from RNA samples provide possibilities to
estimate statistically the size of the transcriptome (7,8).
However, these statistical methods are heavily dependent
on distributional assumptions about how expression
levels vary between transcripts, and have not yet attracted
widespread use. We provide instead a method for
estimating the size of the transcriptome using inexpensive,
readily available microarray data and making relatively
few assumptions. Specifically, we propose an algorithm
to estimate the proportion of probes on a whole-genome
microarray that correspond to transcripts which are
present in the RNA sample hybridized to a particular
array. The only requirement is for a selection of
good-quality negative control probes which are repre-
sentative of the behavior of non-expressed probes.
Throughout this article, we use the shorthand ‘expressed
probe’ to mean a probe corresponding to a transcript
which is expressed in the sample hybridised to that array.

Commercial microarray platforms often provide detec-
tion calls (present/absent) for each probe on an array (9).
For example, Illumina BeadStudio software computes
a detection P-value for each probe on an Illumina
BeadChip, equal to the proportion of negative control
probes which have intensities greater than that probe on
the same array (10). These calls allow a subset of probes to
be selected which are highly likely, based on their
intensities, to be truly expressed. The situation is similar
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for Affymetrix arrays. Affymetrix MAS 5.0 software
computes a present/absent call for each probe-set on an
Affymetrix GeneChip. The present/absent call is made
using a Wilcoxon test for each probe set after estimating
a baseline from the intensities of mismatch probes on the
same array (11). Present/absent calls can be refined using
probe-sequence information (12) even without mismatch
information (13).

A different approach is to judge the presence/absence
for each probe relative to its range of expression in a large
database of expression profiles (14). This approaches
accounts for differences in probe performance, but
makes calls only for probes which have a full range of
expression in the database.

All detection call methods yield an estimate of the pro-
portion of expressed probes, simply by counting the
number of probes called as detected versus those that are
not. However, the approach is skewed toward finding
evidence in favor of expression. The rate of false negatives,
probes which are expressed but are called absent, is not
controlled or estimated. BeadStudio detection calls are
typically relatively stringent, so the false negative rate is
likely to be large (9). MAS 5.0 present calls are less strin-
gent, but the false negative rate is still unknown. Detection
call methods are not generally designed or intended to
call probes that are expressed at low levels.

Our aim is different and more ambitious, to estimate the
proportion of all probes which are expressed, regardless of
how high or low that expression level might be. Rather
than making present/absent calls for individual probes, we
treat the size of the transcriptome as a phenotype in its
own right. Our algorithm is designed to give a consistent
and approximately unbiased estimate of the total number
of expressed probes, without necessarily identifying indi-
vidual probes.

We applied our algorithm to the increasingly popular
Illumina whole-genome expression BeadChips, for which
a set of good-quality negative control probes is available.
We comprehensively tested the efficacy of the algorithm
on a range of different experimental scenarios that could
be expected to produce groups with different trans-
criptome sizes. Initial validation was performed by
comparing the number of expressed probes between chip
generations and for verified coding sequences versus
predicted sequences. These measurements accurately por-
trayed the progress in chip design and sequence annota-
tion. The algorithm also effectively tracked a controlled
increase in transcriptome size, which was achieved by
comparing chips generated from homogenous and
heterogenous populations. Finally, we showed that our
algorithm could identify changes in transcription at the
physiological level by studying differentiation stages of
hemapoietic cells and the regulation of RNA transcript
numbers by the thymic transcription factor AIRE.

MATERIALS AND METHODS

Algorithmic approach

The intensity distribution of regular probes on any partic-
ular array is a mixture of the intensities of probes which

are expressed and those which are not expressed. We can
express this as the mathematical mixture

fregðyÞ ¼ �0 f0ðyÞ þ ð1� �0Þf1ðyÞ

where freg is the overall probability density function of the
intensities of regular probes, f0 the probability density
for non-expressed regular probes, f1 the probability
density for expressed regular probes and p0 the proportion
of regular probes that are not expressed. The aim of this
article is to estimate �0. The corresponding cumulative
distribution function can be similarly written

FregðyÞ ¼ �0F0ðyÞ þ ð1� �0ÞF1ðyÞ: ð1Þ

If the array contains a large number of good-quality
negative control probes, then the empirical distribution
of intensities from these probes will give a good estimate
of F0. Meanwhile, Freg can be readily estimated from the
empirical distribution of regular probe intensities. If we
could also estimate F1(y), for any particular y, then we
could solve (1) for �0.
It is natural to assume that the intensities of expressed

probes are made up of background intensities and signal
intensities, i.e. if y is the intensity of a randomly chosen
expressed probe, then

y ¼ bþ s

where b is the background intensity and s is the signal
intensity (18). Here s is a measure of the expression level
of the probe’s transcript while b represents measurement
error arising from technical sources. It is also natural to
assume that the background intensities follow the same
distribution f0 as that of non-expressed probes.
Therefore, the distributions of expressed and
non-expressed probes are related through the convolution
equation

f1ðyÞ ¼

Z
f0ðbÞ fsðy� bÞdb

or

F1ðyÞ ¼

Z
f0ðbÞFsðy� bÞdb ð2Þ

where fs and Fs are the probability density and cumulative
distribution functions of the signals of expressed probes.
Let b1, . . . , bm be the observed intensities of negative

control probes for one array. Approximating f0 in (2) by
the empirical distribution of the bi gives

F̂1ðyÞ ¼
1

m

Xm
i¼1

Fsðy� biÞ ð3Þ

Now we need an estimator for Fs.
Any plot of microarray intensities shows a very strongly

right skew distribution. It is reasonable to assume that
most transcripts have low levels of expression and that
higher levels of expression are progressively less
common. Therefore, we follow the previous practice of a
number of several highly successful background cor-
rection and normalization methods (18–21) and assume
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that Fs can be adequately modelled by an exponential dis-
tribution. Let y1, . . . , yn be the observed intensities of
regular probes for our array. The mean parameter
E(s)=� of Fs is estimated by

�̂ ¼ �y� �b

where �y and �b are the averages of observed intensities for
regular probes and negative control probes, respectively.
This yields our estimator for p0. For any y we estimate

F̂regðyÞ ¼
#ðyi < yÞ þ #ðyi ¼ yÞ=2

n

and

F̂0ðyÞ ¼
#ðbi < yÞ þ #ðbi ¼ yÞ=2

m

Finally we estimate F1(y) from (3), using the exponential
form for Fs.
This yields an estimate of the proportion of

non-expressed probes as

�̂0ðyÞ ¼
F̂regðyÞ � F̂1ðyÞ

F̂0ðyÞ � F̂1ðyÞ

Any y yields an estimate. In practice, we use

�̂0 ¼ �̂0ðbmedÞ

where bmed is the median of the negative control
intensities.
The estimated expression proportions were found to be

stable around bmed when testing on all negative control
probes (Supplementary Figure S1). All three distribution

function estimators should be accurately estimated for y in
this neighborhood.

Microarray data sets

The data sets used in this study are summarized in Table 1.
Particular attention is given to data sets 2 and 4. For data
set 2, CD45� Ly51� MHCIhi mTECs were isolated from
C57BL/6 Aire+/+ and Aire�/� mice (22). For data set 4,
C57BL/6 mouse hematopoietic stem cells are found in the
Lineage- Sca1+Kit+ (LSK) fraction of bone marrow
tissue (23). Unless otherwise indicated in Table 1, all
data is from in-house experiments conducted by the
authors.

Data input and annotation

All microarray data was read and manipulated using the
Bioconductor R software package limma (24). Probe
annotation files were downloaded from Illumina web site
(http://www.illumina.com).

RESULTS

Negative control intensities

Illumina BeadChips include a set of negative control
probes (10). The negative control probes have randomly
permutated sequences and appear in all our investiga-
tions to be a good representation of the behavior of
non-expressed probes. The number of negative control
probes ranges from 750 to 1600 for different types of
BeadChips (different species and different versions).
Each WG-6 BeadChip encompasses six arrays.

Table 1. Data sets used in this study

ID Platform Number regular
probes

Number negative
controls

Experiment description

1 MouseWG-6 V1.1 46 657 1603 Six cell types: hematopoietic stem cells, CMPs, GMPs, pro DC precursors,
neutrophils and macrophages. Number of arrays per cell type: 4, 2, 1, 3,
1 and 3, respectively.

2 MouseWG-6 V1.1 46 657 1603 Two cell types: wild type and Aire knockout MHCIIhi mTECs. Number of
arrays per cell type: 3.

3 MouseWG-6 V2 45 281 936 Three cell types: pro DC precursors, neutrophils and macrophages. Number
of arrays per cell type: 9, 3 and 3, respectively.

4 MouseWG-6 V2 45 281 936 Four cell types: hematopoietic stem cells, CMPs, GMPs and MEPs.
Number of arrays per cell type: 3.

5 HumanWG-6 V1 47 312 1517 Six conditions: MCF7 and Jurkat samples were mixed at six different
proportions (see Figure 4a). Number of arrays per condition: 2.

6 HumanWG-6 V1 47 312 1517 Four conditions: Universal Human Reference RNA(UHRR) and Human
Brain Reference RNA(HBRR) were mixed at four different proportions
(see Figure 4b). Number of arrays per condition: 5. Published in ref. (15)

7 HumanWG-6 V2 48 687 1374 Six conditions: three subtypes of T lymphocytes taken from two patients
infected with hepatitis C virus. Number of arrays per condition: 1.
Published in ref. (16)

8 HumanHT-12 48 799 759 Twelve samples. Bone marrow from seven malaria-infected and five
uninfected donors. Number of arrays per sample: 1.

9 HumanWG-6 V3 48 803 759 Four cell types: Lin�CD49fhiEpCAM�, Lin�CD49f�EpCAM�,
Lin�CD49f�EpCAM+ and Lin�CD49f+EpCAM+ mammary
subpopulations. Number of arrays per cell type: 3. Published in ref. (17)
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Figure 1 shows the intensity distributions for regular
probes and negative control probes from a data set
using Illumina MouseWG-6 version 2 BeadChips
(Table 1, data set 3). There are 45 281 regular probes
and 936 negative control probes in each array. On every
array, the main body of negative control intensities is
below the median and overlapping the lower quartile of
the negative controls. The negative control probes
consistently track the regular probes in the sense that an
array having high regular probe intensities also has high
negative control probe intensities. This pattern increases
our confidence that the negative control probes provide
an unbiased estimate of the background intensities.
The similar pattern has been observed for other types of
BeadChips.

Our algorithm estimates the proportion of expressed
probes on each array, by comparing the empirical inten-
sity distribution of the negative control probes with that of
the regular probes. A mathematical mixture model is used
to infer the intensity distribution of expressed probes, and
hence to estimate the expressed proportion. In the follow-
ing, we demonstrate the performance on this estimator on
different data sets and on different BeadChip versions.

Expression proportions by platform

Figure 2 shows estimated expression proportions for all
Illumina WG-6 BeadChip platforms. To make this plot,
we used all arrays from all data sets described in Table 1
with a few exceptions. The thymic epithelial cells (data set
2), the reference RNA samples (data set 6) and the
erythrocyte progenitors (from data set 4) were excluded,
so as to make the cell types on the different platforms as

similar as possible. There is a consistent trend to higher
proportions of expressed probes in later versions of both
mouse and human BeadChips, presumably because of
improved probe design in the later platforms. In mouse,
30% v1.1 probes were replaced in v2. In human, 82% of
v1 probes were replaced or removed in v2, and a further
23% of v2 probes were replaced in v3. Our v3 BeadChips
had larger expression proportions than our HT-12
BeadChips, despite having exactly the same set of
probes. This may be because the v3 samples are from
adult stem cells and early progenitors, which have been
found to express more genes than lineage restricted cells
(25,26).
Regardless of platform, far fewer probes were detected

when using BeadStudio’s detection P-values instead of our
estimate (Supplementary Section 2). The BeadStudio
detection calls are presumably less able to detect lowly
expressed probes. The increasing pattern of expression
proportions along the BeadChips versions was also lost
(Supplementary Figure S2).

RefSeq versus non-RefSeq probes

RefSeq NM transcripts from the RefSeq database are
curated mature messenger RNA transcripts that have
verified coding sequences. For each BeadChip type, we
divided the regular probes on the array into RefSeq NM
probes and other probes, using annotation provided by
Illumina. Probes designed to interrogate these transcripts
are naturally more likely to be truly expressed in most
samples, compared with probes designed to interrogate
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Figure 2. Proportions of expressed probes estimated for different
BeadChip types. All data described in Table 1 are included except
for datasets 2 and 6 and the erythrocyte progenitors from data set 4.
For each BeadChip type, the boxes show the minimum, first quartile,
median, second quartile and maximum of estimated expression propor-
tions across all its arrays.
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Figure 1. Intensity distributions for regular probes and negative
control probes. Data from 15 arrays using Illumina MouseWG-6
version 2 was used for this plot. Numbers of regular probes and
negative control probes are 45 281 and 936, respectively on each
array. Intensities are on log2 scale.
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predicted transcripts, and this was confirmed by our data
for every BeadChip type (Figure 3).
Interestingly, the RefSeq expression proportions

were higher for human than for mouse, regardless of
BeadChips version. The difference remained when
estimating the expression proportion at the gene or tran-
script level (Supplementary Section 3). At the gene level
estimation, the median numbers of expressed genes in
HumanWG-6 version 3 and MouseWG-6 version 2 are
14 597 and 9 467, respectively.

Mixture experiments

A microarray experiment in which pure samples are mixed
at different proportions is called a mixture experiment in
this study. The mixed sample, which is a mixture of the
two pure samples, should have a larger proportion of
expressed probes than either of the pure samples because
it includes distinct transcripts from both samples. Two
mixture experiments were examined here: an in-house
mixture experiment and the MAQC experiment (15). In
the in-house mixture experiment, MCF7 and Jurkat
samples were mixed at six different proportions: 100%
versus 0%, 94% versus 6%, 88% versus 12%, 76%
versus 24%, 50% versus 50% and 0% versus 100%
(Data set 5 in Table 1). In the MAQC experiment,
UHRR and HBRR samples were mixed at four different
proportions: 100% versus 0%, 75% versus 25%, 25%
versus 75% and 0% versus 75% (Data set 6 in Table 1).
Estimation of the expression proportion was performed
on RefSeq NM probes.
As expected, almost all the mixed samples have higher

proportions of expressed probes than pure samples in
both our in-house mixture experiment and the MAQC

experiment (Figure 4a and b). It is interesting to see
that MAQC arrays have larger proportions of
expressed probes than arrays in our in-house mixture
experiment and other arrays (RefSeq NM groups) in
this study. This is not surprising because the UHRR
sample consists of RNAs from 10 human cancer cell
lines and therefore includes many more expressed
distinct mRNA transcripts than samples in the ‘usual’
experiments.

The HBRR sample is also found to have a large pro-
portion of expressed probes (73.8%). It was reported that
the proportion of expressed genes in mouse brain was
80% (27). The expression proportion estimation at gene
level reveals that the average proportion of expressed
genes in the HBRR sample was 79.6%, which was very
close to the reported proportion.

The estimated expression proportions for the mixed
samples and pure samples can be used to infer the
numbers of genes expressed commonly and uniquely
in the two samples (see Supplementary Section 4
for details). This showed 56% of RefSeq NM probes to
be expressed in both MCF7 and Jurkat, with
2.4% uniquely expressed in Jurkat and 3.2% in MCF7
(Figure 4c). For the MAQC data, 70% of RefSeq NM
probes were expressed in both UHRR and HBRR, with
3–4% uniquely expressed in each individual source
(Figure 4d).

Hematopoietic stem and progenitor cells

Stem cells are unique in their ability to self renew and
differentiate into mature cells. Recent work suggests that
embryonic stem cells maintain their differentiation poten-
tial through a unique chromatin state, that keeps
lineage-specific genes poised for activation, yet is able to
be permanently shut down as cells were lineage restricted
and the genes would not be required (25,26). This
chromatin structure, termed ‘bivalent domains’, results
in expression for many lineage specific genes at a low
level. Accessibility is lost during lineage restriction,
correlating with a decreased number of expressed genes.
Whether this is true for tissue-specific stem cells is
unknown.

Hematopoietic stem cells (LSKs) are thought to differ-
entiate into lineage restricted progenitors including
common myeloid progenitors (CMPs) and common
lymphoid progenitors (CLPs) (28). CMPs in turn
produce more restricted progenitors including granulocyte
macrophage progenitors (GMPs) and megakaryocyte
erythrocyte progenitors (MEPs) (29) (Figure 5a). It has
been hypothesized that hematopoietic stem cells may
express a wider variety of transcripts than restricted pro-
genitors, although many of these transcripts may be
expressed at low levels (3). Our algorithm shows that
LSK cells do indeed have a higher expression proportion
than the three types of progenitor cells. More generally,
increasing lineage restriction and decreasing pluripotency
is associated with lower expression proportions in cells
further down the family tree (Figure 5b).
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Figure 4. Expression proportion estimation for samples from two mixture experiments. (a) Estimated expression proportions for samples from the
in-house mixture experiment. Jurkat and MCF7 samples were mixed at the proportions of 100:0, 94:6, 88:12, 76:24, 50:50 and 0:100. Error bars are
standard errors (n=2). (b) Estimated expression proportions for samples used in the MAQC project. Universal Human Reference RNA(UHRR)
and Human Brain Reference RNA(HBRR) samples were mixed at the proportions of 100:0, 75:25, 25:75 and 0:100. Error bars are standard errors
(n=5). (c) RefSeq NM probes commonly and exclusively expressed in MCF7 and Jurkat samples. (d) RefSeq NM probes commonly and exclusively
expressed in UHRR and HBRR samples.

Figure 5. Correspondence between hematopoietic stem cell differentiation tree and estimated expression proportions for different cell types.
(a) Hematopoietic stem cells differentiate into different progenitor cells. (b) Estimated proportions of expressed probes for four different cell
types. Error bars are standard errors (n=3).
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Promiscuous expression in the thymus

Effective deletion of autoreactive T cells is essential for
establishing immunological tolerance and preventing
autoimmune disease. Medullary thymic epithelial cells
(mTECs) play a unique role in this process due to their
ability to ‘promiscuously’ express a range of autoantigens
that are normally restricted to peripheral tissues (30,31).
The intrathymic expression of these antigens exposes
thymocytes to the peripheral environment during their
development and facilitates the negative selection of
those cells displaying autoreactive receptors: a mechanism
that has proved important in preventing autoimmunity
against tissue-specific antigens (32,33,34).
The autoimmune regulator, Aire, is a transcription

factor that promotes promiscuous expression in mTECs
and its absence results in a reduction in the intrathymic
expression of many tissue-restricted antigen genes (4,5,35).
At the phenotypic level, AIRE mutations in humans
are responsible for the multi-organ autoimmune
syndrome APS-1 (36,37), which is mimicked in part by
Aire-deficient mouse models (4,22,38).
The estimated proportion of expressed probes for our

wild-type mTEC samples was 0.52 (standard error 0.009,
n=3). As expected, this was greater than for other cell
types using the same platform (Figure 2). In our Aire�/�

mTEC samples, the proportion of expressed probes was
markedly reduced to 0.44 (standard error 0.016, n=3).
The number of genes whose expression is activated by

Aire has been reported to be in the range 200–1200 (4).
This appears to be an underestimate. Our estimation at
the gene level shows that there are 2006 more genes
expressed in the wild type compared with the Aire�/� cells.

DISCUSSION

We have validated our algorithm by showing that it can
track improvements in probe design and annotation.
Newer BeadChips show steadily increasing expression
proportions for the same cell types as probe design is
improved.
Our estimator of proportion expressed has a variety of

potential applications. By examining mixed samples, we
have shown that our estimator can distinguish heteroge-
neous cell samples from pure samples. We were further
able to determine the number of distinct transcripts
uniquely expressed in each of the pure samples. We have
also demonstrated that the estimator can detect
multi-potential gene expression in stem cells, and can
describe promiscuous expression associated with T-cell
deletion in the thymus. The ability to quantify these
effects in terms of numbers of probes, and numbers of
genes, is a marked step forward in understanding these
processes. We give the first quantitative demonstration
that hematopoietic stem cells have a larger expressed
transcriptome than more committed progenitors. In the
thymus we show that twice as many genes are affected
by the regulator Aire as previously reported. In the
future, we plan to apply this technique across a extensive
collection of hematopoietic cell lineages, to describe the
process of differentiation and commitment. Comparisons

across cells in different activated states, such as naive,
memory and effector T cells, is also likely to throw light
on the nature of the molecular response.

The estimator can be applied to subclasses of probes.
The expression proportion computed from the RefSeq
annotated probes alone provides an estimate of the
number of well-characterized messenger RNA transcripts
that are expressed. The expression proportion computed
from the unannotated probes could suggest the existence
of novel messenger RNA transcripts.

The human BeadChips showed higher numbers of
RefSeq genes expressed than mouse BeadChips. This is
not sufficient to conclude that the human transcriptome
is larger than that of mouse, because there may be differ-
ences in RefSeq annotation or probe performance between
the species, and the cell types profiled for the two species
were not identical. Indeed the mouse results in Figure 3
exclude the thymic epithelium cells, which had the highest
expression proportions of any mouse samples. However,
the difference was preserved across all versions of the
BeadChips, and the mouse cell types include hema-
topoitetic stem cells which were expected to have larger
than average transcriptomes. Apart from the universal ref-
erence RNA samples, the human samples with highest
expression proportions were mammary stem cells.

Our expression proportions tend to be much higher
than the proportion of probes called as detected by
Illumina BeadStudio detection calls. This was expected
because detection calls cannot estimate probes with
low-level expression. Even more importantly, our
measure is more stable and predictable across replicate
arrays, cell types and BeadChip versions. This may be
because the detection call P-values rely on an upper tail
statistic of the negative controls, a type of extreme statistic
subject to relatively high variability, whereas our method
uses the entire distribution of the negative controls, with
greatest weight near the median.

The proportion of probes called as expressed by
Illumina detection calls can be varied by choosing the
cutoff P-value higher or lower. The same is true of
Affymetrix present/absent calls. A cutoff P-value of 0.01
underestimates the expression proportion, whereas
Illumina detection calls with P=0.5 give expression pro-
portions which are much too high (data not shown). In
general, there is no P-value cutoff for the detection call
that gives a consistent estimate of the propotion expressed
across all BeadStudio platforms and biological samples,
because the detection call approach does not attempt to
estimate the expression distribution of expressed probes.

Our results have a number of technical implications
relating to microarray normalization and pre-processing.
Most microarray normalization strategies assume that
all the samples have transcriptomes of similar size.
For example, quantile normalization is a well accepted
method which assumes that the overall expression distri-
bution is identical for every sample (6). These normaliza-
tion methods may give unexpected and undesirable results
when applied to samples with markedly different trans-
criptomes. We found that, for MouseWG-6 version 2
BeadChips, expression proportions for different cell
types and samples varied from a minimum of 0.38 to a
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maximum of 0.49, meaning that one sample could have up
to 5000 more expressed probes than another (Figure 2).
Knowing the proportion of expressed probes will be useful
for customizing normalization strategies for different
microarray experiments.

Certain popular background correction algorithms for
microarray data require an estimate of the mean intensity
of expressed probes (18,19,20,21). An estimate of the
expression proportion could refine this estimate.

Filtering out probes which do not express in any con-
dition in a microarray experiment has been demonstrated
to increase the power to detect differentially expressed
genes (39,40). However, lowly expressed probes, including
possibly important genes such as transcription factors,
may be lost if the threshold is set too high. Knowing the
expression proportion for each array gives valuable
guidance regarding the number of probes to filter.

Our algorithm can be readily applied to microarray
platforms other than Illumina, provided that negative
control probes are included that provide a good estimate
of the background intensities. Affymetrix and Agilent
have both included negative control probes into their
latest expression platforms including Affymetrix Mouse
Gene 1.0 ST Array, Agilent Whole Mouse Genome
Oligo 4� 44k Microarray etc.

Our algorithm, utilizing the negative control probes on
the array, adds another string to the bow of microarray
expression analysis. The algorithm is implemented in the
freely available Bioconductor R package limma (24).

SUPPLEMENTARY DATA

Supplementry Data are available at NAR Online.
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