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Abstract

Background: Mechanoelectric feedback (MEF) describes the modulation of electrical activity by mechanical activity. This
may occur via the activation of mechanosensitive ion channels (MSCs). MEF has not previously been investigated in fish
ventricular tissue even though fish can greatly increase ventricular end diastolic volume during exercise which should
therefore provide a powerful mechanical stimulus for MEF.

Methodology/Principal Finding: When the ventricles of extrinsically paced, isolated working trout hearts were dilated by
increasing afterload, monophasic action potential (MAP) duration was significantly shortened at 25% repolarisation,
unaltered at 50% repolarisation and significantly lengthened at 90% repolarisation. This observation is consistent with the
activation of cationic non-selective MSCs (MSCNSs). We then cloned the trout ortholog of TRPC1, a candidate MSCNS and
confirmed its presence in the trout heart.

Conclusions/Significance: Our results have validated the use of MAP technology for the fish heart and suggest that, in
common with amphibians and mammals, MEF operates in fish ventricular myocardium, possibly via the activation of
mechanosensitive TRPC1 ion channels.
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Introduction

Mechanoelectric feedback (MEF) is the process by which

mechanical forces acting on the myocardium alter its electrical

properties [1–3]. MEF has been demonstrated in mammalian

studies ranging from isolated myocytes to in situ human hearts [4].

In addition to the modification of action potential (AP) shape,

MEF has been implicated in the generation of arrhythmias (see

[5,6] for reviews).

A mechanism by which MEF may be evoked is the activation of

mechanosensitive ion channels (MSCs) [7–9]. If channels activated

by hyposmotic swelling are excluded, two types of MSCs have

been described in cardiac tissue: potassium selective MSCs

(MSCK) and non-selective cationic MSCs (MSCNS) (see [10]).

MSCNS have a linear current-voltage relationship with a reversal

potential between 0 mV and 230 mV in physiological solutions

[11–13]. This means that they can potentially cause stretch-

induced arrhythmias and early after depolarisations because their

activation is predicted to move the membrane potential toward

their equilibrium potential [14,15]. The effect of stretch on the

shape of the AP is dependent upon experimental conditions (see

[16] for review). However, a specific manifestation of myocardial

stretch that is of particular interest with regard to MEF is the ‘cross

over effect’. When stretch provokes an initial shortening of the

early AP repolarisation time course and an elongation of late

repolarisation, it causes a cross over with regard to the stretched

and unstretched AP time courses [2,17]. Such an effect is

particularly consistent with the activation of MSCNS that have

an equilibrium potential mid-way between the diastolic resting

membrane potential and the peak of the AP upstroke [14,15].

The influence of MSCs on the electrical activity of the intact

heart has been studied by measurement of monophasic action

potentials (MAPs) [18,19]. MAPs are extracellularly recorded

signals whose time course faithfully reproduces the time course of

the intracellular AP [20]. The use of MAP technology has not

previously been extended to fish hearts.

Although MSCNS are highly implicated in the modulation of

cardiac activity by stretch, their identity is still uncertain. Evidence

suggests that transient receptor potential canonical (TRPC)

channels are non-specific cationic ion channels that are also

mechanosensitive [21] and more specifically that they may be

involved in mechanically induced mechanisms in cardiac muscle

(e.g. [22,23]). Recent electrophysiological evidence in adult

mammalian ventricular myocytes suggests a role for TRPC1

[24] and TRPC6 [25].

The fish heart is exquisitely sensitive to stretch through the

Frank-Starling response which links cardiac output to venous

return ([26], [27]). The Frank-Starling response relates the

increase in muscle length (that accompanies myocardial stretch)

to an increased force of contraction in all vertebrate classes (for

review see [28]). Fish are particularly sensitive to this mechanism

and can increase stroke volume (SV) by up to 300% during

strenuous activity [29]. Consistent with this observation, single

isolated piscine cardiomyocytes are highly extensible [30]. The

identification and characterisation of MEF in fish hearts is of

particular interest given that one aspect of MEF in mammalian
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tissue is the provoking of arrhythmias [31], while fish hearts can be

subjected to sudden and large volume loads without provoking

arrhythmias [32].

We tested the hypothesis that MEF is present in fish ventricular

myocardium. To do this our first aim was to validate the use of

MAP technology in fish myocardium. Next, over a physiological

range of input pressures (Pis) and output pressures (Pos), we

investigated the effect of myocardial stretch on the electrical

activity of the isolated working fish heart to provide evidence to

support the presence and physiological activity of MSCNS-like

channels. Finally, we confirmed the presence of a candidate

MSCNS channel, TRPC1, in the fish heart by cloning the channel

and assessing its tissue distribution.

Materials and Methods

Fish
All procedures used in these experiments adhere to the local

ethics committee and the United Kingdom Home Office Animals

Scientific Procedures Act of 1986. The University of Manchester

local ethics committee approved schedule 1 killing of rainbow

trout with no need for a waiver of consent. Rainbow trout

(Oncorhynchus mykiss) were purchased from Chirk Trout Farm

(Wrexham, UK). The trout were kept in re-circulated freshwater

tanks at 1161uC with a 12:12 h light-dark photo-cycle and fed

with commercial trout pellets to satiation three times a week.

Isolated whole heart experiments
Fish (430660 g, n = 8) were sacrificed by concussion of the

brain by striking the cranium. The heart (0.6560.15 g, n = 8) was

excised and placed in an organ bath. The heart was then

cannulated so that the inflow entered the heart through the sinus

venosus and the outflow exited the heart through the bulbus

arteriosus. The cannulated heart was perfused with physiological

saline which contained (in mM) NaCl, 150; KCl, 5.4;

MgSO4.7H2O, 1.5; glucose, 10; CaCl2 2.5; HEPES, 10; pH of

7.8 with NaOH, oxygenated with 100% O2 at 11uC. A tonic level

of adrenaline (10 nM) was included in all solutions to preserve

cardiac tonus and minimize muscle fatigue [33]. The initial set up

procedure did not exceed 8 minutes.

To dilate the ventricle and stretch the myocardium, preload and

afterload on the heart could be increased by altering the heights of

the reservoirs connected to the sinus venosus and bulbus

arteriosus, respectively. Preload was related to Pi and afterload

to Po by pressure transducers (MLT0380/A, pressure transducer,

ADInstruments Ltd, UK) attached to a ML301 bridge pod and

Powerlab/4sp data acquisition system (ADInstruments Ltd, UK).

Pressure transducers were calibrated daily using a delta-cal

transducer simulator/tester (Utah medical, ROI). SV and cardiac

outputs were calculated by collecting the solution pumped by the

ventricle through the bulbus arteriosus.

Initially the heart was allowed to beat spontaneously to assess

the effect of stretch upon heart rate. Cardiac output, heart rate

and MAPs were measured as Pi was sequentially raised from

0.05860.003 kPa up to a maximum of 0.32260.011 kPa. At a Pi

of 0.32260.011 kPa, the Po was increased from 0.5 kPa to 7.5 kPa

in a stepwise manner. Because AP duration is dependent upon

heart rate in the rainbow trout [34], experiments were also

performed with extrinsic pacing of the heart by platinum

electrodes attached to a SD9 stimulator (Grass, Warwick, USA).

A stimulation frequency of 0.8 Hz, using 10 ms square pulses at

twice the voltage threshold required for activation, was chosen as

this was the lowest frequency at which the intrinsic heart rate was

consistently overridden. Additionally, 0.8 Hz is a physiologically

relevant cardiac frequency for rainbow trout at 11uC [35].

MAP recordings in whole hearts
MAP electrodes were made to the design described and

validated for use in small mammalian hearts by Knollmann et al.

[36]. They were constructed from two Teflon coated silver wires

(95% purity) 0.25 mm in diameter (Harvard apparatus, Kent),

twisted around each other to give the electrodes an inherent

spring-like recoil. The distal ends were bent by 90u to each other to

produce a recording element and reference element. Electrodes

were coated with AgCl, by overnight immersion in bleach, to

prevent direct current drift [36]. We also tried larger MAP

electrodes built to the design of [37] but found these were less

successful at producing stable MAP recordings due to unstable

surface contact.

MAPs were recorded from the surface of the ventricle adjacent

to the bulbus arteriosus. This was achieved by placing the

recording element in contact with the ventricle under slight

tension so that the spring-like electrode was able to maintain

contact with the ventricle during the filling and emptying stages of

the cardiac cycle to eliminate motion artefacts. The reference

element was in contact with solution surrounding the heart but not

in direct contact with the surface of the heart. Electrodes were

connected to an ml136 bio amp and Powerlab/4sp data

acquisition system (ADInstruments Ltd, UK). Twelve individual

MAPs were recorded and averaged for analysis at each condition

tested (see below). MAP duration (MAPD) was assessed at 25%,

50% and 90% repolarisation (MAPD25, MAPD50 and MAPD90,

respectively) using Chart v5 (ADInstruments Ltd,). AP triangula-

tion is a measure of the change in shape of the AP in response to

an intervention [38]. MAPD triangulation was calculated as

MAPD90-MAPD25.

Because this was the first study to measure MAPs in the fish

heart, electrocardiograms (ECGs) were simultaneously measured

with MAPs to match QT intervals to MAPD as a validation of the

duration of ventricular repolarisation. ECGs were recorded from

the surface of the heart by electrodes constructed from 2 mm Ag/

AgCl pellet electrodes (Harvard apparatus, UK). ECG electrodes

were placed on the base and apex of the ventricle [39] and

connected to the data acquisition system via a ml136 bio amp

(ADInstruments Ltd).

AP recordings in single myocytes
We also recorded APs from isolated ventricular myocytes from

the rainbow trout at 11uC using a whole-cell current clamp to

compare the profile of the single myocyte APs with that of the

MAP recordings. Myocytes were isolated as previously described

[40] using standard intra- and extracellular solutions for AP

recordings (see [40] for details).

Gene cloning
TRPC1 is a candidate cardiac MSCNS, it has not been

investigated in the trout heart. We cloned the trout variant of

TRPC1 (omTRPC1), firstly to determine its tissue distribution,

particularly in the heart, and secondly to compare its sequence

homology to mammalian TRPC1.

The atrium, ventricle and samples of gill, brain, kidney,

intestine, gonad, liver and skeletal muscle were removed from

sacrificed trout and immediately frozen in liquid nitrogen. Total

RNA was extracted from these tissues with TRIzol reagent

(Invitrogen, UK) according to the manufacturer’s instructions.

RNA was qualified by gel electrophoresis and quantified using an
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ND-1000 spectrophotometer (NanoDrop Products, Wilmington,

USA).

For cDNA synthesis 1 mg total RNA was treated with DNAase I

(Invitrogen, Carlsbad, CA) and reverse transcribed with super-

script II reverse transcriptase (Invitrogen) and an oligo(dT)18

primer, as recommended by the manufacturer. cDNA corre-

sponding to a 350 bp sequence at the 39 end of omTRPC1 was

obtained by PCR using degenerative primers designed to the

homologous regions of corresponding mammalian, amphibian,

avian and zebrafish genes: (FWD 59-TGGYTBAGCTAYTTY-

GATGACAA-39 and REV 59-TGGAGGCTTTGGTGKAGA-

AT-39). PCR amplification was performed using BIOTAQtm

DNA Polymerase (Bioline, UK), according to manufacturer’s

instructions, in a 50 ml reaction mixture using a PTC-100 Peltier

Thermal Cycler (MJ Research, USA). Amplification was per-

formed under PCR conditions with initial denaturation at 94uC
for 2 min followed by 30 cycles at 45uC for 30 s, 56uC for 30 s,

and 72uC for 2 min and final extension at 72uC for 2 min. PCR

products were checked on a 0.8% agarose gel. 1:100 dilutions of

the PCR products were used in nested PCR reactions with a

nested forward primer (5-AAYCATGARGAYAARGARTG-

GAA-39) under similar conditions.

Figure 1. MAPs recorded from fish ventricular myocardium. (A)
A train of MAPs recorded from trout ventricular myocardium paced at
0.8 Hz at 11uC. (B) A single MAP taken from the surface of a trout heart
spontaneously beating at 0.4 Hz. (C) Current-clamp recording of an AP
from an isolated trout ventricular myocyte paced at 0.4 Hz (courtesy of
R. Birkedal). The repolarisation time course of the AP and the MAP are
similar. The y-axis of the MAP has been scaled to facilitate the
comparison of AP/MAP time courses.
doi:10.1371/journal.pone.0010548.g001

Figure 2. ECGs and MAPs recorded simultaneously from the
same fish heart. (A) A MAP recorded from a fish heart extrinsically
paced at 0.8 Hz at 11uC. (B) A QT segment from an ECG recorded
simultaneously from the same heart. The QRS complex and T-wave are
labelled. Note that the QT interval of the ECG trace and the
repolarisation time of the MAP are virtually identical. (C) The QT
interval of the ECG plotted against average MAPD recorded simulta-
neously from both spontaneously beating (black circles, n = 5) and
paced hearts (open circles n = 5). The gradient of the line is close to
unity with a high correlation coefficient (r = 0.97).
doi:10.1371/journal.pone.0010548.g002
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The 59 and 39 ends of omTRPC1 were amplified using

Clontech’s SMART RACE cDNA Amplification Kit for rapid

amplification of cDNA ends. The cDNAs for the 59 and 39 RACE

were synthesised from total RNA, from the trout brain, using a

modified lock-docking oligo (dT) primer in combination with BD

SMART II A oligonucleotide. The 59 end of the cDNA encoding

omTRPC1 was amplified using the omTRPC1 59Race primer (59-

CAGGTCTCTCATCTCGTTGCGGAACTT-39) and Universal

Primer A Mix (UPM) which recognises the BD SMART sequence.

A touchdown PCR protocol was employed following manufac-

turer’s guidelines. A new 59 primer was designed on the basis of

the sequences obtained (59-ACCTGGAGTGCCGTAGGC-

TGTCCTTCTTG-39) and used to clone the remainder of the

59end under the same conditions. The remaining 39 end of

OmTRPC1 was amplified using a 39 primer (59-CCGCTACCT-

GACCTCCACGCGGCAGAA-39).

The PCR products were ligated into the pGEM-T vector

(Promega, Southampton, UK) and sequencing reactions

carried out using Applied Biosystems (ABI, Warrington, UK)

BigDye sequencing kit version 1.1. Amino acid sequence

comparisons were performed using DNAMAN (Lynnon

Biosoft, Canada).

TRPC1 tissue distribution
Gene specific primers were designed from our sequencing

products and b-actin primers were designed using the NCBI

nucleotide sequence for rainbow trout b-actin. Reverse transcrip-

tion polymerase chain reactions (RT-PCRs) were carried out on

pooled cDNA prepared from the tissue samples (n = 3). BIO-

TAQtm DNA Polymerase (Bioline, UK) was used in 50 ml reaction

mixtures, following the PCR protocol: initial denaturation at 94uC
for 2 min followed by 25 cycles for b-actin, or 30 cycles

for omTRPC1, at 94uC for 30 s, 58uC for 30 s, and 72uC for

Figure 3. Hemodynamics of the isolated trout working heart.
(A) The Frank-Starling relationship in the spontaneously beating
isolated heart. SV increases to a maximum (1.1060.17 ml kg21) at a
Pi of 0.2160.12 kPa after which it declines (p,0.05, One-Way RM
ANOVA, Student-Newman-Keuls post hoc, not shown). (B) The increase
in heart rate with increasing Pi in the spontaneously beating rainbow
trout heart with a Po of 0.5 kPa (p,0.05, one way RM ANOVA, Student-
Newman-Keuls post hoc, not shown). Lines represent polynomial fits of
the data (all data are means 6 S.E.M. of n = 8 hearts at 11uC).
doi:10.1371/journal.pone.0010548.g003

Figure 4. Representative MAP recordings from the working
rainbow trout ventricle before and after stretch. The y-axis has
been normalised to peak amplitude. (A) MAPs recorded from a
spontaneously beating ventricle at a Pi of 0.05860.003 kPa, a Po of
0.5 kPa and a heart rate of 0.35 Hz (solid lines), and with a Pi of
0.32260.011 kPa, a Po of 7.5 kPa and a heart rate of 0.75 Hz (dashed
lines). The shortening of MAPD25 can be observed. (B) MAP recordings
taken from the surface of a ventricle extrinsically paced at 0.8 Hz. MAPs
recorded at a Pi of 0.32260.011 kPa and a Po of 0.5 kPa (solid lines) and
7.5 kPa (dashed lines). A shortening of MAPD25 and an elongation of
MAPD90 can be observed showing a classical stretch-induced cross
over in the MAP waveform. Recordings shown are the average of 4
traces under each condition.
doi:10.1371/journal.pone.0010548.g004
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2 min and final extension at 72uC for 2 min. Gel electrophoresis

on a 0.8% agarose gel was used for qualification and

comparison.

Statistics
Statistical analysis was performed using one-way ANOVA or

one-way RM ANOVA followed by the appropriate post hoc test, as

described in the figure legends (Sigmastat 3.5, Sysstat software,

Germany). p,0.05 indicated a significant difference. All data are

reported as means 6 S.E.M.

Results

MAP recordings in the isolated fish heart
We were able to record trains of MAPs from the surface of

beating trout hearts that displayed minimal basal line disturbance,

indicating negligible motion artefacts in the recordings (Figure 1A).

The profile of the trout ventricular MAP (Figure 1B) was

consistent with that of previously recorded intracellular APs in

the same species (e.g. Figure 1C) the main characteristics being a

rapid upstroke, a maintained, elevated phase 2 (plateau) region

and an overall duration of several hundred ms. We simultaneously

Figure 5. The effect of stretch on the MAP of the fish heart. Spontaneously beating hearts (n = 8) are represented by black bars. These hearts
initially had their Pi increased to 0.32260.011 kPa before Po was increased to 7.5 kPa. The grey bars represent hearts extrinsically paced at 0.8 Hz
(n = 8). Pi for the extrinsically paced hearts was held at 0.32260.011 kPa and Po was increased. MAPD is shown at MAPD25 (A,D), MAPD50 (B,E) and
MAPD90 (C,F) (mean 6 S.E.M, p,0.05). The only significant effect of stretch upon the MAPD of spontaneously beating hearts is to shorten MAPD25
(* indicate significant differences, p,0.05, One-Way ANOVA, Student-Newman-Keuls post hoc). Hearts extrinsically paced at 0.8 Hz show a significant
decrease in MAPD25 and a significant increase in MAPD90, representing a classical stretch-induced cross over (p,0.05, One-Way ANOVA, Student-
Newman-Keuls post hoc, significant differences between columns marked a and b).
doi:10.1371/journal.pone.0010548.g005
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recorded ECGs and MAPs (Figure 2A, B) to provide internal

verification that the MAPs faithfully recorded the duration of

repolarisation. The QT interval of the ECG (a measure of

ventricular repolarisation) was found to be highly correlated with

MAPD (Figure 2C); the slope of the relationship was 0.9860.09.

The upstroke times of mammalian MAPs are typically longer than

those of intracellular APs and we observed a similar effect in trout

hearts (at equivalent temperature and stimulation frequency,

11uC, 0.4 Hz) (see discussion).

The effect of stretch on the hemodynamics of the
isolated fish heart

The Frank-Starling response of the spontaneously beating trout

heart is shown in Figure 3A. SV significantly increased with Pi to a

maximum (1.1060.17 ml kg21) at a Pi of 0.2160.12 kPa

(p,0.05). In addition, a significant elevation of heart rate from

0.3660.02 to 0.7860.07 Hz (p,0.05) was observed when Pi was

increased (Figure 3B).

In the spontaneously beating heart, raising Po from 0.5 to

7.5 kPa at a Pi of 0.32260.011 kPa caused a significant decrease

in SV from 0.9460.12 to 0.6060.06 ml kg21 (p,0.05, not

shown). When the heart was paced at 0.8 Hz, increasing Po from

0.5 to 7.5 kPa only reduced SV slightly, by an average of

0.1 ml kg21 (from 0.5760.09 to 0.4860.09 ml kg21, not shown),

illustrating homeometric regulation of the isolated working heart

[41].

The effect of stretch on the MAP of spontaneously
beating hearts

Stretch was applied to the heart via an increase in Pi up to

0.32260.011 kPa, followed by a stepwise increase of Po up to

7.5 kPa. Figure 4A illustrates the effect of stretch on the MAPD25,

MAPD50 and MAPD90. Mean data is shown in Figure 5 (A, B,

C). When Pi was raised to 0.32260.011 kPa there was a significant

shortening of MAPD25 to 155653 ms (p,0.05). Raising Po to

7.5 kPa significantly shortened MAPD25 from all previous

conditions (126621 ms, p,0.05) (Figure 5A). Increasing Pi or Po

had no significant effect on either MAPD50 or MAPD90.

Increased heart rate is known to decrease AP duration in the

rainbow trout [34], therefore the changes in MAPD recorded in

the spontaneously beating heart might reflect the combined effects

of MSC activation and heart rate. To investigate this possibility we

repeated the study on isolated hearts extrinsically paced at a fixed

stimulation frequency of 0.8 Hz.

The effect of stretch on the MAP of extrinsically paced
hearts

The hearts were paced at 0.8 Hz and Pi was held at

0.32260.011 kPa. Stretch was applied by increasing Po up to a

maximum of 7.5 kPa. Figure 4B provides a representative

recording which illustrates the effect of stretch on MAPD25,

MAPD50 and MAPD90; mean data is given in Figure 5 (D, E, F).

MAPD25 was significantly decreased when Po was increased (from

12064 ms at Po 0.5 kPa to 9063 ms at Po 7.5 kPa, p,0.05).

MAPD50 was unaffected by changes in Po (from 20768 ms at Po

0.5 kPa to 20265 ms at Po 7.5 kPa, p.0.05), whereas MAPD90

was significantly increased (from 28867 ms at Po 0.5 kPa to

31463 ms at Po 7.5 kPa, p,0.05). The QT interval of the ECG

also significantly increased (from 29863 ms at Po 0.5 kPa to

32164 ms at Po 7.5 kPa, p,0.05; not shown). The effect of these

changes on MAP profile can be seen in Figure 4B where a classical

stretch-induced cross over between the pre- and post-stretch MAP

traces is clearly visible. The progressive change in the shape of the

MAP upon increased Po is demonstrated by the significant change

in MAP triangulation with increased Po (Figure 6).

Cloning of trout TRPC1
Coding regions of the omTRPC1 gene (accession number:

GQ366701) were cloned from rainbow trout cDNA. omTRPC1 is

779 amino acids in length and shares 83.8% homology with

human TRPC1 (Figure 7A). This is in contrast to the 30%

homology found between omTRPC1 and zebrafish TRPC2,

evidence that this gene is indeed TRPC1.The tissue distribution is

shown in Figure 7B and confirmed that omTRPC1 is present in

both the trout atria and ventricle. It also shows that of the

investigated tissues, omTRPC1 is most concentrated in the brain

and least concentrated in the gonads. TRPC1 has 6 predicted

membrane spanning segments and conservation of amino acids

between TRPC1 orthologs is most obvious at the proximal end of

the sixth membrane-spanning segment where the highly conserved

channel pore domain (LFW) and TRP box (EWKFAR) can be

found [42,43]. Both the channel pore domain and the TRP-box

domain are highly conserved in omTRPC1 (Figure 8).

Discussion

Our MAP recordings are the first from a fish species and exhibit

a time course and profile that is consistent with both the QT

interval of the associated surface ECG and the intracellular APs

recorded from isolated myocytes. The upstroke of the MAP was

slower than that of the intracellular AP, which is consistent with

previous comparisons of MAPs and intracellular APs from

mammals. This is thought to be related to the fact that the

MAP is recorded from a small area of tissue around the MAP

electrode rather than a single myocyte and that there is a

sequential alteration in current flow across this area of tissue [44].

We recommend the use of the small flexible MAP electrodes

designed for use in mouse hearts by Knollman et al. [36], and

conclude that MAP recordings are a valid technique for assessing

electrical activity of the fish heart.

Figure 6. Effect of stretch on MAP triangulation. MAP triangu-
lation is a numerical indicator of AP shape, and was calculated as
MAPD90-MAPD25. As Po was increased there was a progressive and
significant increase in triangulation as MAPD90 lengthened and
MAPD25 shortened. This observation is consistent with graded
activation of MSCNS by stretch (p,0.05, One-Way ANOVA, Student-
Newman-Keuls post hoc, significant differences between points marked
a and b).
doi:10.1371/journal.pone.0010548.g006
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The range of Pis used in this study are similar to those used in

previous work on isolated trout hearts (e.g. [45,46]) and those used

to generate maximum cardiac performance of the trout heart in

situ [35]. The Pos are similar to those recorded in the ventral aorta

of trout swimming at 50% maximum prolonged swimming speed

[41,46]. We did not perfuse the coronary system in the current

study as previous work has shown that gassing the perfusate with

100% O2 ensures ample oxygen supply to working trout

myocardium [46–48]. Indeed, the stroke work of our preparation

(at comparable Pis) is equal or greater than that achieved in a

similar study where the coronary system was perfused [45].

Moreover, we show a similar increase in SV over a physiological

range of Pis as seen in vivo and in situ [46], and SV does not decline

rapidly at high input pressures, suggesting our preparation was

working over physiological levels of distension [49].

We found that the electrical properties of the isolated trout

ventricle were significantly altered when subjected to raised Pi and

Po. We show an initial stretch-induced shortening of MAPD25 in

both the spontaneously beating and externally paced isolated

heart. This phenomenon was first reported in the frog ventricle [2]

and has since been reported in the mammalian ventricle [50,51].

This initial shortening is thought to be due to the hyperpolarising

effect of active MSCNS (and possibly MSCK) driving the

membrane potential to their respective equilibrium potentials

[14,15].

We saw no change in MAPD90 in the spontaneously beating

heart. Stretch increased heart rate and an increase in heart rate

leads to a shortening of APD in fish [34] while activation of

MSCNS is predicted to lengthen MAPD90. It was therefore

possible that our observations in spontaneously beating hearts

were an amalgamation of these two effects. In addition to

activation of MSCs, stretch may also alter intracellular Ca2+

handling and thus Ca2+ activated membrane currents [52,53].

However, when single trout myocytes, contracting auxotonically,

Figure 7. Trout TRPC1 (omTRPC1). (A) Homology tree representative of similarities between the omTRPC1 ortholog and cloned full-length TRPC1
channels of other species. Branch length is percentage homology. (B) Tissue distribution of omTRPC1 and b-actin in various trout tissues.
doi:10.1371/journal.pone.0010548.g007
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were stretched there was no alteration in the intracellular Ca2+

transient [30].

At a fixed heart rate of 0.8 Hz, stretch caused a significant

shortening of MAPD25 and lengthening of MAPD90. These

changes in MAPD25 and MAPD90 are similar to the previously

described cross over effect attributed to the activation of MSCNSs

[14,17,44,51]. If we scale our MAP amplitude to the trout

intracellular AP amplitude reported by Harwood et al. ([34]), i.e.

from 50 mV to 280 mV, our data gives a cross over point in the

region of 225 mV. Although this is a rough approximation, it

does indicate the cross over within the expected voltage range for

MSCNSs.

We also observed a stretch-induced increase in heart rate in the

spontaneously beating trout heart, this is termed ‘the Bainbridge

Figure 8. Sequence alignment of omTRPC1. Alignments of the omTRPC1 (accession number: GQ366701) sequence to known homologs in other
species using the ClustalW algorithm. Conserved amino acids are denoted by *. The highly conserved channel pore domain (LFW) and TRP box
(EWKFAR) are highlighted in gray.
doi:10.1371/journal.pone.0010548.g008
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effect’ [54], and has been observed in a variety of fish species

[55,56]. Although it does not seem to be present in the in situ trout

heart preparation of Graham and Farrell ([33]), it has been

suggested that the Bainbridge effect may be more important in

non-mammalian vertebrates which have less neurohormonal

control over their hearts [57]. The in situ preparation lacks

neurohormonal control but the pericardium surrounding the heart

is intact. In the present study, we removed the heart from the

pericardium so that the MAP electrodes could be placed in contact

with the myocardium. Future studies should address the role of the

pericardium in MEF in fish.

Having found evidence to support the existence of MSCs in the

rainbow trout ventricle, we used molecular methods to investigate

the presence of TRPC1 (a candidate MSC) in rainbow trout

cardiac tissue. We found omTRPC1 in both the atria and ventricle

of the trout heart to be similar to that of most other tissues apart

from the brain, where expression was higher. Although mRNA

expression does not directly relate to protein expression, the study

by Ohba et al. [58] shows that expression of TRPC1 mRNA and

protein are fairly well matched in the mouse heart. The high

expression of omTRPC1 in the brain is to be expected as TRPC1

is involved in processes such as growth cone guidance and the

generation of the excitatory postsynaptic potential [59].

The fact that omTRPC1 shares 83.8% homology with

mammalian TRPC1 is promising as it may have similar

mechanosensitive properties. Unfortunately, it is not known which

part of the protein confers mechanosensitivity and so it is

impossible, at present, to asses if differences in mechanosensitivity

are due to differences in the amino acid sequence.

In terms of the physiological importance of MEF and MSCNS in

fish myocardium, the Po required (5.5 kPa) to significantly alter the

MAP are comparable to those measured in swimming trout [41]

suggesting that MSCNS are of physiological significance when a

fish is active. As TRPC1 has been implicated in the promotion of

mammalian cardiac hypertrophy [58] it may be implicated in

temperature-induced cardiac hypertrophy in fish [33].

This study provides the first MAP recordings from a fish species

and is the first investigation into the effects of stretch on the

electrical activity of fish ventricular myocardium. There are three

principal findings: MAP recordings are a valid technique for use in

fish hearts; MEF operates in trout ventricle, within physiological

extremes of Pi and Po, in a manner consistent with the activation of

MSCNS, and TRPC1 (a candidate MSCNS) is present in the

rainbow trout heart and is broadly similar to its mammalian

ortholog. Thus our data are consistent with the idea that MEF is a

common feature in the regulation of vertebrate cardiac muscle. In

addition, the T-tubule network has been proffered to explain why,

despite recordings of whole cell currents carried by MSCNS, no

study has successfully recorded single channel activity of MSCNS

from mammalian ventricular myocytes [13]. Adult trout ventric-

ular myocytes do not possess a T-tubule network and therefore

may provide a useful tool for further study of MSCNS in adult

ventricular tissue.
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