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Abstract

Background

Atelectasis can provoke pulmonary and non-pulmonary complications after general anaes-
thesia. Unfortunately, there is no instrument to estimate atelectasis and prompt changes of
mechanical ventilation during general anaesthesia. Although arterial partial pressure of oxy-
gen (Pa0,) and intrapulmonary shunt have both been suggested to correlate with atelecta-
sis, studies yielded inconsistent results. Therefore, we investigated these correlations.

Methods

Shunt, PaO, and atelectasis were measured in 11 sheep and 23 pigs with otherwise normal
lungs. In pigs, contrasting measurements were available 12 hours after induction of acute
respiratory distress syndrome (ARDS). Atelectasis was calculated by computed tomography
relative to total lung mass (Miota)). We logarithmically transformed PaO, (InPaQ.) to linearize
its relationships with shunt and atelectasis. Data are given as median (interquartile range).

Results

Miotas Was 768 (715-884) g in sheep and 543 (503-583) g in pigs. Atelectasis was 26 (16—
47) % in sheep and 18 (13—-23) % in pigs. PaO, (FiO, = 1.0) was 242 (106—414) mmHg in
sheep and 480 (437-514) mmHg in pigs. Shunt was 39 (29-51) % in sheep and 15 (11-20)
% in pigs. Atelectasis correlated closely with InPaO, (R? = 0.78) and shunt (R% = 0.79) in
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sheep (P-values<0.0001). The correlation of atelectasis with InPaO, (R? = 0.63) and shunt
(R®=0.34) was weaker in pigs, but R? increased to 0.71 for InPaO, and 0.72 for shunt 12
hours after induction of ARDS. In both, sheep and pigs, changes in atelectasis correlated
strongly with corresponding changes in InPaO, and shunt.

Discussion and Conclusion

In lung-healthy sheep, atelectasis correlates closely with InPaO, and shunt, when blood
gases are measured during ventilation with pure oxygen. In lung-healthy pigs, these correla-
tions were significantly weaker, likely because pigs have stronger hypoxic pulmonary vaso-
constriction (HPV) than sheep and humans. Nevertheless, correlations improved also in
pigs after blunting of HPV during ARDS. In humans, the observed relationships may aid in
assessing anaesthesia-related atelectasis.

Introduction

Recently, contradictory results on the effects of lung protective mechanical ventilation with low
tidal volumes, positive end-expiratory pressure (PEEP) and recruitment manoeuvres during
anaesthesia ventilation on the postoperative outcome have been published [1,2]. Development
of atelectasis during general anaesthesia can provoke postoperative complications, but there is
currently no instrument to estimate the individual amount of atelectasis in the clinical routine.
Such an instrument would be the pre-requisite for individualized application of lung protective
ventilator settings during anaesthesia and for monitoring of its effects. Although both, arterial
partial pressure of oxygen (PaO,) and intrapulmonary shunt (shunt) have been suggested for
estimating atelectasis and tailoring ventilator settings at the bedside or in the operating room,
studies on the correlation between atelectasis and these parameters yielded inconsistent results
[3-9]. The existence of strong relationships between the amount of atelectasis and PaO, or
shunt has not yet been consistently confirmed in clinical or experimental studies. Using the tra-
ditional definition of atelectasis in computed tomography (CT) images (i.e. CT numbers
between -100 and +100 Hounsfield Units, HU), inconsistent results on the correlation between
atelectasis and PaO, or shunt have been reported [4,8,10-16]. This may be explained by inter-
species differences in hypoxic pulmonary vasoconstriction (HPV), varying presence and activ-
ity of conditions blunting HPV (e.g. breathing of pure oxygen or inflammation) or different
aetiologies of loss of lung aeration (e.g. atelectasis versus inflammatory infiltration). In verte-
brates used as laboratory animals and in humans, the intensity of HPV differs significantly, as
does the effect of potential inactivators on HPV [17,18]. Humans and sheep seem to be among
the vertebrates in whom exposure to short-term high fractions of inspiratory oxygen (FIO,)
blunts HPV [8,18-22], while pigs seem to have a more intense HPV, which is not that easily
responding to inactivators [19,21]. If these differences would actually apply, there should be a
strong correlation between atelectasis and oxygenation or shunt, respectively, in humans or
sheep breathing pure oxygen, while this correlation should be weaker in pigs, as long as other
conditions blunting HPV such as intense inflammation are absent. As systemic inflammation
is usually absent in elective surgical cases and the FIO, may be increased to 1.0 for short-peri-
ods in the vast majority of patients during anaesthesia ventilation, a reliable correlation
between PaO, or shunt, respectively, and atelectasis, could help to estimate relevant amounts
of the latter.
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We hypothesized that, by combining whole-lung CT assessment of atelectasis and short-term
ventilation with pure oxygen in lung-healthy animals, we could demonstrate strong correlations
between atelectasis and both, oxygenation and shunt for sheep (behaving similar to humans)
and weaker correlations, if any, for pigs. The confirmation of these hypotheses would lend sup-
port to the use of these relationships for estimating atelectasis and for individualized application
of lung protective ventilation in lung-healthy patients undergoing general anaesthesia.

Methods
Ethics statement

The governmental animal ethics and welfare committee approved the study (Landesdirektion
Sachsen, Dienststelle Leipzig, Leipzig, Germany; reference numbers TVV22/04 (sheep) and
TVV35/11 (pigs)). The handling of animals was in accordance with the NIH principles of labo-
ratory animal care, all efforts were made to minimize suffering and the ARRIVE guidelines

[23] were followed (see ST ARRIVE Checklist). At the end of all experiments, animals were
killed by intravenous injection of 2 g thiopental and 50 ml potassium chloride (1 M).

In order to reduce the number of animals involved in experiments, we did not perform dedi-
cated experiments in pigs but used suitable data of another study of our group on the effects of
different lung-protective ventilation strategies in experimental acute respiratory distress syn-
drome (ARDS). From this latter study in 23 pigs, baseline measurements (anaesthesia-related
atelectasis in otherwise uninjured lungs, see below) and measurements after induction of
experimental ARDS were used for the present study.

Experiments in sheep

Eleven sheep (mean weight 68, standard deviation (SD) 8 kg) were anaesthetized using intrave-
nous infusions of propofol (2-5 mg x kg™ x h™) and sufentanyl (boluses of 0.6 pg x kg™') and
paralyzed (bolus of 8 mg pancuronium). Tracheostomy was performed. Development of atelec-
tasis was facilitated by commencing mechanical ventilation with pure oxygen, low tidal vol-
umes (4-6 ml x kg”' body weight) and without positive end-expiratory pressure (PEEP)
(Oxylog 2000, Draeger, Liibeck, Germany). Arterial, central venous and pulmonary artery
catheters were introduced using sterile techniques, the correct position of the latter was con-
firmed by CT scans. Fluid replacement not exceeding one litre of Ringer's lactate over the
whole experiment and boluses of an anti-hypotensive drug (cafedrine/theodrenaline [24],
Akrinor, AWD.pharma, Radebeul, Germany) were administered to maintain the mean arterial
blood pressure above 65 mmHg. No other protocol-driven hemodynamic interventions such
as continuous infusion of vasopressors were used.

After instrumentation and transportation to the CT-suite, the mechanical ventilator was
changed (Servo 900D, Siemens-Elena, Solna, Sweden) without changing ventilator settings,
arterial and mixed-venous blood gas were measured during ventilation with pure oxygen, and
CT-scanning was performed during end-expiratory hold. Until CT, the "atelectasis-promoting”
type of mechanical ventilation had been applied for approximately 60 minutes during instru-
mentation and transportation.

In four of the sheep, we performed additional measurements (CT scan and blood gases)
after a recruitment manoeuvre (RM) and subsequent application of PEEP of 10 cmH,O0. If atel-
ectasis still persisted on CT (three sheep), measurements were repeated after applying another
RM and PEEP of 20 cmH,O0 to achieve full lung recruitment. The RM consisted of pressure-
controlled ventilation with 40 cmH,0 PEEP and 60 cmH,O peak inspiratory pressure for two
minutes [25]. After changes in airway pressure, we waited for 10 minutes to allow for stabiliza-
tion before obtaining measurements.
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A flowchart of the study protocol is provided as a supplement (see S1 Protocol).

Experiments in pigs

Twenty-three pigs (mean weight 37, SD 5 kg) were studied in an experimental operating room
equipped with a CT-scanner. Intravenous infusions of midazolam (1-5 mg x kg™ x h™"), pro-
pofol (2-5 mg x kg’1 x h™), ketamine (10-20 mg X kg’1 xh™), and fentanyl (5-8 pg x kg’l X
h™') were used for providing anaesthesia. Tracheostomy was performed, 0.15 mg x kg"' x h™*
pancuronium was given for muscle relaxation, and mechanical ventilation was commenced
with low tidal volumes (6 ml x kg'1 body weight) and low PEEP (5 cmH,0) (EVITA XL,
Draeger, Liibeck, Germany). Arterial and pulmonary artery catheters were introduced using
sterile techniques, the correct position of the latter was confirmed during CT. Fluid replace-
ment not exceeding 1.5 litres over the first 12 hours of the experiment and boluses of an anti-
hypotensive drug (cafedrine/theodrenaline [24], Akrinor, AWD.pharma, Radebeul, Germany)
were administered to maintain the mean arterial blood pressure above 65 mmHg. No other
protocol-driven hemodynamic interventions such as continuous infusion of vasopressors
were used. After instrumentation was completed, the individual maintenance FIO, was
adjusted between 0.3 and 0.5 to achieve a peripheral oxygen saturation above 90% and base-
line blood-gas measurements (arterial and mixed-venous) performed after 5 minutes of equil-
ibration at the maintenance FIO,. The FIO, was then increased to 1.0 and, after 5 minutes,
another set of blood-gas measurements (arterial and mixed-venous) was taken and a baseline
CT-scan performed. This baseline CT showed atelectasis in all pigs included in this study.
Because these pigs subsequently underwent induction of experimental ARDS by repeated tra-
cheal instillation of hydrochloric acid (until PaO, remained below 200 mmHg with FIO, of 1
for 30 minutes) and prolonged subsequent mechanical ventilation with PEEP levels (between
5and 26 cmH,0) for 24 hours, another data set was available which was pertinent to the pres-
ent study. We could only use 19 of the initial 23 pigs, because four pigs had to be excluded:
one developed a pneumothorax after induction of ARDS, one died of hyperkalaemia and
renal failure and data for two pigs is unavailable due to CT malfunction. After induction of
ARDS, lung protective ventilation with low tidal volumes according to the ARDS network
lower PEEP protocol and two different open-lung approaches were compared. The ARDS net-
work protocol resulted in low PEEP values, while the open-lung protocols used individually
titrated high PEEP using either oxygenation or electrical impedance tomography as the surro-
gate for "optimal" PEEP [25-27]. These different ways of individualized PEEP selection
resulted in a group of pigs with widely varying magnitudes of non-aerated lung. Except for the
way PEEP was individualized, the supportive treatment of the pigs in the three groups did not
differ. Because we used data from this experiment from a single measurement point after 12
hours of ventilation for ARDS only, and because we do not perform any between-group com-
parison of data, no reference is made to further details of the experiment. The 12 hours mea-
surement point was chosen, because it was characterized by the presence of an intense
inflammatory response, which developed after induction of ARDS during lung protective ven-
tilation. The data obtained in this situation include blood-gas measurements at maintenance
FIO, and FIO, = 1, as well as CT-data.

A flowchart of the study protocol is provided as a supplement (see S1 Protocol).

Blood-gas measurement and calculation of shunt

Mixed-venous and arterial blood samples were analysed immediately (ABL 800, Radiometer
Copenhagen, Denmark). Berggren’s method was used to calculate shunt [28].
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CT analysis

Two multislice CT scanners were used, a Somatom Volume Zoom (120 kV tube voltage, 165
maA tube current, 4 x 2.5 mm collimation; Siemens, Erlangen, Germany) for the sheep experi-
ment and a Philips MX8000 IDT 16 (120 kV tube voltage, 170 mA tube current, 16 x 1.5 mm
collimation; Philips Medical Systems, Hamburg, Germany) for the experiments in pigs. Contig-
uous images were reconstructed with either 10 mm slice thickness and the standard filter
“B40f” (Siemens scanner) or 6 mm thickness and the standard filter “B” (Philips scanner). No
contrast medium was used.

The Osiris software (University Hospital Geneva, Switzerland) was used for manual segmen-
tation of the lung parenchyma in CT images. Appropriate window levels and widths for lung
parenchyma (-500/1,500 HU) or mediastinum (50/250 HU) were used for displaying CT-images
during segmentation. Major hilar vessels and bronchi were manually excluded. In aerated lung
regions, a cut-off value of -350 HU was used to aid the exclusion of partial volume effects
[25,29-32]. Atelectatic lung regions were segmented manually using anatomical knowledge.

For the entire lung, the total lung volume (V,,1), mass (Moa1), and the masses and volumes
of differently aerated lung compartments were calculated voxel-by-voxel as previously described
[3,4,33-35]. Miota1 and Vo1 Were calculated from all voxels within the -1,000 to +100 HU
range. The following HU-ranges were used to obtain the masses of differently aerated lung com-
partments, which were calculated as percentage of My,;: nonaerated (atelectasis, -100 to +100
HU [36]), poorly aerated (-101 to -500 HU); normally aerated (-501 to -900 HU) and hyperaer-
ated (-901 to -1,000 HU) [35]. To re-evaluate the results of previous studies, we also quantified
atelectasis by expressing the volume of voxels corresponding to atelectatic lung as percentage of
Viotal. Moreover, a previously described, alternative definition of atelectasis was tested by
extending the HU-window to -200 to +100 HU (instead of -100 to +100 HU) [8,36]. For the
data set of pigs with ARDS, where non-aerated lung tissue consists of atelectasis, oedema and
consolidation, the term “atelectasis” was kept in order to avoid unnecessary complexity.

Statistical analysis

Results are given as median and interquartile range (IQR), unless otherwise stated. We loga-
rithmically transformed PaO, values (InPaQ,) to linearize its relationship with shunt, which
also ensures fulfilment of basic assumption of linear regression [3,8,14]. Correlations were ana-
lysed using linear regression. Bland-Altman plots were used to assess the bias and limits of
agreement (LOA) for comparing the fraction of atelectatic lung (causing shunt) and the actual
intrapulmonary shunt fraction, calculated based on blood gases. This application of difference
plots is an extension of the method described by Bland and Altman and has been used for simi-
lar analyses by others [14,37,38]. Bias values were compared by Mann-Whitney tests. We tested
for difference in slopes of regression lines for the same parameters in pigs and sheep using anal-
ysis of covariance (ANCOVA). We calculated and analysed differences between to measure-
ments in the same pigs (after induction of atelectasis and 12h after induction of ARDS).
Statistical analysis of within- and between subject correlations of repeated measurements after
recruitment manoeuvres in sheep were omitted due to the low number of animals (n = 4 for
PEEP 10, n = 3 for PEEP 20) involved. Statistical analyses were performed using SPSS 20
(SPSS, Munich, Germany) and Graph-Pad Prism 5 (GraphPad Software, La Jolla, CA). Statisti-
cal significance was assumed if P < 0.05.

Results

CT analysis revealed that in all sheep and pigs, atelectasis had developed in otherwise normal
lungs during "atelectasis-promoting" mechanical ventilation. During clinical examination prior
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to the experiments, no animal showed signs or symptoms of infection or inflammation. There
were no radiological or clinical signs of pneumonia. The median M., of the atelectatic but
otherwise uninjured lungs was 768 (715-884) g in sheep and 543 (503-583) g in pigs.

Further gas exchange and quantitative CT results are given in Table 1.

Correlation of shunt, oxygenation and atelectasis in sheep and pigs

In sheep, regression analyses of shunt, untransformed PaO, and InPaO, on atelectasis (using
only the data points of the “atelectasis” columns in Table 1) showed strong correlations
between these parameters (R” values for correlation with atelectasis were 0.77 for PaO,, 0.78
for InPaO, and 0.79 for shunt; all P values < 0.0001, Fig 1).

In pigs, the correlations between atelectasis and PaO, (R* = 0.62, P<0.0001), between atel-
ectasis and InPaO, (R, = 0.63, P<0.0001) and between atelectasis and shunt (R? = 0.34,

P =0.0034) were considerably weaker (Fig 1).

The regression equations are given in Fig 1. The slopes of the regression lines for regression
of PaO, and InPaO, on atelectasis were significantly less steep for pigs than for sheep
(P<0.0001). Slopes for the regression of shunt on atelectasis did not differ significantly between
sheep and pigs (P = 0.6).

Influence of recruitment manoeuvres in sheep

After RMs and increases in PEEP in a subgroup of 4 sheep, we observed that the reduction of
atelectasis was clearly associated with increments in PaO, and InPaO, and reductions in shunt
(Table 1, statistical tests were omitted).

Influence of ARDS and prolonged ventilation in pigs

Lung injury by instillation of hydrochloric acid led to impairment of oxygenation and lung
mechanics compatible with the current criteria for severe human ARDS [39] in all animals
(PaO2 at FIO2 = 1.0 was 81 (66-97) mmHg at the diagnosis of ARDS). Measurements in pigs
12 hours after induction of ARDS showed an increased correlation between PaO, and atelecta-
sis (R? = 0.79, P<0.0001), InPaO, and atelectasis (R* = 0.72, P<0.0001) and between atelectasis
and shunt (R? = 0.75, P<0.0001) (see also Table 1). Also in pigs, the differences (delta) between
the two measurement points in pigs (atelectasis in otherwise normal lungs and 12h after induc-
tion of ARDS) for PaO,, InPaO, or shunt correlated well with the changes in atelectasis
between both measurement points (R* = 0.89, 0.88 and 0.79 for the regression of PaO,, InPaO,
or shunt, respectively, on atelectasis; P<0.0001; Fig 2).

Agreement of shunt and atelectasis

Except for large amounts of atelectasis (>>50%), shunt systematically exceeded atelectasis in
sheep but not in pigs. The bias between shunt and atelectasis was -9.5% (LOA -28.6 to 9.6%)
and 2.8% (LOA -8.3 to 13.8%) in sheep and pigs, respectively (Fig 3).

Influence of parameters of quantitative CT analyses

If, instead of the percentage of M., atelectasis was calculated as the percentage of V), the
R? values decreased to 0.62, 0.67, and 0.7 for the regression of PaO,, InPaO, and shunt, respec-
tively, on atelectasis in sheep and to 0.56, 0.59 and 0.18 for the regression of PaO,, InPa0O,, and
shunt, respectively, on atelectasis in pigs. The Bland-Altman bias characterizing the numerical
agreement of shunt and atelectasis suggested considerable underestimation of atelectasis, when
it was expressed as percentage of Vi,.;; the bias was -22.7% (LOA -38.4 to -7.0) for sheep and
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Table 1. Results from quantitative computer tomography and blood gas analysis. Values are given as median (interquartile range). Data for sheep
were obtained for atelectatic (first column) and recruited lungs. Data in the second column were obtained after applying a recruitment manoeuvre (RM) and
subsequent ventilation with PEEP of 10 cm H,O for 10 minutes. Data in the third column were obtained after applying another RM and ventilation with PEEP
of 20 cm H,O for 10 minutes. Pigs were studied during baseline conditions (atelectasis in otherwise normal lungs) and 12 hours after induction of acute respi-
ratory distress syndrome (ARDS). The PEEP in the ARDS column was chosen according to different lung protective ventilation strategies. N, number of ani-
mals studied; Viota, total lung volume; Myoa), total lung mass; Mnyper, mass of the hyperaerated (-901 to -1000 HU); My ormai, mass of the normally aerated
(-501 to -900 HU); Mpoor, mass of the poorly aerated (-101 to -500 HU); Myieiectasis» Mass of the atelectatic lung compartment (-100 to +100 HU). Weights of dif-
ferently aerated lung compartments were calculated as percentage of My Atelectasis was also calculated as volume and expressed as percentage of Viga.
All blood gases were obtained after short-term ventilation with pure oxygen for five minutes. We transformed PaO, values logarithmically (InPaO.,) to linearize
the relationship between PaO, and atelectasis. Shunt was calculated using Berggren’s approach. As the effects of PEEP or RM on lung aeration were no
endpoints of the present study and subgroups were very small, statistical between-group comparison was omitted.

Sheep Pigs
Lung condition atelectasis recruited recruited atelectasis ARDS
n= 11 4 3 23 19
PEEP (cmH,0) 0 10 20 5 18 (8-21)
Viotar (M) 1469 (1393-1576) 2903 (2190-3516) 3397 (3237-3927) 1116 (1022-1228) 2004 (1339-2431)
Miotal (9) 768 (715-884) 863 (825-876) 855 (782-862) 543 (503-583) 862 (799-913)
Matelectasis (%) 26 (16-47) 5 (3-8) 0 (0-1) 18 (13-23) 18 (14-61)
Mgoor (%) 37 (28-47) 20 (15-32) 6 (6-8) 41 (39-46) 31 (21-35)
Mnormar (%) 36 (30—42) 67 (46-77) 86 (82-86) 38 (36-43) 46 (20-53)
Miyper (%) 0 (0-0) 0 (0-1) 2 (0-2) 0 (0-0) 0 (0-0)
Vatelectasis(%) 12 (6-26) 2(1-3) 0 (0-0) 9 (7-11) 8 (6-38)
PaO, (mmHg) 242 (106—414) 537 (457-550) 572 (556-584) 480 (437-514) 455 (293-506)
InPaO, 5.4 (4.7-6.0) 6.3 (6.1-6.3) 6.4 (6.3-6.4) 6.2 (6.1-6.2) 6.1 (5.7-6.2)
PaCO, (mmHg) 58 (51-65) 44 (42-48) 44 (43-48) 50 (45-56) 61 (53-65)
Shunt (%) 39 (29-51) 19 (14-24) 11 (8-14) 15 (11-20) 11 (7-18)

doi:10.1371/journal.pone.0135272.1001

-5.8% (LOA -16.1 to 4.4) for pigs. The bias values for the agreement between shunt and atelec-
tasis defined as percentage of V., differed significantly from those for the agreement between
shunt and atelectasis defined as percentage of M, (both P values <0.001).

If the HU-window defining atelectasis was extended to -200 to +100 HU (instead of -100 to
+100 HU), the R? value for the regression of InPaO, on atelectasis decreased from 0.63 to 0.54
for pigs but was similar (0.78 to 0.8) for sheep. The bias (LOA) between shunt and atelectasis
was -3.5% (-22.9 to 15.8%) and 10.6% (-0.9 to 22.1%) in sheep and pigs, respectively, for this
extended HU-window.

Effects of inspired oxygen concentration in pigs

All correlations presented so far were based on blood gases obtained after short-term ventila-
tion with pure oxygen for five minutes. In contrast, when pigs were ventilated with mainte-
nance FIO, of 0.3 to 0.5, R? values for correlation with atelectasis were worse than those
observed for pure oxygen, namely 0.43 for PaO,, 0.5 for InPaO, and 0.55 for shunt in uninjured
lungs with anaesthesia-related atelectasis. A similar effect was observed for measurements at
maintenance FIO, (0.3 to 0.5) 12h after induction of ARDS: the respective R* were 0.47 for
Pa0,, 0.47 for InPaO, and 0.28 for shunt.

Discussion

We found a strong correlation between atelectasis and both oxygenation and shunt in sheep
with clinically relevant amounts of anaesthesia-related atelectasis in otherwise normal lungs
during mechanical ventilation with pure oxygen. In a subgroup of sheep, changes in atelectasis

PLOS ONE | DOI:10.1371/journal.pone.0135272 August 10, 2015 7/15



@’PLOS ‘ ONE

Correlation of Lung Collapse and Gas Exchange

Sheep (n=11)

600+ Pa0, = -7.58*atelectasis + 501
500

400
= 300
Q 2001
% 100
0_

(mmHg)

atelectasis (%)

N
o
:

InPaO, = -0.035™atelectasis + 6.36
Q9

o
o
:

InPaO, (mmHg)
[$)]
o

.y
o
N

01 Re=0.79
60 e ~~0

50+
40+
30
20+

10
0] shunt = 0.64*atelectasis + 21.7

shunt (%)

r T T T T T T 1

0 10 20 30 40 50 60 70
atelectasis (%)

Pigs (n=24)

. 6007 o R?=0.62
£ 5001 S
€ 400/
&
~ 300
Q 200]
% 400
PaO, = -7.823"atelectasis + 612
0_
0 10 20 30 40 50 60 70
atelectasis (%)
5 701 R?=0.63
Doof PRy
6.0
&
ON
T 5.0
S
= InPa0, = -0.018*atelectasis + 6.47
4.0
0 10 20 30 40 50 60 70
atelectasis (%)
70 .
60 shunt = 0.501"atelectasis + 6.42
g 50
= 401
% 30
< o _O
“2 9204 Oiﬁgi&f@
10
Jd T° R?=0.34

T T T 1

0O 10 20 30 40 50 60 70
atelectasis (%)

Fig 1. Correlation between atelectasis, oxygenation and shunt. Linear regression of raw PaO, (upper row), In-transformed PaO, (InPaO,, second row)
and intrapulmonary (Bergren’s) shunt (lower row), respectively, on the amount of atelectasis (percentage of total lung mass). Only data points from the
“atelectasis” columns in Table 1 were used. Berggren’s shunt was calculated according to [28]. We transformed PaO, values logarithmically (InPaO,) to

linearize the relationship between PaO, and atelectasis.

doi:10.1371/journal.pone.0135272.g001

after lung recruitment and application of PEEP were strongly correlated to changes in both
oxygenation and shunt. The respective correlations were considerably weaker in lung-healthy
pigs with anaesthesia-related atelectasis, which could be attributed to a stronger hypoxic pul-
monary vasoconstriction. Importantly, different measures supposed to blunt hypoxic pulmo-
nary vasoconstriction (i.e. pure oxygen ventilation, induction of ARDS), resulted in improved
correlations also in pigs. Our present findings extend previous findings of our group in ARDS
patients to anaesthesia-related atelectasis.
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Fig 2. Correlation between changes of oxygenation, shunt and atelectasis in pigs. The differences (deltas) between the two measurement points in
pigs (atelectasis in otherwise normal lungs and 12h after induction of ARDS) for PaO,, InPaO,, shunt and atelectasis were calculated. These repeated
measurements were available only for pigs (N = 19). Linear regression of delta-PaO, (APaO,, left panel), delta-InPaO, (AInPaO,, central panel) or delta-
shunt (Ashunt, right panel) on the changes in atelectasis (Aatelectasis) was performed. Blood gases were obtained after short-term ventilation with pure
oxygen for five minutes. In this figure, atelectasis refers to real atelectasis as well as to the non-aerated lung tissue after induction of ARDS and was
quantified as percentage of Mtotal (-100 to 100 HU in computer tomography). Intrapulmonary (Berggren’s) shunt was calculated according to [28]. We
transformed PaO, values logarithmically (InPaO,) to linearize the relationship between PaO, and atelectasis.

doi:10.1371/journal.pone.0135272.9002
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Fig 3. Agreement of shunt and atelectasis. Bland-Altman plots for analysis of the agreement of intrapulmonary (Berggren’s) shunt and atelectasis, when
the latter was quantified by analysis of whole-lung CT and expressed as percentage of the total lung mass for sheep (left) and pigs (right) using an atelectasis
definition of -100 to +100 HU (top) or an extended range of -200 to +100 HU (bottom). Shunt is plotted on the x-axis because it is considered the gold
standard. The difference plotted on the y-axis was calculated by subtraction of shunt from atelectasis. Solid line: mean difference (bias), dashed lines: 95%
limits of agreement (mean difference + 1.96 SD). Blood gases were obtained after short-term ventilation with pure oxygen for five minutes.

doi:10.1371/journal.pone.0135272.g003
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Mechanical ventilation in the presence of atelectasis may be associated with an increased
risk of ventilator associated complications [40-42]. One recent randomized study showed a
benefit of lung protective ventilation aiming at the reduction of atelectasis and tidal recruit-
ment on postoperative outcome in a lung-healthy population. In particular, this study showed
a reduced necessity of non-invasive ventilation, reduced rate of re-intubation, and a shorter
length of hospital stay compared to a conventional ventilation strategy [1]. However, these pos-
itive effects of a strategy for anaesthesia ventilation, which is aimed at reduction of atelectasis
and at least partial restoration of normal end-expiratory lung volumes, could not be confirmed
in another randomized trial [2]. To interpret such contradictory findings and to properly and
individually indicate measures to restore lung volumes during anaesthesia ventilation, informa-
tion about the individual amount of atelectasis would be helpful. Because information from
imaging studies is usually not available during anaesthesia ventilation, previous studies sug-
gested that inference about the amount of atelectasis could be made from shunt calculation or,
if mixed venous blood samples are not available, from PaO, measurement [3,8,10,12,14-16]. A
broader implementation of such blood-gas derived assessment of atelectasis into the periopera-
tive ventilation management, however, was hampered, among other reasons, by conflicting
reports about the strength of the correlation between atelectasis and oxygenation or shunt
[4,8,10-16,43].

For atelectatic lungs of sheep, whose HPV is—similar to humans—rather weak and easily
abolished, our present whole-lung CT analysis confirmed the strong correlation between the
amount of atelectasis and InPaO, and between the amount of atelectasis and shunt, respec-
tively, and supports the feasibility of InPaO, for assessing atelectasis [10,12,16,19,22].

It is important, however, to notice that we found these strong correlations in healthy lungs
only in sheep and that we used an optimized (although not at all new) methodology. Both, the
effects of methodological as well as inter-species variations may help to explain previous con-
tradictory results on the correlation between atelectasis and PaO, or shunt. We combined the
use of pure oxygen, the calculation of atelectasis as percentage of My, instead of as percentage
of Vioral and, finally, the logarithmic transformation of PaO,. Every one of these measures had
an influence on the correlations studied: First, breathing of pure oxygen eliminates venous
admixture due to ventilation-perfusion mismatch and inactivates HPV [22]. If ventilation with
pure oxygen was omitted and a FIO, of 0.3 to 0.5 used, correlation was much weaker (only
studied in pigs). Second, the expression of atelectasis as percentage of M., better reflects the
the true fraction of atelectatic lung tissue and thus makes comparison to the fraction of intra-
pulmonary shunt flow more reasonable [3,8,42]. The latter was confirmed by our Bland-Alt-
man analyses showing significantly worse agreement between shunt and atelectasis expressed
as percentage of V., than between shunt and atelectasis expressed as percentage of Mo, in
sheep and pigs. Compatibly, the correlation was weaker between InPaO, and atelectasis
expressed as percentage of V., than between InPaO, and atelectasis expressed as percentage
of Motal- As shown in other studies, the use of InPaO, instead of PaO, decreases the deviation
of predicted values from the regression line especially in the middle (curved) portion of the
nonlinear PaO,-atelectasis relationship, and better meets the basic assumptions of linear
regression analysis [3,8,14]. The limited number of atelectasis and PaO, measurements in the
middle “curved” range of the nonlinear PaO,-atelectasis relationship may explain why the
“raw” PaO, and the InPaO, performed almost identically in our data.

Supporting inter-species differences, the correlation of InPaO, and atelectasis in healthy
lungs was weaker in pigs than in sheep and the correlation between shunt and atelectasis was
much less reliable in pigs (Fig 1). There are different possible explanations for these results.
Firstly, the pigs showed a smaller median amount of atelectasis and the range of data points
was considerably smaller. Moreover, pigs have a stronger HPV reducing the effects of
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atelectasis on shunt and arterial oxygenation, which is supported by the significantly different
slopes of the regression lines for PaO, and InPaO, versus atelectasis in pigs compared to sheep
(see Fig 1 for regression equations). Both effects created a “cloud” of data points that resulted
in impaired least square fitting results (Fig 1). An active HPV in lung-healthy pigs is also sup-
ported by the fact, that the fraction of shunt flow was smaller than the fraction of the lung
parenchyma, which was atelectatic (Fig 3).

Interestingly, twelve hours after inducing experimental ARDS by hydrochloric acid aspira-
tion in the same pigs, the R? for the correlation between InPaO, and atelectasis rose to 0.71.
This indicates an impairment of HPV during ARDS and systemic inflammation also for pigs in
this study, which is in line with recent data for human ARDS, where (among others) our group
showed a good correlation between non-aerated lung tissue and paO, (R*=0.74) or InPaO,
(R*=0.82) [8]. Interestingly, changes between the initial amount of atelectasis in healthy lungs
and the amount of non-aerated lung during ARDS was strongly correlated to changes in
InPaO, and shunt, respectively, also in pigs (Fig 2). This again points at the fact that, whenever
HPYV is blunted, changes in InPaO, or shunt may be a reasonable surrogate for changes in atel-
ectasis (or non-aerated lung, as in ARDS).

Others suggested that the activity of HPV can be assessed by the ratio between atelectasis
and shunt [4,44]. These calculations, however, are sensitive to the assumption that the amount
of shunting lung units is correctly estimated by CT. As the calculation of the ratio between atel-
ectasis and shunt is analogous to forcing the regression line for shunt versus atelectasis to go
through the origin of the coordinate system, the activity of HPV may seem to depend on the
amount of atelectasis as suggested by Cressoni and colleagues [4]. By quantitative analysis of
whole-lung CT, however, we found that the shunt fraction (Berggren) systematically exceeded
the atelectatic fraction of the lung parenchyma in sheep (bias -9.48%, Fig 3). Besides a blunted
HPV, this most likely represents a true y-axis-intercept, which may be explained by true ana-
tomical shunt (Thebesian and deep bronchial veins). Theoretically, there may also be an under-
estimation of the of the truly shunting lung tissue fraction when it is assessed by CT using the
-100 to +100 HU window [14]. However, the use of the extended HU-window of -200 to +100
HU for definition of atelectasis in CT did not consistently improve the strength of correlation
with PaO, or InPaO,_ This confirms a previous report for homogeneous, anaesthesia-related
absorption atelectasis [36], while inhomogeneously distributed, oedematous non-aerated lung
tissue of ARDS patients may be better covered by the -200 to +100 HU definition [8].

Obviously, validation of our results in human patients appears necessary. However, we
could not yet identify a population of lung-healthy patients who undergo CT of the lung during
general anaesthesia and have an arterial catheter at the same time. Besides validation, such
results would aid in providing a look-up table for approximation of the amount of atelectasis
from InPaO, and/or shunt measurements during anaesthesia ventilation [8].

Limitations of our study

Results from the atelectasis model used in our study may apply to patients with atelectasis who
are ventilated during anaesthesia but may not be directly transferable to patients with oedema-
tous and/or inflamed lungs. Moreover, sheep have reduced collateral ventilation, which may
influence the potential for developing absorption atelectasis and also the matching of aeration
and gas exchange [45]. Changes in the arterial partial pressure of carbon dioxide (PaCO,) may
alter the perfusion of atelectatic lung regions. Hypocapnia, which reduces or even abolishes
HPV, was avoided [46]. Further control of PaCO,, however, would have generated unrealistic
results with limited applicability in the clinical anaesthesia setting. Although animals in the
present study showed neither clinical nor radiological signs of pneumonia, an infection
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potentially interacting with HPV cannot be excluded. Furthermore, anaesthetic drugs may
alter HPV. However, the drugs used in our study are frequently used in the clinical setting and
seem to have a limited effect on HPV [47,48].

Using pure oxygen temporarily during measurement periods might be discussed controver-
sially, since even short periods of pure oxygen ventilation can promote atelectasis and increase
shunt, particularly during and after induction of anaesthesia [10,49,50]. Nevertheless, pure
oxygen ventilation to blunt HPV is applied only for five minutes. Furthermore, rapid develop-
ment of atelectasis as described during preoxygenation and induction of anaesthesia will be sig-
nificantly reduced by application of PEEP, which is part of many contemporary concepts for
anaesthesia ventilation [1,2,51]. Additionally, the gain in information about the existence and
magnitude of atelectasis outweighs, at least in our opinion, the risk of some increase in atelecta-
sis, which can be easily reversed by recruitment manoeuvres and application of PEEP [52].

The protocols of our experiments in pigs and sheep, from which the data for the current
study was obtained, differ in certain points (e.g. PEEP for induction of atelectasis, type of CT
scanner, additional induction of ARDS in pigs). These earlier experiments investigated differ-
ent research questions and there is no overlap or duplicate publication of results.

Conclusion

In sheep with absorption atelectasis breathing pure oxygen, we could show strong linear rela-
tionships between atelectasis and both, oxygenation and intrapulmonary shunt. After lung
recruitment, reductions in atelectasis correlated with increments in oxygenation and decreases
in shunt. Our results in sheep, whose HPV physiology has similarities to the human one, sug-
gest that oxygenation and shunt could be used to estimate atelectasis. These finding extend our
previous findings in ARDS patients to anaesthesia-related atelectasis. Pigs, which have a much
more intense HPV than humans, did not show such strong correlations for atelectasis in
healthy lungs. However, after induction of ARDS, these correlations were similarly strong for
pigs and sheep.

Since arterial catheters and thus the PaO, are frequently available in the perioperative set-
ting, especially in critically ill patients or patients undergoing major surgical procedures, esti-
mation of atelectasis based on the PaO, could be an instrument to individualize lung protective
ventilation and minimize atelectasis during general anaesthesia, provided that adequate mea-
sures are taken to blunt hypoxic pulmonary vasoconstriction.

Supporting Information

S1 Protocol. Flowchart of study protocol. See methods section for a detailed description of
our study protocol in sheep and pigs.
(PDF)

S1 ARRIVE Checklist. ARRIVE (Animal Research: Reporting In Vivo Experiments) Guide-
lines Checklist. See methods section and [23] for details.
(PDF)

S1 Table. Raw data of pigs with atelectasis in otherwise normal lungs. Measurements
obtained under ventilation with pure oxygen (values with ,,_1%) and at individual FIO2 (values
with ,,_ind“).

(CSV)

S2 Table. Raw data of sheep with atelectasis in otherwise normal lungs. Ventilation with
pure oxygen. Measurements at baseline and after recruitment with PEEP of 10cmH20 or
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20cmH20.
(CSV)

S3 Table. Raw data of pigs after induction of ARDS. Measurements obtained under ventila-
tion with pure oxygen.
(CSV)

S$4 Table. Raw data of pigs 12 hours after induction of ARDS. Measurements obtained
under ventilation with pure oxygen (values with ,,_1“) and at individual FIO2 (values with
»_ind®). Pigs 23 and 14 were excluded due to malfunction of computer tomography. Pig 22
was excluded due to hyperkalaemia and renal failure. Pig 6 was excluded due to a pneumotho-
rax. Due to mentioned reasons, measurements could only be obtained for 19 of 23 pigs studied
with atelectasis in otherwise normal lungs before induction of ARDS.

(CSV)
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