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Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes,
thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites.
Because a lncRNA’s target genes scattering in a genome have correlated functions, epigenetic analyses
should often be genome-wide on both genome and transcriptome levels. Multiple tools have been devel-
oped for predicting lncRNA/DNA binding, but fast and accurate genome-wide prediction remains a chal-
lenge. Here we report Fasim-LongTarget (a revised version of LongTarget), compare its performance with
TDF and LongTarget using the experimental data of the lncRNA MEG3, NEAT1, and MALAT1, and describe
a case of genome-wide prediction. Fasim-LongTarget is as accurate as LongTarget and more accurate than
TDF and is 200 times faster than LongTarget, making accurate genome-wide prediction feasible. The code
is available on the Github website (https://github.com/LongTarget/Fasim-LongTarget), and the online ser-
vice is available on the LongTarget website (https://lncRNA.smu.edu.cn).
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many long noncoding RNAs (lncRNAs) epigenetically regulate
gene expression by binding to DNA sequences and recruiting
epigenomic modification enzymes to binding sites. LncRNAs and
these enzymes show enriched distributions at binding sites [1],
indicating that a DNA binding site (DBS) may host multiple
lncRNAs. Following specific base-pairing rules, a lncRNA binds to
a duplex DNA sequence by forming a triplex that comprises
triplex-forming oligonucleotides (TFO) in the lncRNA and a
triplex-targeting site (TTS) in the DNA sequence. Thus, overlapping
TTSs indicate a DBS, and overlapping TFOs indicate a DNA binding
domain (DBD). At or near DBSs are lncRNAs’ target genes. Abun-
dant studies have revealed that lncRNA’s target genes have corre-
lated functions (e.g., multiple imprinted genes regulated by the
lncRNA H19 control embryonic growth) [2] and that lncRNAs reg-
ulate target genes genome-wide (e.g., the lncRNA XIST regulates
the inactivation of nearly all genes on the X chromosome in female
mammals) [3].
The specific base-pairing rules (i.e., Hoogsteen and reverse
Hoogsteen rules) [4] make triplexes, TFOs, TTSs, DBDs, and DBSs
computationally predictable. Largely two kinds of methods have
been developed to predict triplexes. Upon canonical Hoogsteen/re-
verse Hoogsteen base-pairing rules, Triplexator uses substring
search to find triplexes (which are consecutive paired nucleotides
with a small error rate such as <=2 consecutive mismatches) [5].
The nature of the substring search makes the triplexes very short
(16–20 bp) and prone to occur, making it hard to judge whether
triplexes form a DBD/DBS. To help predict DBS/DBD, TDF (Triplex
Domain Finder), which runs upon Triplexator or TRIPLEXES (TRI-
PLEXES performs substring search faster than Triplexator does),
was developed. TDF statistically tests if several triplexes form a
DBD/DBS [6].

LongTarget took another approach. It first translates the DNA
sequence into RNA sequences upon 24 Hoogsteen/reverse Hoog-
steen rulesets, then uses a variant of the Smith-Waterman algo-
rithm to identify all local alignments in each lncRNA/translated
RNA pair [7]. This local alignment can flexibly identify very long
triplexes but is more time-consuming. In addition, because a
lncRNA can be parallel or anti-parallel to a DNA sequence, a pair
of lncRNA/DNA sequences generate 48 lncRNA/translated RNA
pairs and demands 48 local alignments.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.06.017&domain=pdf
https://github.com/LongTarget/Fasim-LongTarget
https://lncRNA.smu.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.06.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:JL.linjie@outlook.com
mailto:zhuhao@smu.edu.cn
https://doi.org/10.1016/j.csbj.2022.06.017
http://www.elsevier.com/locate/csbj


Y. Wen, Y. Wu, B. Xu et al. Computational and Structural Biotechnology Journal 20 (2022) 3347–3350
The two kinds of methods have pros and cons. By using sub-
string search to identify triplexes, Triplexator/TRIPLEXES + TDF is
fast but the triplexes are short (14–20 bp) and less overlapped;
thus, TDF spends extra time on statistically testing whether tri-
plexes likely form DBD/DBS. By using local alignment to identify
triplexes, LongTarget is slow but the triplexes are long (>60 bp);
thus, no statistical test is needed because long triplexes often over-
lap at a DBS. Although LongTarget is integrated into a platform sup-
ported by multiple genomes and a lncRNA database [8], true
genome-wide prediction is infeasible due to time consumption.
So far, no methods has be satisfactorily used for genome-wide
lncRNA/DNA binding.

Experimental studies have gone from single genes to gene sets
and further to the whole genome, and abundant lncRNAs have
been identified in mammalian genomes. The two factors drive
genome-wide analysis of lncRNA-mediated epigenetic regulation
on the genome and transcriptome levels (e.g., the regulatory rela-
tionship between differentially expressed protein-coding genes
and lncRNA genes in cancer cells). We report Fasim-LongTarget
(abbr. Fasim), which is about 200 times faster than yet almost
equally powerful as LongTarget. First, we introduce the revised
alignment algorithm; then, we use three experimentally generated
lncRNA/DNA binding datasets to evaluate the performance of TDF,
Fasim, and LongTarget; finally, we describe a case of genome-wide
prediction.
2. The Fasim algorithm

The Smith-Waterman algorithm has been revised in two ways.
On the one hand, Waterman and Eggert extended the algorithm by
outputting multiple non-intersecting local alignments [9], and
Huang and Miller greatly reduced the space and time consumption
of the Waterman-Eggert algorithm (the SIM program) [10]. On the
other hand, Farrar used the Single-Instruction Multiple-Data
(SIMD) instruction to parallelize the Smith-Waterman algorithm
(Striped Smith-Waterman) [11], and Zhao et al. developed a C/C+
+ library for the SIMD Smith-Waterman algorithm [12]. LongTarget
calls SIM to identify multiple local alignments (triplexes) between
a translated DNA sequence and a lncRNA sequence [7–8]. Upon the
five works, Fasim is developed. In the command line of Fasim (i.e.,
fasim(Ms, Ns, Gs, Qs, triplex length, DNA sequence list, lncRNA
sequence)), Ms, Ns, Gs, Qs are the scores of match, mismatch, gap
open, and gap extension, and triplex length is the minimal length
of triplexes. DNA sequence list and lncRNA sequence specify the files
of DNA and lncRNA sequences. In accordance, variables Mn, Nn, Gn,
Qn are the numbers of match, mismatch, gap open, and gap exten-
sion. Fasim outputs two files; one contains the distribution of DBSs
and can be uploaded to the UCSC Genome Browser as a custom
track, and the other contains detailed information of TTSs, TFOs,
DBSs, and DBDs.

First, given a translated DNA sequence and a lncRNA sequence,
Fasim uses SIMD to compute the scoring matrix and identifies and
outputs the best alignment using the standard Smith-Waterman
algorithm. Second, Fasim uses the scoring matrix to identify and
output the remaining local alignments whose number is deter-
mined by the parameter Threshold. For example, if the lncRNA
sequence = CGATTGTTGT, the translated DNA sequence = ACGC-
GATGAATTGGACTT, and the Threshold = 0.8 (i.e., 80% of the best
alignment’ score), then Threshold would be 20 which determines
the number of the remaining local alignments. Our revised scoring
matrix adds three rows: max, tmpscore, and finalscore, which store
the maximal score of each column, the maximal scores that are
>=Threshold, and the maximal scores that are local maximum
(Fig. 1A). Third, upon the ordered values of finalscore, Fasim first
identifies the ending position of a local alignment, then uses the
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following computation to determine the starting position of the
local alignment. For an ending position Pi, the starting position is
at Pi-(Mn + Nn + Gn + Qn). Because the identity ¼ Mn

MnþNnþGnþQn and
score ¼ Mn �Ms � Nn � Ns � Gn � ðGs þ QsÞ � Qn � Qs, in this exam-
ple if Gn<=3, Ms = 5, Ns = 4, Gs = 8, Qs = 4, then

Mn þ Nn þ Gn þ Qn ¼ finalscore� Ns�Gs�Qsð Þ�Gn� Ns�Qsð Þ�Qn
NsþMsð Þ�identity�Ns

¼ finalscoreþ8�Gn
9�identity�4

� finalscoreþ24
9�identity�4 . Fasim assumes identity2(0.6, 1) and step = 0.02 and

uses identity = identity + step to try identity values. For each identity
value (which determines a Pi-(Mn + Nn + Gn + Qn)), an alignment is
examined using the sequences between Pi-(Mn + Nn + Gn + Qn) and
Pi, and a local alignment is found if the alignment score equals the
finalscore value. Finally, by examining all values in the finalscore
row, Fasim identifies and reports all non-intersecting local align-
ments without revising the scoring matrix. Two key revisions make
Fasim faster than SIM. (a) Fasim computes the large scoring matrix
for a pair of sequences using the SIMD instructions only once. (b)
SIM finds multiple local alignments by revising the scoring matrix;
by using extra rows to store critical information, Fasim finds mul-
tiple local alignments without revising the large scoring matrix.
These revisions make Fasim report fewer alignments than SIM.
For example, if a short alignment with a higher score lies within
a large alignment with a lower score, SIM reports both, but Fasim
reports only the short one. The reduction of time consumption
depends on sequence length. If the lncRNA and translated RNA
are long, identifying the starting positions of local alignments by
testing multiple short alignments (i.e., potential triplexes) is much
faster than identifying the starting and ending positions of local
alignments by revising and checking the whole scoring matrix.
3. Performance evaluation

We used the experimentally detected DNA binding regions
(called peaks) of three lncRNAs to evaluate TDF, LongTarget, and
Fasim. MEG3 (ENST00000451743), NEAT1 (ENST00000501122),
and MALAT1 (ENST00000534336) have 532, 3692, and 670 peaks
in three cell lines, ranging from 500 to 1500 bp, 500–1500 bp,
and about 10 Kb, respectively [13–14]. We used these peaks as
the target DNA sequences and used their 532*2, 3692*2, and
670*2 neighboring sequences (1000 bp for MEG3 and NEAT1,
15000 bp for MALAT1) as the negative controls.

We let TDF call TRIPLEXES to predict triplexes, with the param-
eters triplex length>=14 for MEG3 but >=16 for NEAT1 and MALAT1
(as the original authors did), maximum of mismatch<=3, consecutive
errors<=2, and repeat time = 100. We ran LongTarget and Fasimwith
the default parameters (triplex length>=60 and identity>=0.6). Fasim
and TDF predicted similar numbers of TTSs per DBS. Fasim reported
fewer TTSs per DBS (and per peak) than LongTarget, due to not
revising the scoring matrix; however, the length and number of
DBD/DBS predicted by Fasim are only slightly shorter and fewer
than the length and number of DBD/DBS predicted by LongTarget.
These indicate that Fasim and LongTarget can equally well predict
long triplexes, DBDs, and DBSs. Although TDF predicts DBSs/DBDs
upon statistically testing TTSs/TFOs, the length of DBDs/DBSs pre-
dicted by TDF is significantly shorter than the length of DBDs/DBSs
predicted by LongTarget and by Fasim (Supplementary Fig. 1).

Next, we examined the time consumption of the three methods.
Fasim is about 200–300 times faster than LongTarget and even
much faster than TDF upon these datasets (Fig. 1B). Finally, we
used the Precision-Recall curves (PRC) and Receiver Operating
Characteristic (ROC) curves to evaluate the power of the three
methods. To this end, we defined several quantitative measures.
TTSscore is the scores of triplexes reported by TRIPLEXES and scores
of local alignments reported by LongTarget and Fasim. DBSscore is
computed as

P
(TTS1score, TTS2score,. . .,TTSkscore), where these



Fig. 1. (A) The scoring matrix and extra rows Fasim uses when identifying and outputting multiple local alignments. The scores 25 and 24 in the 8th and 13th columns are
local maximum thus are the two local alignments’ ending positions. (B) The time consumption (seconds, the log2 form) of LongTarget, TDF, and Fasim (from top to bottom
indicated by orange, blue, and green lines). (C) The ROC curves of TDF, LongTarget, and Fasim (generated upon the ranking of NPeakscores that indicates the triplex signal in the
experimentally detected regions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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TTSs overlap within the DBS. NPeakscore is the normalized scores of
peaks, computed as

P
(DBS1score, DBS2score,. . .,DBSkscore)/(peak

length). TTSscore, DBSscore, and NPeakscore quantify the strength
of each TTS, DBS, and peak (a peak may contain multiple DBSs).
Upon these quantitative measures and PRC and ROC curves, Fasim
slightly underperforms LongTarget and clearly outperforms TDF
(Fig. 1C; Supplementary Fig. 1) (because the peaks’ neighboring
regions were used as the negative controls, the PRC and ROC curves
of MEG3 are somewhat different from those where random regions
were used as the negative controls) [6].
4. Application

Early studies revealed that H19 and Airn regulate the imprinted
expression of IGF2 and IGF2R to control the embryonic growth of
mammals. Later studies revealed that H19 is the master regulator
of genomic imprinting by regulating many genes. Thus, predicting
H19’s DBSs genome-wide is an interesting application. Fasim took
817 h (times of all cores, using a Xeon(R) E7-4830 v3, 2.10 GHz)
to predict H19’s DBSs in the human genome hg38 (22 autosomal
and 2 sex chromosomes). Thus, by using modern multi-core CPUs,
analyzing lncRNA-mediated epigenetic regulation genome-wide is
feasible (e.g., predicting target genes of H19 and Airn in human and
mouse genomes and analyzing species-specificity of genomic
imprinting).

Using chromosome 21 and chromosomal 22 (which has more
’N’ than chromosome 21), we further compared Fasim, TDF, and
LongTarget (with parameters mentioned above). Fasim took
11.38/11.16 h, and TDF took 17.90/20.46 h to predict DBSs on chro-
mosome 21/22, respectively (LongTarget would take 34 days to fin-
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ish chromosome 21). Upon H19 and chromosome 21/22, Fasim
identified DBD1 (the top-ranked DBD) at 2387–2451 bp (the mean
length of DBSs is 82/86 bp), LongTarget identified DBD1 at 2386–
2451 bp (upon the finished part), but TDF had no DBD passed the
statistical test. By manual checking, TDF identified the best DBD
at 2368–2450 bp, but the mean length of DBSs is 20 bp (TTSs were
not integrated into DBSs). Of note, we previously used LongTarget
to analyze H19 and genomic imprinting in mammals. The pre-
dicted DBSs in annotated imprinted genes agree with experimental
reports, and the predicted DBD1 was at 2366–2465 bp [15]. That
LongTarget and Fasim predicted the same DBD1 upon imprinted
genes and chromosome 21/22, respectively, suggests the reliability
of the prediction.
5. Brief remarks

Triplexes identified by the two kinds of methods are quite dif-
ferent. Those identified by substring search are shorter and have
a higher identity than those identified by local alignment. Which
kind of triplexes is biologically more reasonable may await more
experimental investigations. Although a higher identity may indi-
cate higher stability, identity alone may not critically determine
lncRNA/DNA binding [7]. Triplexes with high identity are inevita-
bly short, and it can be time-consuming to statistically test
whether a set of short triplexes, which are less prone to overlap,
form a DBS. On the other hand, triplexes identified by local align-
ment are often long because mismatches are more tolerable, and
these triplexes are prone to overlap at DBSs. Long TTSs and DBSs
are unlikely to be obtained by chance and are strong signs of true
DNA binding sites. Although Fasim reports fewer triplexes than
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LongTarget, the number and length of DBSs predicted by LongTarget
and Fasim are similar, ensuring that Fasim has comparable power
with LongTarget.
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