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Abstract: As a neurodegenerative disorder, Parkinson’s disease (PD) affects the nerve cells of the
human brain. Early detection and treatment can help to relieve the symptoms of PD. Recent PD
studies have extracted the features from vocal disorders as a harbinger for PD detection, as patients
face vocal changes and impairments at the early stages of PD. In this study, two hybrid models
based on a Support Vector Machine (SVM) integrating with a Principal Component Analysis (PCA)
and a Sparse Autoencoder (SAE) are proposed to detect PD patients based on their vocal features.
The first model extracted and reduced the principal components of vocal features based on the
explained variance of each feature using PCA. For the first time, the second model used a novel Deep
Neural Network (DNN) of an SAE, consisting of multiple hidden layers with L1 regularization to
compress the vocal features into lower-dimensional latent space. In both models, reduced features
were fed into the SVM as inputs, which performed classification by learning hyperplanes, along with
projecting the data into a higher dimension. An F1-score, a Mathews Correlation Coefficient (MCC),
and a Precision-Recall curve were used, along with accuracy to evaluate the proposed models due
to highly imbalanced data. With its highest accuracy of 0.935, F1-score of 0.951, and MCC value of
0.788, the probing results show that the proposed model of the SAE-SVM surpassed not only the
former model of the PCA-SVM and other standard models including Multilayer Perceptron (MLP),
Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), and Random Forest (RF), but
also surpassed two recent studies using the same dataset. Oversampling and balancing the dataset
with SMOTE boosted the performance of the models.

Keywords: medical analytics; Parkinson’s disease detection; principal component analysis; sparse
autoencoder; support vector machine

1. Introduction

Parkinson’s disease (PD), a long-term neurodegenerative disorder affecting the human
motor system, results in many motor and non-motor characteristics [1]. It is considered
one of the most common movement disorders among individuals over 60 years of age [2].
PD has a Relative Risk (RR) of death of 2.3 (1.8 to 3.0) [3]. PD can be detected by observing
changes in behavioral patterns, as well as by observing rigidity, cognitive impairment,
bradykinesia, tremors, and postural instability [4]. PD is currently incurable, but treatment
following early diagnosis can improve and relieve the symptoms. Most people experience
a normal life expectancy of another 7 to 14 years after diagnosing PD [5]. However, PD has
a more than 25% rate of misdiagnosis [6]. More accurate detection of PD can increase the
life expectancy for a diagnosed PD patient by preventing complications and maintaining a
high quality of life with the necessary pharmacological and surgical intervention [7].

In order to detect PD at an early stage, many health informatics systems, including
telediagnosis and telemonitoring systems, have been developed for current pharmacologi-
cal therapeutics [8]. Researchers are concentrating on identifying biological markers for
the detection phase. At present, the application of Machine Learning (ML) is thriving in
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the field of prediction; hence, it is widely used in PD diagnosis. Neuroimaging modalities,
including feature extraction from the processing of scanned data such as MRI images
using different ML techniques, are paving a promising way towards detecting PD [9–11].
These health informatics systems aim to reduce the discommoding physical visits to clinics
for clinical examination, which, as a result, will reduce the task of health workers and
clinicians [12–15].

There are many symptoms that appear in PD patients, including posture and balance
deficiencies, dysphonia (change in speech and articulation), and slowed movement, etc.
Among these symptoms is vocal dysfunction, which results in vocal instability, loudness,
and damaged vocal quality. Therefore, the early detection of PD can be done by analyzing
speech signals, as 90% of PD patients face vocal problems in the incipient stage of the
disease [16]. Consequently, the recent focus of PD detection research emphasizes the vocal
disorders of patients. In recent studies, clinical features from the speech of PD patients
were extracted and fed into a classification model with the help of various speech signal
processing algorithms. Based on speech recordings, this telemonitoring study mapped the
vocal features of PD to a clinical evaluation system that predicted the possibility of PD in
patients. Moreover, the collection of speech data was a non-invasive process, which made
the data easy to collect and subsequently provide as the input of the telediagnosis system.

ML techniques including Artificial Neural Networks (ANN) [17], K-Nearest Neighbors
(KNN) [18], Random Forest (RF) [19], and Extreme Gradient Boosting (XGBoost) [20] have
been used in PD classification based on patient vocal disorders. However, the success
rate of accurate detection depends on the quality of data, on the relevance of the features
extracted from them, and on the associated ML models. Many recent studies have been
conducted on a publicly available dataset that consists of the sound measurements of 8
healthy and 23 PD-affected instances, aggregating 195 data samples [21]. Another publicly
available dataset includes the data of 20 PD patients and 20 healthy individuals [12]. Both
datasets consist of some common features extracted from the speech signals, including
vocal fundamental frequency, measures of the ratio of the noise-to-tonal components,
measures of variation in amplitude, measures of variation in fundamental frequency, etc.
Since a good number of the studies regarding PD classification from vocal features are
conducted with these datasets, the features extracted from these datasets are referred to
as the baseline features. Other features are also used to detect PD, such as Mel-frequency
Cepstral Coefficients (MFCC) and Signal-to-Noise Ratio (SNR) [22]. In a recent study, the
effectiveness of vocal features was analyzed [15]. Although slow movement, tremors,
inertia, and balance deficiency are among the symptoms of PD, vocal and speech signal
processing is widely used as they can be easily tracked by the changes of speech along with
other symptoms’ data, as formerly stated, from wearable sensors.

Sharma and Giri extracted different features from voice signals, including MFCC,
jitter, shimmer features, pitch, and glottal pulse [23]. These feature values of a PD patient
show higher fluctuations and variance than those of a normal person. Tunable Q-factor
Wavelet Transform (TQWT) was introduced in a recent study by Sakar et al. [16], along
with other features, to detect PD patients from their vocal signals. The same dataset was
being experimented in a study using Deep Learning techniques, where two frameworks
consisting of Convolutional Neural Networks (CNN) were applied [24]. However, properly
training Deep Neural Networks (DNN) to converge requires very large datasets and also
takes substantial training time in order to search the parameter space. In addition, dividing
all the features into different sets, a feature that is more relevant and important in the
classification process, is treated in the same way as other less important features of the
same set, which decreases the accuracy of detecting a PD patient.

Bouchikhi et al. [25] proposed a model with an SVM as a classifier and Relief-F as
a feature selection method. In their study, the feature set was reduced from 22 to 10.
Subsequently, the SVM classifier with a 10-fold cross-validation method showed that Relief-
F had an accuracy rate of 96.88%. The dataset contained 195 voice samples. However, it was
empirically and theoretically proved that the performance of core relief-based algorithms
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(RBA) decreases drastically as the number of irrelevant features becomes enormous [26].
This is because as the number of features increases, Relief’s computation of neighbors
and weights becomes excessively random, which is an example of curse dimensionality.
Additionally, [27] found that RBAs are vulnerable to noise interfering with the section of
nearest neighbors.

Hemmerling and Sztahó [28], on the other hand, proposed the use of PCA with a
non-linear SVM to identify PD patients, and their methods show a classification accuracy
rate of 93.43%. However, the dataset used in their study was comparatively small. Small
datasets have several disadvantages, leading to lower precision in the prediction and lower
power. They also pose a greater risk as they may compare the classes unfairly, even in
circumstances where the data is from a randomized trial.

Our study adopted two different feature extraction techniques, including Principal
Component Analysis (PCA) [29] and a novel deeper Sparse Autoencoder (SAE) [30], where
the PCA is widely used when the features are linearly related and our novel SAE is
capable of working well with non-linearly related features in order to reduce the feature
set dimensionality and take into account the most important and relevant information for
classification. Moreover, feeding the model irrelevant and high dimensional data risks
over-fitting. In order to classify between a PD patient and a healthy individual, the Support
Vector Machine [31,32] is employed as a powerful classification method that exceeds other
techniques with fewer subjects. When the number of features is high, SVM is more efficient
at classification task in high dimensional spaces with less training data, delivering a unique
solution surpassing the Neural Networks in the case of convex optimality problems. This
study aimed to eliminate the drawbacks of both Gunduz [24] and Sakar et al. [16] by
applying two hybrid models integrating PCA-SVM and SAE-SVM.

The rest of the paper is organized as follows: Section 2 summarizes the related work
conducted in this domain, Section 3 contains the description of the dataset, Section 4
describes the methodologies that are used in this study, Section 5 states the experimental
results and comparison with different traditional and state-of-the-art disciplines, and
Section 6 briefly draws the findings and future directions of research.

2. Related Works

In this section, various recent studies on PD classification using machine learning
algorithms and deep learning methods have been summarized.

In [33], Karimi Rouzbahani and Daliri used voice signals for PD detection. Parameters
such as pitch, jitter, fundamental frequency, shimmer, and various statistical measures
based on these parameters were used as the input of the proposed predictive model.
The harmonics-to-noise ratio and the noise-to-harmonics ratio were also extracted using
estimates of signal-to-noise by calculation of the autocorrelation of each cycle. In their
study, one of every two features which resulted in a correlation rate of over 95% was
removed. Several feature selection methods, such as Receiver Operating Characteristics
(ROC) curves, t-test, and Fisher’s Discriminant Ratio (FDR), were utilized to identify the
informative features among the whole feature set. The number of features was incremented
one by one. Afterwards, the prioritized features were fed into an SVM classifier. The
highest performance was achieved using three classifiers at hand and a combination of the
seven most prior features. The selected features were used to train the SVM, KNN, and
discrimination-function-based (DBF) classifiers. Among these classifiers, KNN showed the
best performance with an accuracy rate of 93.82%. KNN has also shown good performance
in other performance matrices such as error rate, sensitivity, and specificity.

Ma et al. [34] proposed a novel hybrid method integrating subtractive clustering
features weighting (SCFW) and kernel-based extreme learning machine (KELM) for the
diagnosis of PD patients. SCFW, a data-preprocessing tool, is used to decrease the variance
in the dataset. The output of the SCFW further improved the accuracy of the KELM classi-
fier. The efficiency of the proposed method was justified in terms of accuracy, specificity,
sensitivity, Area under the ROC Curve (AUC), kappa statistic value, and f-measure. The
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proposed method outperformed (via a 10-fold cross-validation scheme) the SVM-based,
ELM-based, KNN-based, and other methods with a classification accuracy of 99.49%.

Zuo et al. [35] presented an effective method for the diagnosis of PD patients using par-
ticle swarm optimization (PSO) enhanced fuzzy k-nearest neighbor (FKNN). PSO-FKNN
uses both the continuous and binary versions of PSO to achieve parameter optimization
and feature selection concurrently. The continuous PSO adaptively specifies the fuzzy
strength parameter m in and the neighborhood size k in FKNN, whereas the most discern-
ing subset of features in the dataset is chosen by the binary PSO. This PSO-FKNN model
was justified in terms of the accuracy, specificity, sensitivity, and the AUC of the ROC curve.
The proposed model achieved a mean accuracy rate of 97.47% via a 10-fold cross-validation
analysis.

Sharma and Giri [23] applied three types of classifiers based on MLP, KNN, and SVM
to diagnose PD patients. Among these, SVM with an RBF kernel showed the best result
with a total classification accuracy rate of 85.294%.

Parisi et al. [36] proposed an artificial intelligent classifier using Multilayer Perceptron
(MLP) and Lagrangian Support Vector Machine (LSVM). The importance scores of the
features were assigned by the MLP with custom cost functions, which included both the
AUC score and the accuracy. The MLP provided the 20 most important features with high
importance scores, which were then fed into the LSVM classifier. The proposed method
achieved an accuracy rate of 100% and was compared with other similar studies.

For the first time, Sakar et al. [16] introduced tunable Q-factor wavelet transform
(TQWT) to vocal signals for the diagnosis of PD patients. The feature subsets obtained
from the dataset were given as input in various classifiers, and the study showed that
TQWT-based features tend to achieve better results than the other popular voice features
used in PD classification. In their study, a combination of TQWT plus Mel-frequency
cepstral coefficients (MFCC) plus Concat showed the best performance in terms of all
metrics and among all classifiers with an accuracy rate of 85.7%, an F1-score of 0.84, and an
MCC value of 0.59.

Gunduz [24] used the same dataset used in Sakar et al. [16] to diagnose PD patients
using Deep Learning Techniques, where two frameworks consisting of CNN were applied.
Both of the studies used the features as subsets and estimated the accuracy by a combination
of input into the ML models. Gunduz [24] showed a higher accuracy of 86.9%, an F1-score
of 0.910, and an MCC value of 0.632.

Caliskan et al. [37] proposed a PD detection model, which is a DNN classifier con-
sisting of a stacked autoencoder used for obtaining inherent information within the vocal
features. Their proposed model was compared with several other state-of-the-art ML
models, and it was concluded that the DNN classifier was convenient in the diagnosis of
PD patients. However, DNN requires plenty of data to be suitably trained to converge and
also takes a lot of training time in order to search the parameter space. Moreover, their
study focused only on feature extraction by redundancy removal while classifying PD
patients.

In another study, Wroge et al. [38] performed the diagnosis of PD patients using DNN.
A mobile application was used to collect the data of PD patients and non-PD patients.
Two types of feature sets were obtained from the collected data. The first one was the
Audio-Visual Emotion recognition Challenge (AVEC), which had dimensions up to 2200,
and the second features set contained 60 features that were set up using MFCC. The features
were given as input in a three-layered DNN and other AI classifiers. The results showed
that DNN had the highest accuracy rate of 85% compared to the average clinical diagnosis
accuracy rate of 73.8%.

The above-mentioned studies are based on vocal features as an important factor for
detecting PD patients. Apart from these, several other studies have also been performed
which extracts features from different datasets, e.g., wearable sensors [39], electroencephalo-
gram (EEG) [40], and smart pens [41].
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3. Dataset

The dataset was obtained from the University of California-Irvine (UCI) Machine
Learning repository and was used in [16,24] before the present study. Table 1 contains
the details of the dataset. The dataset has an imbalance regarding the number of men
and women (a ratio of 23:41) and healthy individuals and PD patients (a ratio of 107:81).
PD is 1.5 times more common in men, and along with that, motor progression is more
aggressive in men than in women. Nevertheless, there are no significant differences in
terms of demographic variables [42].

Table 1. Details of the dataset.

Data Set Characteristic Multivariate

Attribute characteristic Integer, Real

Total attributes 754

Total instances 756

Subjects involved 252

Healthy individuals involved 64 (23 men and 41 women) with an average age of 61.5 years

PD patient involved 188 (107 men and 81 women) with an average age of 60 years

Types of classification Binary (healthy (class 0), PD patient (class 1))

Voice recordings per person 3

Missing values N/A

Data Collection Process
Microphone frequency = 44.1 KHz. Each individual sustained

phonation of the vowel/a/was collected by following the
physician’s examination

Generated by
Department of Neurology in Cerrahpasa Faculty of Medicine,
Istanbul University with the approval of the Clinical Research

Ethics Committee of Bahcesehir University

As speech anomalies are one of the key effects that have been seen in PD patients,
vocal features and speech signal attributes have been used successfully to assess PD. The
traditional features mostly used in PD detection are the fundamental frequency param-
eters, Recurrence Period Density Entropy (RPDE), jitter, harmonicity parameters, Pitch
Period Entropy (PPE), Detrended Fluctuation Analysis (DFA), etc. [14,15,21,22,43]. In [16],
these features were classified as baseline features. Additionally, Praat acoustic analysis
software [44] was used to extract these baseline features. The description of the features is
provided in Table 2. Feature engineering is adopted from [16] in our study.

The shape of the human vocal tracts (e.g., teeth, tongue etc.) is the most important
component of any sound generation. To accurately represent this sound, this shape must
be determined correctly. The vocal tract representative is the envelope of the time power
spectrum. This envelope is accurately represented by Mel-Frequency Cepstral Coefficients
(MFCCs). In other words, MFCCs can imitate the characteristics of the human ear and have
been used in different speech recognition tasks [45,46]. In this study, MFCCs are being
employed to detect the aberration in the human tongue and lips, which are directly affected
by PD. In Figure 1, a stepwise summary of the MFCC block diagram is shown.
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Table 2. Feature sets of Parkinson’s disease data [24].

Feature Measure Number of Features

Baseline features

Jitter variants 5
Shimmer variants 6

Fundamental frequency parameters 5
Harmonicity parameters 2

Recurrence period density entropy (RPDE) 1
Detrended fluctuation analysis (DFA) 1

Pitch period entropy (PPE) 1

Time-frequency features
Intensity parameters 3
Formant frequencies 4

Bandwidth 4

Mel-frequency cepstral coefficients (MFCCs) MFCCS 84

Wavelet transform-based features Wavelet transform-based features 182

Vocal fold features

Glottis quotient (GQ) 3
Glottal to noise excitation (GNE) 6
Vocal fold excitation ratio (VFER) 7

Empirical mode decomposition (EMD) 6

Tunable Q-factor wavelet transform (TQWT) TQWT features 432

Figure 1. Mel-Frequency Cepstral Coefficients (MFCC) block diagram.

The formula for the frequency to Mel scale is given below:

M( f ) = 1125 ln
(

1 +
f

700

)
(1)

where f = frequency of the signal.
The Mel-scale relates the acquired frequency of a tone to the actual measured frequency,

which scales the frequency to mimic the human ear. Cepstrum is the information rate
of change in spectral bands. Mel frequency cepstral is obtained by taking the log of the
magnitude of the Fourier spectrum and later taking the spectrum of this log by a cosine
transformation; there is a peak observed where there is a periodic element in the original
time signal. Upon applying a transform on the frequency spectrum, the resulting spectrum
is in neither the time domain nor the frequency domain. Hence, it is called the “quefrency
domain” [47]. The log of the spectrum of the time signal was named cepstrum.

Wavelet transform (WT), similar to Fourier transform, was used with a completely
different merit function that uses functions which are confined in both real and Fourier
space. The following equation expresses the mathematical function of WT:

F(a, b) =
∫ +∞

−∞
f (x)ϕ∗(a,b)(x)dx (2)

where ϕ = some function and * is the complex conjugate symbol.
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From Equation (2), it can be inferred that WT is an infinite set of various transforms,
depending on the merit function used for its computation. It can be useful for making
decisions on a signal, especially on the regional scale with small fluctuations. WT is a
very popular tool as, in several studies, special features have been extracted from the basic
frequency of the speech signal (F0). Speech sample deviation can be captured by WT-based
features [48]. This is how WT can detect sudden aberrations of long-term vowels in clinical
speech recordings. In this dataset, the WT-based feature number is 182, which includes the
Shannon’s and the log energy entropy, the energy, and the Teager-Kaiser energy of both the
approximation and detailed coefficients. WT-based features obtained from the raw (F0)
contour and the log transformation of the (F0) contour have been collected using a 10-level
discrete wavelet transform.

In a very recent work [16], TQWT-based features were used. It is a completely discrete,
over-complete WT and the main feature extractor [49]. To transform signals in better
quality, TQWT uses three tunable parameters, which are Q-factor (Q), redundancy (r), and
the number of levels (J). Speech signals have high oscillatory time series characteristics
for which a Q-factor with a relatively high value is appropriate. The TQWT consists of
two filter banks. The low pass filter (LPF) output is provided as the inputs of the second
LPF or the high pass filter (HPF) bank. The filter banks are iteratively applied. If J is the
number of levels, J HPF and one final LPF output will provide J + 1 sub-bands at the end of
the decomposition stage. The redundancy rate (r), also known as the decomposition rate,
controls the unexpected excessive ringing. Without affecting the shape, this process helps
to localize the wavelets in the time domain [49]. The TQWT parameters are determined in
the following order:

• Defining the Q-factor parameter to regulate the oscillatory behavior of the wavelet.
• Setting the r parameter value greater or equal to three to prevent the undesired ringing

in wavelets.
• Searching for the best accuracy value in different Q–r pairs of several numbers of

levels (J) in the fixed intervals.

There are a total of 432 TQWT-related features available in this data set.
Apart from the aforementioned features, several other features have also been em-

ployed depending on vocal fold vibration. Features such as the Vocal Fold Excitation Ratio
(VFER), Glottal to Noise Excitation (GNE), the Glottis Quotient (GQ), etc., have also been
employed to explore the effect of noise on the vocal fold.

To be mentioned, min-max normalization on this data has been performed to keep the
same differences in the range of values by fitting the feature values into a common scale.
The normalization process is a data pre-processing part to handle the bias to larger feature
values [50].

4. Methodologies
4.1. Principal Component Analysis (PCA)

A large number of features and high dimensional data increase computational costs,
memory usage and also reduce accuracy. Principal Component Analysis (PCA) orthog-
onally transforms sets of correlated variables into sets of linearly uncorrelated ones [51].
These new uncorrelated features are called the principal components and are equal or
lesser in number than the original variables.

In PCA, the covariance matrix of the data points X is calculated, where X is a m× n
matrix, m being the dimension and n being the number of data points. The Eigenvectors are
sorted in descending order according to the Eigenvalues calculated. The first k Eigenvectors
are chosen if the number of principal components corresponds to k. The covariance matrix
Cx can be calculated by Equation (3):

Cx =
1

n− 1
(
X− X

)(
X− X

)T (3)
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where X = Transpose of X.
PCA is an unsupervised technique without knowing the actual class labels to which

the features belong. It is the most effective technique in extracting the most relevant
and important information from redundant and noisy data. The principal components
will be independent if the data comes from a normal distribution. Through PCA, it is
expected that the principal components will cover the maximum variations of the data and
thus effectively reduce the data dimension. The dimensionality of the data is reduced by
projecting them onto a lower dimension [52]. The first principal component is chosen to
reduce the distance between the data and the projection. The subsequent components are
also selected similarly but are uncorrelated with the previous principal components. As a
result, the data dimension is reduced by eliminating the weaker components and removing
redundant information [53].

4.2. Sparse Autoencoder (SAE)

An Autoencoder is an axisymmetric single hidden-layer neural network [54]. It is
an unsupervised technique for feature extraction using DNN. Using the hidden layer,
the Autoencoder encodes the input data, estimates the minimum error, and collects the
best-feature hidden-layer expression [55]. The unsupervised computational simulation
of human intuitive learning is the Autoencoder concept’s driving factor, which has some
functional flaws [56]. Although the Autoencoder can reconstruct input data with high
precision, it cannot learn any practical features through copying and inputting memory
into an implicit layer. This is where the idea of SAE comes, which inherits the principle of
Autoencoder and introduces the sparse penalty term, also known as sparsity regularization.
It adds restrictions to feature learning for a concise expression of the input data [57].
Equation (7) depicts the sparsity regularization term for the SAE. Here, the process is
divided into three parts: encoder, code, and decoder. The encoder part encodes the inputs
into code via hidden layers, and the decoder decodes the code into the output layer, where
outputs are the same as the inputs. The code is a compression and is also known as the
latent space representation. Figure 2 shows different parts of an Autoencoder, where the
encoder maps the inputs to k features. The Sigmoid activation function and the Rectified
Linear Unit (ReLU) are commonly used for the non-linear mapping of the Autoencoder.
The ReLU in Autoencoders has a huge drawback of dealing with negative values becoming
zero, which eventually decreases the ability to train the model properly. In the case of
the vocal features of PD patients, it is a concern as the dataset used in this study contains
negative feature values along with positive ones. The objective of the Autoencoders is to
learn features from the inputs, which can be reconstructed by learning the encoding and
decoding functions and minimizing the error between the inputs and the reconstructed
data. The SAE can be regularized by involving a sparsity constraint, which ensures that
only a few nodes are active and penalizes the hidden layers. In the feature extraction
process, L1 regularization or Lasso regression was used in this study as it compresses
features by treating the less important feature coefficients as zero, thus shrinking the
parameter space. Equation (6) states the mathematical formulation of L1 regularization.
Regularization results in avoiding overfitting and thus performing well on new examples.
After learning the features from the Autoencoder, the encoder part can be merged with a
classifier to classify data points.
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Figure 2. An Autoencoder with two hidden layers.

Here, Mean Squared Error (MSE) is used for this task which can be defined as:

MSE =
1
N
∣∣X− X̂

∣∣2 (4)

where, X is input, X̂ is the reconstructed output, and N is the total number of data points.
Equation (5) depicts the cost function for training an SAE, which includes three terms.

The first term in MSE gives the discrepancy between input X and reconstructed X̂ over the
whole training dataset [30].

E = MSE + λ × L1 regularization term + β × sparsity regularization term (5)

where, λ is the coefficient of the L1 regularization and β is the coefficient of the sparsity
regularization. The L1 regularization adds the “absolute value of magnitude” of the
coefficients as a penalty term.

L1 regularization term = ∑nl−1
l=1 ∑sl

i=1 ∑sl+1
j=1

∣∣∣w(l)
ji

∣∣∣ (6)

where nl = number of layers, l = Layer l, sl = number of units in l layer, and wji
(l) is the

weight value between node i in layer l and node j in layer l + 1.
Sparsity regularity term is defined as:

Sparsity regularity term = ∑s2
j=1 KL ( ρ ‖ρ̂j) (7)

where KL is the Kullback-Leibler (KL) divergence and ρ̂j = average activation of hidden
node j and ρ is a sparsity parameter. The mathematical representation of KL is:

KL ( ρ ‖ρ̂j) = (ρ) log
ρ

ρ̂j
+ (1− ρ) log

(
1− ρ

1− ρ̂j

)
(8)

To make the learned representation more suitable for classification, an Autoencoder
can be fine-tuned using labelled data after the completion of the unsupervised stage. It can
be done by replacing its decoder layer with an output layer for label prediction. As the
L1 regularization tends to shrink the penalty coefficient to zero, it works better for feature
extraction.
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Other popular feature extraction techniques are available such as Linear Discrimi-
nant Analysis (LDA), Independent Component Analysis (ICA), Kernel PCA (kPCA), etc.
Although these are commonly used, they have some major drawbacks. ICA assumes
that the independent components are non-Gaussian and statistically independent; it only
separates the independent sources without compressing information. LDA assumes a
normal distribution of features. It does not work well with a skewed dataset. In kernel
PCA, an approximation is needed to calculate the k value. However, it becomes a major
problem for a larger dataset. Our study tried to overcome these problems with simpler
and faster PCA for linearly correlated features and with a novel deeper SAE to extract and
reduce the dimensionality of non-linearly related feature space more efficiently.

4.3. Support Vector Machine (SVM)

A Support Vector Machine (SVM), a supervised algorithm, classifies data and also
performs well for regression purposes. The SVM creates hyperplanes in order to separate
data into class labels. It is mostly used for binary classification problems, similar to our
study, where class 1 is labelled as a PD patient and class 0 for a healthy person.

γi = {1, 0} (9)

where γi is the set for binary class labels.
Therefore,

xi . w + b ≥ +1, γi = 1 (10)

xi . w + b ≤ −1, γi = 0 (11)

where, xi is the ith sample, w is normal to the hyperplane, and b is the distance of the
hyperplane from the origin, which is called the bias.

The SVM classifier is based on the foundation of maximizing the hyperplane margin
that classifies the data in the best way. Figure 3 shows an SVM classifier trained to separate
data points in the N-dimensional space with support vectors (SV), which are the relevant
data points lying on the margin boundaries. Here, N = 2 features (x1, x2).

Figure 3. An SVM classifier with an optimal hyperplane.
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If the data points are linearly separable, then the data can be distinguished by hy-
perplanes which are infinite in number. SVM tries to find out the linear function having
the largest margin that discriminates the class labels. In the SVM, with the help of kernel
functions, input x is mapped onto a higher dimensional feature space. Then a linear model
is built in this space. The common kernel functions of SVM are linear, radial basis function
(RBF), polynomial, and sigmoid function. Via the kernel functions, the n samples are
projected onto a new m dimensional space. The parameters of the SVM depend on the
kernel function used. The regularization parameter for controlling the trade-off between
misclassifications and the width of the margin in the SVM is C. A lower value of C causes
under-fitting, and a higher value of C causes over-fitting of the model. The cost function
for non-linear SVM, including the regularization parameter C, is expressed as:

J(w) = C[
m

∑
i=1

y(i)Cost1(wT
(

f (i)
)
+ (1− y(i))Cost0(wT( f (i))] (12)

where J(w) is the cost function, w is normal to the hyperplane, C is the regularization
parameter, y(i) is the class label for the ith sample, f is the kernel function, and the Cost
function is defined as:

Cost(hw(x), y) =
{

max
(
0, 1− wTx

)
, i f y = 1

max
(
0, 1 + wTx

)
, i f y = 0

(13)

where x is the input sample for corresponding output label y and the SVM hypothesis
hw(x) can be expressed as:

hw(x) =
{

1, i f wTx ≥ 0
0, otherwise

(14)

These hyper-parameters can be set using k-fold cross-validation. This is used for
evaluating ML models in a resampling procedure under limited data samples [58]. With
the setting of the right kernel function and C value, SVM can be robust even if the data
have some bias [59].

4.4. Proposed Model for PD Detection

As discussed earlier, SVM is effective and efficient in higher dimensional spaces. It is
memory efficient, robust, and versatile, even when the number of dimensions is larger than
the number of samples. However, if the number of features is excessively larger than the
number of samples, the SVM’s performance will degrade radically. Thus, finding the most
important features for the SVM using a PCA or SAE can outperform any other models. An
SVM was used for PD detection in a few previous studies [24,60]. Yet, the lack of relevant
feature extraction and removing redundant information led the SVM to perform poorly.

In our study, two models for detecting PD patients were proposed using a PCA-SVM
and an SAE-SVM hybridization by analyzing vocal disorders of patients. Figure 4 sketches
the flowchart of the proposed model with the PCA-SVM, and Figure 5 represents the latter
model integrating the SAE-SVM.
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Figure 4. Flowchart of the PCA-SVM model.

Figure 5. Flowchart of the SAE-SVM model.

Learning all attributes and adding more dimensions can hinder rigorous model gen-
eralization. Hence, a PCA and a novel deeper SAE were used in our proposed models to
reduce the number of dimensions. Generally, one hidden-layered SAE is used in feature
compression in the field of PD detection [61]. However, our SAE-SVM model consisted of a
deeper SAE with multiple hidden layers to improve the network’s generalization property,
which is used for the first time as of our knowledge in vocal feature extraction to detect
PD patients. In this study, we used ‘tanh’ activation function instead of the popularly
used ReLU function for the non-linear mapping of the Autoencoder to prevent negative
values from becoming zero, which could have decreased the ability to train the model
properly. Above all, irrelevant and correlated features contribute the model to over-fit and
thus decrease the performance in a real-world scenario. In the first model, we calculated
the explained variance of each feature, which showed the proportion of which a model
accounts for the dispersion or variance of the dataset [62]. The reduced number of principal
components can be decided from the explained variance for better performance, and the
reduced input dimension decreases the training time. These principal components were
fed into the SVM to detect PD patients. In the second model, we trained a deep neural SAE,
which is sparse in nature as L1 regularization was used. It mapped the input data into k
feature space, and then these features were fed into the SVM to classify healthy individuals
and PD patients.

In this study, we also applied the Synthetic Minority Over-sampling Technique
(SMOTE) [63] to overcome the imbalanced characteristic of the dataset and have a limpid
idea of the balanced-class performance of the models. Smote is a data augmentation tech-
nique. It synthesizes new examples from minority class (in this case, healthy patients) that



Diagnostics 2021, 11, 1076 13 of 22

are closer in the feature space. t-Distributed Stochastic Neighbor Embedding (t-SNE) was
used to visualize the high-dimensional data [64]. t-SNE is another technique to reduce
dimensionality and visualize high-dimensional data points in a probabilistic approach.
It tries to measure the similarities in the high and low dimensional spaces between pair
of examples and optimize these two similarities. With centering and measuring the den-
sity of all data points under Gaussian distribution, a set of probability for all points is
obtained. These probabilities are proportional to the similarity measure. This means if
two points have similar values, then they have local similarities in the high dimensional
space. Perplexity is used to manipulate the distribution by influencing the variance of the
distribution. Similarly, a Student t-distribution calculates the second set of probabilities in
the low dimensional space with one degree of freedom. Finally, both the probability sets
are used to measure the difference between the two-dimensional spaces.

The proposed methods were compared with each other, and the best one was com-
pared with traditional ML techniques like Multilayer Perceptron (MLP), K-Nearest Neigh-
bors (KNN), Random Forest (RF), and state-of-the-art disciplines such as Extreme Gradient
Boosting (XGBoost). MLP, a Deep Artificial Neural Network, continuously updates weight
matrices to minimize the error between actual values and predicted ones to find the optimal
set of weights in the parameter space. It works well in non-linear classification problems
but has the drawbacks of slow convergence rates and getting stuck at the local minima
of the search space. KNN is a supervised learning algorithm, which means that it has to
be provided with a labelled dataset [65]. It is also a non-parametric and instance-based
algorithm. KNN runs through the whole dataset, computing the distance between an
unseen observation and each training observation. Then, it estimates the conditional
probability for each class in the set. However, KNN is computationally expensive, and it
has a skewed class distribution problem. Moreover, the accuracy of KNN is downgraded
with high-dimensional data. RF is an ensemble learning-based classification method [66].
It works on a technique called Bootstrap Aggregation, also known as bagging. Bagging
involves training each decision tree on a different data sample, and the sampling is done
with replacement. In summary, it combines multiple decision trees in determining the
final output other than depending on each decision tree. However, overfitting, no inter-
pretability, and poor performance in a large dataset are the drawbacks of RF. XGBoost is
a model based on gradient boosted decision trees. It has outperformed other Ensemble
algorithms recently [67]. XGBoost is extremely fast due to the parallelization of trees with
improved performance through algorithmic enhancements. However, a major drawback
of XGBoost is the lower classification performance for imbalanced data. In this study, an
extensive experiment was done to show that our proposed model outperformed these
models in terms of detecting PD patients. In this work, for mathematical analysis, Python
3.7 was used as the programming platform. A powerful computer was used for fast data
processing with the following configuration: Intel® Core™ i7-8665UE Processor, 16 GB
RAM, 1 TB Hard disk, etc.

5. Results and Analysis

The proposed models were used to detect PD patients. For the experiment, the dataset
mentioned in Section 3 was used to evaluate the model performance to find out the best one,
and comparisons with MLP, KNN, RF, and XGBoost were exhibited. The dataset was split
into 70% and 30% for training and test purposes, respectively, with no subject occurring in
the test or train data simultaneously. In this study, the features stated in Table 2 were taken
as input, and the classification label was given as output. The range of (0–1) was used for
the scaling purpose of the original dataset and normalization.

The output of our classifier can be evaluated in terms of accuracy. However, the
dataset used in this study had class imbalance with a ratio of 188:64, and so measuring only
the accuracy can be misleading in terms of evaluating the classifiers. Therefore, the results



Diagnostics 2021, 11, 1076 14 of 22

of the classifier were measured in terms of the accuracy, F1-score, Mathews Correlation
Coefficient (MCC), and Precision-Recall curves. Accuracy can be defined as:

Accuracy =
Number o f correct predictions

Total number o f predictions made
(15)

To calculate the F1-score, MCC, and Precision-Recall curve, a confusion matrix is
expressed in Table 3 to understand the binary classifier predictions with tp, fp, tn, and fn as
true positive, false positive, true negative, and false negative, respectively.

Table 3. Confusion matrix for binary classification.

PD Predicted Healthy Predicted

PD actual tp fn
Healthy actual fp tn

From the confusion matrix, the F1-score can be defined as:

Precision =
tp

tp + f p
(16)

Recall =
tp

tp + f n
(17)

F1− score =
2× Precision× Recall

Precision + Recall
(18)

MCC can be defined as:

MCC =
tp× tn− f p× f n√

(tp + f p)(tp− f p)(tn + f p)(tn + f n)
(19)

In our study, the polynomial kernel function was used with degree 2 for the SVM,
the gamma was set to 10 for the non-linear hyperplane, and C was set to 1 to avoid both
under-fitting and over-fitting. The best output was obtained from this optimal set of hyper-
parameters via k-fold cross-validation, where k was set to 10 for modest variance and low
bias with a mean of 0.8 and a standard deviation of 0.06 (approx.). For the first model,
including PCA, from Figure 6, it can be implied that the number of principal components
needed to be set to 200 to preserve around 98.8–99% of the total variance of the data
and reduce components with insignificant variance from the input. Table 4 bolsters this
intuition of selecting 200 principal components compared with other variable numbers of
principal components, fed to the SVM classifier, as it showed the highest accuracy, F1-score,
and MCC value of 0.889, 0.928, and 0.7, respectively. Without reducing the number of
principal components, and with only the removal of feature redundancy, the training
time was 0.203 s, with an accuracy, F1-score, and MCC score of 0.885, 0.925, and 0.688,
respectively; whereas with the reduced 200 principal components, the training time was
0.022 s with higher accuracy, F1-score, and MCC score of 0.889, 0.928, and 0.7 respectively.

To evaluate the second model, including the novel deeper SAE with five dense encod-
ing layers with tanh activation and L1 regularization, using adam as the optimizer, MSE as
the loss function, a batch size of 32, and integrated with SVM, the actual raw data points
are plotted in Figure 7 with the two most important features after using t-SNE [64]. We
initialized t-SNE with dimensions 2, perplexity 50, seed 24,680, and random state 0. t-SNE
is used to learn, investigate, or evaluate segmentation. It can be employed to visualize the
clear data separation. Figure 7 depicts that the data points were not easily separable, and
the features had a non-linear relationship with each other. After applying SAE to the raw
data points and feeding the extracted features to the SVM classifier, the best performance
was gained by setting the extracted feature number to 180 with comparisons with other
feature numbers, as shown in Table 5. Figure 8 also shows the data points with the two most
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important features by using t-SNE, as mentioned earlier, among the extracted 180 features
by the SAE. In Figure 8, the data points are easily separable from the data points in Figure 7,
and it can be seen that the segmentation actually holds up. Juxtaposing Tables 4 and 5, the
SAE-SVM model outperformed the former PCA-SVM model with the highest accuracy of
0.935, the highest F1-score of 0.951, and the highest MCC value of 0.788. The non-linear re-
lationship between the vocal features of the PD patients resulted in the better performance
of the SAE-SVM model, which outperformed the former PCA-SVM model as PCA features
are linearly uncorrelated. Therefore, the deep neural SAE with multiple hidden layers was
more successful in compressing the information into a lower-dimensional feature space.

Figure 6. Parkinson’s disease dataset explained variance.

Table 4. Performance comparisons with variable principal components.

# of Principal Components Accuracy F1-Score MCC

100 0.876 0.919 0.675
150 0.885 0.925 0.688
180 0.887 0.926 0.695
200 0.889 0.928 0.7
230 0.885 0.925 0.688

Figure 7. 2-D representation of data points using t-SNE before encoding with SAE.
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Table 5. Performance comparisons with variable feature numbers of SAE.

# of Principal Components Accuracy F1-Score MCC

100 0.845 0.901 0.62
150 0.898 0.935 0.71
180 0.935 0.951 0.788
200 0.912 0.943 0.737
230 0.888 0.921 0.689

Figure 8. 2-D representation of data points using t-SNE after encoding with SAE.

The MLP, XGBoost, KNN, and RF classifiers were implemented to evaluate the effec-
tiveness of the models in this study. The prediction of PD was made with all the models
providing the same set of data. From the experimental result, it can be seen that KNN
showed the least efficiency among all the models and XGBoost had a better performance
than others, but our proposed SAE-SVM model outperformed all the other models in terms
of accuracy, F1-score, and MCC. Table 6 states the accuracy, F1-score, and MCC value of all
the models tested and shows that the proposed SAE-SVM model had the highest accuracy
of 0.935, the highest F1-score of 0.951, and the highest MCC value of 0.788. It also shows
the performance boost of SVM with dimensionality reduction, which in the case of the
SAE-SVM was a 9.5% increase in accuracy, 4.9% increase in F1-score, and 32% increase in
MCC score compared to the SVM. In addition, it can be inferred that the SAE-SVM had the
lowest misdiagnosis rate with 6.5%, and the PCA-SVM had the second lowest misdiagnosis
rate with 11.1%.

Table 6. Performance comparisons with traditional ML models.

Model Accuracy F1-Score MCC

RF 0.836 0.897 0.539
MLP 0.845 0.897 0.602
KNN 0.765 0.851 0.325

XGBoost 0.881 0.924 0.676
SVM 0.854 0.907 0.595

PCA-SVM 0.889 0.928 0.7
SAE-SVM 0.935 0.951 0.788

Figure 9 illustrates the Precision-Recall curve from the experimental results. It depicts
that the KNN model had the lowest AUC value with 0.875 and that XGBoost showed a
higher AUC of 0.981, but the proposed SAE-SVM model surpassed both models with an
AUC of 0.988.



Diagnostics 2021, 11, 1076 17 of 22

Figure 9. Precision-Recall curve comparison among all the models.

We also compared our best model with other commonly used feature extraction
techniques, including the LDA and ICA implementing and incorporating with the same
SVM model. Table 7 shows that our best model of novel deeper SAE with SVM performed
better in terms of accuracy, F1-score, and MCC value than the LDA and ICA, as our deeper
SAE was more efficient in reducing the dimensionality of feature space and improving the
network’s generalization property.

Table 7. Comparison with other feature extraction techniques with the SVM classifier.

Model Accuracy F1-Score MCC

LDA 0.513 0.593 0.079
ICA 0.819 0.888 0.480

Deeper SAE 0.935 0.951 0.788

Along with our implemented models, we compared our result with two recent studies
made by Sakar et al. [16], in which an SVM using RBF kernel gave the best result, and
Gunduz [24], in which the CNN framework had the best output. We compared the results
of our model with their best results, as they used the same dataset. From Table 8, it can be
seen that our proposed SAE-SVM model outperformed both studies in terms of accuracy,
F1-score, and MCC value.

Table 8. Comparison with previous works.

Model Accuracy F1-Score MCC

SVM (RBF) 0.86 0.84 0.59
CNN framework 0.869 0.917 0.632

SAE-SVM 0.935 0.951 0.788

We also used SMOTE for oversampling. From Table 9, our models showed better
accuracy, F1 score, and MCC value in the balanced-class scenario.
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Table 9. Performance with the balanced dataset.

Model Accuracy F1-Score MCC

PCA-SVM 0.894 0.91 0.71
SAE-SVM 0.944 0.964 0.83

6. Discussion

In this study regarding the detection of PD patients from vocal signals, we depicted
and implemented two models based on two different feature extraction algorithms along
with SVM, which is a popular supervised algorithm in the area of classification problems,
using hyperplanes to classify both linear and non-linear dataset. In the first model, a PCA
was used as it is a popular unsupervised method for finding the principal components of
data in order to reduce the dimensions. This, in turn, bypassed the disadvantage of SVM
with decreasing classification performance while having a higher number of features than
the number of samples as in the dataset used in this study. In the second model, a novel
deeper SAE was developed and used for the same purpose, which is a DNN and works in
an unsupervised manner to map the features to a new feature space, reducing the curse of
dimensionality problem.

The above-mentioned models were trained and tested using the dataset obtained
from the University of California-Irvine (UCI) Machine Learning repository. Due to the
high imbalance in the dataset, the F1-score, MCC, and Precision-Recall curve were used to
evaluate the models along with accuracy.

For the evaluation of models, all the feature sets, including baseline features, time-
frequency features, MFCCs, Wavelet Transform-based features, vocal fold features, and
TQWT, were concatenated for the feature extraction purpose. For the first model, 200
principal components were selected from the explained variance of the dataset. Later these
200 principal components were fed into the SVM classifier with a polynomial kernel of
degree 2, and it was compared against other variable numbers of principal components.
The highest accuracy, F1-score, and MCC were acquired when the number of principal
components was set to 200. For the second model, the novel deeper SAE converted the
features into 180 features which also distributed the data points in a more easily separable
fashion with the polynomial SVM. Other variable numbers of features were also tested, and
the results were not as satisfactory as the 180 extracted features. From both the models, it
can be implied that the SAE-SVM showed an increase in accuracy rate by 5% (approx.) than
that of the PCA-SVM. This was also seen in the F1-score and MCC rate as they increased
from 0.928 to 0.951 and 0.7 to 0.788, respectively. Moreover, according to the present study,
the best model (SAE-SVM) outperformed other models, including XGBoost, MLP, KNN,
and RF. It also outperformed the SVM with other common feature extraction techniques,
LDA and ICA. Moreover, it was successful at surpassing the two most recent works of
Sakar et al. [16] and Gunduz [24] in terms of the accuracy, F1-score, and MCC metrics, and
had the lowest misdiagnosis rate of 6.5%. It can be concluded that our proposed SAE-SVM
model is a good alternative to both of the models proposed in these two literatures.

The salient advantages of the proposed best model of this study over the previous PD
detection studies are stated below:

• Different feature extraction techniques were applied, and the relative comparisons
were depicted with a much larger dataset with 752 features and 756 voice samples,
unlike the recent study in Hemmerling and Sztahó [28], which has only 198 voice
samples and 33 features. Small datasets have several disadvantages, which lead to
lower precision in the prediction, lower power, and pose a larger risk by comparing
the classes unfairly, even in the circumstances that the data is from a randomized
trial. They used PCA only to remove feature redundancy; in contrast, in this study,
PCA was used to reduce dimensionality as well as remove feature redundancy, which
boosted the training time efficiency and all the performance metrics of our model for
a larger dataset.
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• In our study, the non-linear relationship between vocal features of the PD patients
was depicted in Figure 7. For these non-linear feature relations, our second model
SAE-SVM outperformed the former PCA-SVM model as PCA works well with linear
relationships. Therefore, the novel deep neural SAE with multiple hidden layers
was more successful in compressing the information better into a lower-dimensional
feature space. Deep feature extraction of SAE augmented the discriminatory power of
distinguishing PD patients as established by the increased MCC value.

• As in other previous literatures, if accuracy was used as the only evaluation metric,
it can be misleading in the case of an imbalanced dataset. However, inspired by
Sakar et al. [16], we used F1-score and MCC along with accuracy. We also used the
Precision-Recall curve to visualize the performance of the models for such skewed
class distribution. We also applied SMOTE to synthesize new minority examples
to evaluate the models in a balanced-class scenario. Both models showed better
balanced-class performance.

The study explored the field of Parkinson’s disease patient detection based on vocal
features by building the idea of merging feature extractions, removal of irrelevant data by
reducing dimensionality based on the variance of data and additionally using DNN in an
unsupervised manner with SVM, which is one of the most powerful classifiers thus far
when it comes to data points separable with a larger number of hyperplanes. Imbalanced
data deters from having an accurate picture in the detection of PD patients, which can be
solved with a more balanced dataset. Further research and experiments can be conducted
by employing other dimensionality reduction and feature extraction algorithms such as
kernel PCA (kPCA), Denoising Autoencoders to reduce the noise effects of voice signals, etc.
The performance of the model can also be improved by applying enhancement algorithms
to reduce reverberation, background noise and non-linear distortion [68,69]. Along with
these, the performance of the proposed model can be further improved with the inclusion
of wearable sensor data for measuring tremors and postural instability of individuals to
detect the PD features more accurately.
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