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The mitochondrial-associated endoplasmic reticulum membrane (MAM) is located between the outer mitochondrial membrane
and the endoplasmic reticulum membrane. The MAM is involved in a wide range of cellular functions, including calcium
signaling, the division and fusion of mitochondria, endoplasmic reticulum stress, and the synthesis and transport of lipids.
Recent studies have discovered that the MAM is involved in the pathogenesis of diabetic nephropathy (DN). In this
article, we summarize the structure, function and role of the MAM in DN. We hope this study will provide clues and a
theoretical basis for mechanistic and targeted drug research on DN.

1. Overview of Diabetic Nephrology

The prevalence of diabetes mellitus (DM) is projected to
increase rapidly in the upcoming decades and increase to 642
million by 2040 [1]. Diabetic nephropathy (DN) is one of the
most frequent and serious chronic complications of DM. This
microvascular complication occurs in approximately 30% of
patients with type 1 DM (T1DM) and approximately 40% of
patients with T2DM [2, 3]. According to epidemiological stud-
ies, DN is the leading cause of end-stage renal disease (ESRD)
worldwide [3]. DN is a major but under-recognized contributor
to the global public health burden. Several studies have shown
that the 10-year mortality rates of patients with DN are equal
to the average mortality rates of all cancers [4, 5]. Thus, there
is a strong rationale to conduct research on DN.

The disease progression of DN includes glomerular hyper-
filtration, progressive albuminuria, decreased GFR and finally
ESRD. The pathological changes include glomerular hypertro-
phy, mesangial cell proliferation and hypertrophy, thickening
of the glomerular and tubular basementmembrane (GBM and
TBM), glomerulosclerosis, tubulointerstitial inflammation
and renal fibrosis.

The specific mechanism of DN has been widely studied.
Generally, hemodynamic changes in the kidney, disorders of

lipid metabolism, the inflammatory response, oxidative
stress, endoplasmic reticulum stress and the formation of
advanced glycosylation products are the leading causes and
are involved in the pathogenesis of DN [6–9]. These pro-
cesses contribute to the expansion of the mesangial matrix,
Kimmelstiel-Wilson lesions, the thickening of GBM and
TBM, podocyte injury and deletion, and interstitial fibrosis.
It is worth mentioning that the onset of DN is considered
to involve multiple factors rather than just a single factor.
With the advancement of research, scholars have discovered
that the mitochondria-associated endoplasmic reticulum
membrane (MAM) also plays crucial roles in the progression
of DN [10, 11].

2. Overview of the MAM

As important organelles of eukaryotic cells, mitochondria
and the endoplasmic reticulum (ER) are closely connected
and function together in cellular activities in humans. Mito-
chondria are bioenergetic and biosynthetic organelles, which
are also known as “power stations” [12]. They can provide a
steady source of energy for human activities. Additionally,
they also function as a biosynthetic platform for generating
building blocks. In addition, the ER is defined as the “base
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station of protein and lipid synthesis”, as it is responsible for
the synthesis, modification and processing of proteins and
lipids [13, 14]. Interestingly, the ER is a dynamic intracellu-
lar organelle. The structure and function of the ER are not
static during different cellular activities. Recent studies have
shown that there are close structural and functional connec-
tions between mitochondria and the endoplasmic reticulum
[15–17]. Through both fluorescence microscopy and elec-
tron microscopy, it has been observed that there are mutu-
ally coupled membrane components between these
organelles [18], which has been designated as the MAM,
shown in Figure 1. It is not surprising that this physical asso-
ciation promotes the interaction between the ER and mito-
chondria and participates in the regulation of cellular
activities in humans.

3. MAM Discovery and Components

The MAM is present in several cell types and consists of a
small section of the outer mitochondrial membrane and
the ER. Several studies have revealed that the MAM repre-

sents a morphological adaptation facilitating communica-
tion between the mitochondria and the ER (Figure 2). As
early as 1959, Copeland and Dalton found an association
between mitochondria and the ER in pseudobranch cells
[19]. In 1969, Ruby et al. discovered continuities between
the ER and mitochondria with a Philips 2000 electron
microscope [20]. In 1973, Lewis et al. isolated the first crude
fraction containing ER and mitochondria contact sites [21].
For the first time in 1990, Vance et al. separated the inner
cell membrane structure in adsorbed hepatocytes and
defined it as the MAM [22]. As research progressed, it was
found that the MAM is involved in lipid metabolism
[23–26]. With developments in electron microscopy tech-
nology, Mannella et al. observed the connection between
bubbles and the endoplasmic reticulum via electron micros-
copy in 1998 [27]. In 1999, Achleitner et al. determined that
the diameter of the connection between the endoplasmic
reticulum and mitochondria ranges from 10 to 60 nm [28].
In 2009, Wiechowski et al. summarized an efficient extrac-
tion method for the MAM [29]. At present, there are an
increasing number of studies on the MAM, and the compo-
sition of the MAM has been gradually described (Table 1).
In the next section, we will focus mainly on the function
and role of the MAM in DN.

4. MAM Function

MAM plays an important role in cellular activities. A growing
number of findings support its participation in calcium signal-
ing, lipid biosynthesis and trafficking, the ER stress response,
dynamic changes and mitochondrial autophagy (Figure 3).

4.1. Calcium Signaling. Calcium homeostasis is of vital
importance for cellular activities. Dysregulated calcium
levels contribute to several physiological disorders and sub-
sequently to cell death. Mitochondria and the ER play signif-
icant roles in calcium homeostasis. Ordinarily, calcium is
stored in the ER. Upon cellular stimulation, calcium is
released from the ER to the cytoplasm, where it is taken up
by the mitochondria.

As the connecting structure, the MAM plays an impor-
tant role in calcium signaling [47–49]. First, it was revealed
that the structural integrity of the MAM can contribute to
the maintenance of mitochondrial calcium homeostasis. Sec-
ond, the microenvironment provided by the MAM is impor-
tant for mitochondria to take up calcium. Third, some
molecules that can regulate calcium signaling are located in
or recruited to the MAM.

The transport of calcium from the ER to the mitochondria
is controlled by several proteins located in the MAM. Inositol-
1,4,5-triphosphate receptor type 1 (IP3R1) is the acknowl-
edged channel for the release of calcium from the ER. In the
outer mitochondrial membrane (OMM), voltage-dependent
anion-selective channel protein 1 (VDAC1) serves as a chan-
nel for the uptake of calcium. Finally, the chaperone 75kDa
glucose-regulated protein (GRP75) can connect the two chan-
nel complexes mentioned above to form what is known as the
VDAC1/GRP75/IP3R1 axis [50].
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Figure 1: The structure and components of the mitochondrial-
associated ER membrane. The physical structure between the ER
and mitochondria is designated the MAM. Several enzymes,
molecules and proteins are located in the MAM and participate
in cellular activities, which can be summarized into five
categories. Note: ER, endoplasmic reticulum; MAM,
mitochondria-associated ER membrane.
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Recently, a new family of transient receptor potential
melastatin 8 (TRPM8) channel isoforms located in the
MAM was identified that acts as an ER calcium release chan-
nel [30]. Activation of TRPM8 appears useful for restricting
cytosolic calcium signaling in the cardiovascular system
[51]. Whether there are any other calcium channels in the
MAM is unknown.

Overall, MAMs can affect calcium transfer from the ER,
after which calcium migrates into the mitochondria via the
mitochondrial calcium uniporter.

4.2. Lipid Biosynthesis and Trafficking. Lipids are important
components of cell membranes, participating in energy stor-
age, signal molecule transduction, and the synthesis of phys-
iologically active substances. The synthesis of most lipids
occurs in the ER, whereas several modifications of lipids
occur in the mitochondria. The MAM participates in lipid
transfer from the ER to the mitochondria.

Phosphatidylserine (PS) is synthesized by phosphatidyl
serine synthase 1 (PSS1) and PSS2 in the MAM [52, 53].
Phosphatidylserine is then transferred to the mitochondria,

Firstly found association between
mitochondria and the ER in cells

Discovery of the connection between the ER
membrane and mitochondria was enabled
by pioneering electron microscopy

First, the crude fraction
containing ER and mitochondrial
contact sites was isolated

MAM was seperated
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Figure 2: Historical timeline of the most important observations and findings related to the mitochondrial-associated ER membrane. Note:
ER, endoplasmic reticulum; MAM, mitochondria-associated ER membrane.

Table 1: The main components of the MAM.

Number Classification Components References

1
Calcium channels in the outer membrane of the ER and mitochondria,

voltage-dependent anion channels
TRPM8, VDAC, IP3R1, GRP75 [30, 31]

2 Enzymes for the synthesis and transfer of lipids
PSS1, PSS2, PEMT, caveolin-1, FACL4,

ACAT1, DGAT2
[22,

32–37]

3 Chaperones Sig1R, CNX, CRT [38–40]

4 Redox reactive enzymes involved in the ER ERO 1α [41]

5 Mitochondrial rho GTPases 1 and mitofusin 2 MiRo 1, Mfn, FUNDC1, Drp [42–46]

Note: ACAT, acetyl-CoA acetyltransferase 1; ATG14L, autophagy-related 14-like; CNX, Calnexin; CRT, calreticulin; DGAT2, diacylglycerol-O-acyltransferase
2; FACL4, fatty acid CoA ligase 4; Drp1, dynamin-related protein 1; ER, endoplasmic reticulum; ERO 1α, ER oxidoreductin-1α; PEMT, phosphatidyl
ethanolamine methyltransferase; GRP75, chaperone 75 kDa glucose- regulated protein; IP3R, inositol-1,4,5-triphosphate receptor; IRE1, inositol-requiring
enzyme 1; Mfn, mitofusin 2; TRPM8, transient receptor potential melastatine 8; PERK, protein kinase-like ER kinase; PS, phosphatidylserine; PSS, PS
synthase; Sig1R, Sigma 1 receptor; VDAC1, voltage-dependent anion-selective channel protein 1.

3Oxidative Medicine and Cellular Longevity



decarboxylated and transformed into phosphatidylethanol-
amine (PE) [54]. In addition, PE can be delivered to MAMs
and further transformed into phosphatidylcholine (PC) by
PE-N-methyltransferase (PEMT) [55].

Additionally, MAM is involved in the metabolism of cho-
lesterol. Cholesterol is composited in the ER and migrates into
the mitochondria for conversion to pregnenolone. After the
synthesis of cholesterol, caveolin-1 is inserted into the ER
and participates in the delivery of cholesterol [36, 56]. The
MAMs participate in the transport between the ER and the
mitochondria by providing several enzymes involved in lipid
biosynthesis and transport such as fatty acid CoA ligase 4
(FACL4), acetyl-CoA acetyltransferase 1 (ACAT1) and
diacylglycerol-O-acyltransferase 2 (DGAT2). The enzyme
FACL4 currently serves as a reliable MAM marker [22].

Overall, the MAM is involved in lipid metabolism by
synthesizing and transporting lipids.

4.3. ER Stress Response. ER homeostasis is of vital impor-
tance for cellular activities. Unfolded protein reaction

(UPR), an ER stress response, has been observed in DN.
The activated UPR triggers three main components:
inositol-requiring enzyme 1α (IRE1α), protein kinase
RNA-like kinase (PERK) and activating transcription factor
6 (ATF6). A previous study reported that without PERK, ER
stress-induced apoptosis is weakened due to a reduction in
the MAM [57, 58]. In addition, IRE1 in the MAM can deter-
mine the effectiveness of IP3R, which contributes to the
transfer of calcium from the ER to the mitochondria.

A variety of chaperone proteins related to protein fold-
ing are located in the MAM such as sigma 1 receptor (Sig1R)
[38, 59], calnexin (CNX) [39], and calreticulin (CRT) [40].
The expression of Sig1R is increased when the PERK path-
way is activated [60]. The protein Sig1R can inhibit
caspase-4 activation and subsequently plays a protective role
under conditions of ER stress. Calnexin and CRT are
involved in calcium transport under conditions of ER stress.

Mild activation of ER stress might be beneficial, whereas
excessive ER stress leads to cell death. Targeting maladaptive
ER stress might help to rescue the development of DN [61].
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Figure 3: The functions of the mitochondrial-associated ER membrane. (a) Calcium signaling. Calcium can be transferred via the IP3R1
protein complex. VDAC1 serves as a calcium uptake channel. GRP75 can connect the two channel complexes mentioned above, which
has also been designated the VDAC1/GRP75/IP3R1 axis. (b) Lipid biosynthesis and trafficking. PS is synthesized by PSS in the MAM
and then transferred to mitochondria for further conversion to PE. PE can be delivered back to the MAM and converted into PC by
PEMT. In addition, caveolin-1 participates in the transfer of cholesterol in the MAM. (c) ER stress response. The UPR is activated via
IRE1 and PERK. Sig1R in the MAM can stabilize IRE1. (d) Mitochondrial dynamic changes and autophagy. The fusion and division of
mitochondria are controlled by the dynamin-related GTPase Mgm1. The fusion of the MOM is mediated by Mfn1 and Mfn2. The fusion
of the MIM is regulated by Opa1 and Mgm1. Mitochondrial division is controlled by Drp1. The recruitment of the preautophagosome
marker ATG14L located in the MAM can trigger the formation of autophagosomes. Drp1 and ATG14L further enhance the enrichment
of autophagy-related proteins in the MAM. As a main inducer of autophagy in the MAM, mTORC2 regulates the integrity of the MAM.
Note: ATG14L, autophagy-related 14-like; FACL4, fatty acid CoA ligase 4; Drp1, dynamin-related protein 1; GRP75, chaperone 75 kDa
glucose-regulated protein; ER, endoplasmic reticulum; IP3R, inositol-1,4,5-triphosphate receptor; MAM, mitochondria-associated ER
membrane; IMM, inner mitochondrial membrane; Mfn, mitofusin; IRE1, inositol-requiring enzyme 1; mTORC2, mammalian target of
rapamycin complex 2; Opa1, optic atrophy protein 1; PE, phosphatidylethanolamine; PEMT2, phosphatidyl ethanolamine
methyltransferase 2; PS, phosphatidylserine; PSS, PS synthase; Sig 1R, sigma 1 receptor; VDAC1, voltage-dependent anion-selective
channel protein 1; TRPV1, transient receptor potential cation channel subfamily V member 1; UPR, unfolded protein reaction; TRPM8,
transient receptor potential melastatin 8.
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In summary, some enzymes, molecules and chaperone pro-
teins related to ER stress are located in the MAM. Thus,
the MAM participates in the ER stress response.

4.4. Dynamic Change and Autophagy in Mitochondria. As
dynamic organelles, mitochondria continuously undergo fis-
sion and fusion and move along the cytoskeleton. Mitochon-
drial damage leads to cardiac ischemia/reperfusion (I/R)
injury and acute renal injury. Wang et al. demonstrated that
Bax inhibitor-1 (BI1) could serve as a master regulator of
renal tubular function by sustaining mitochondrial localiza-
tion of prohibitin 2 (PHB2) [62]. In general, an excess nutri-
ent supply leads to mitochondrial division, whereas
starvation leads to mitochondrial fusion. Mitochondrial
fusion and division are controlled by dynamin-related
GTPases. Fusion of the OMM is mediated by Mfn1 and
Mfn2 [63, 64]. Fusion of the mitochondrial inner membrane
(MIM) is regulated by optic atrophy protein 1 (Opa1) and
Mgm1 [65, 66]. In addition, mitochondrial division is con-
trolled by dynamin-related protein 1 (Drp1) [67]. Thus,
the dynamin-related GTPase located in the MAM can regu-
late dynamic changes in the mitochondria.

Autophagy is considered an intracellular degradation
process. The participation of mitochondria in autophagy
was first observed by the team of Hailey et al. in 2010, who
showed that mitochondrial-localized cytochrome b5 is
transferred from mitochondria to autophagosomes upon
starvation [68]. Hamasaki et al. revealed that mitochondria
are involved in the formation of autophagosomes, and isola-
tion membranes are formed in the MAM [69]. The recruit-
ment of the preautophagosome marker autophagy-related
14-like (ATG14L), which is located in the MAM, can trigger
the formation of autophagosomes. Drp1 and ATG14L fur-
ther enhance the enrichment of autophagy-related proteins
in the MAM [70]. As a main inducer of autophagy in the
MAM, mTORC2 regulates the integrity of the MAM [71].

The MAMs can affect calcium transfer from the ER to
the mitochondria. Dysregulated calcium signaling leads to
impaired mitochondrial integrity. In addition, MAMs con-
trol dynamic changes and autophagy in mitochondria via
small molecules such as Mfn, Drp and Opa, which subse-
quently govern mitochondrial integrity.

The MAMs serve as crucial regulators to maintain the
homeostasis of cellular activities. Altered MAM integrity
contributes to insulin resistance via the disturbance of lipid
transfer, mitochondrial dysfunction, and impaired mito-
chondrial dynamics and mitophagy. Their dysregulation
leads to impaired secretory function and mass of β cells.
Moreover, improved integrity of the MAM might be associ-
ated with enhanced insulin sensitivity [72].

5. The Role of the MAM in DN

As a microvascular complication, DN has become the lead-
ing cause of ESRD worldwide. Previously, Huang et al. sum-
marized that phosphatase and tensin homolog (PTEN)-
induced kinase 1 (PINK1) could regulate the function of
mitochondria in DN, and targeting PINK1 might be a
potential therapeutic strategy [73]. Currently, several studies

have focused on MAM involvement in DN, which are sum-
marized as follows (Figure 4):

5.1. Regulating Lipid Deposition. Previous studies have
proven that high glucose triggers lipid disorders and deposi-
tion in the kidneys of animals [7, 74]. An increased accumu-
lation of lipids in renal tissue accelerates the pathological
changes in DN. In addition, lipid deposition in the kidney
contributes to insulin resistance and enhances reactive oxy-
gen species (ROS) production, the inflammatory response,
and ER stress, which further accelerate the progression of
renal damage in DN [75]. Yang et al. observed increased
lipid deposition and damaged integrity of the MAM in kid-
neys of patients with DN [11]. They found a significantly
negative association between the MAM and the serum levels
of lipids, the renal accumulation of lipids, and decreased
renal function. Interestingly, they observed downregulated
expression of MAM-control proteins in different stages of
DN. HK-2 cells incubated with high glucose exhibit
impaired integrity of MAMs and enhanced lipid accumula-
tion and apoptosis, which are alleviated by recovery of
MAM integrity.

In addition, the crucial role of MAMs in ROS production
should be mentioned. Reactive oxygen species could be pro-
duced in the mitochondria and ER. Excessive amounts of
ROS are harmful. The MAMs serve as regulators of ROS
synthesis and targets of oxidative damage. The MAM facili-
tates mitochondrial calcium uptake from the ER. The influx
of calcium to the mitochondrial matrix affects the function
of the mitochondria and ultimately ROS production [76].

Taken together, the destruction of the integrity of the
renal MAM leads to renal lipid deposition and renal damage.
However, the special mechanism by which the impaired
integrity of MAMs contributes to renal lipid accumulation
remains unclear. In vivo and in vitro experiments are
encouraged to clarify this mechanism.

5.2. Reducing Apoptosis of Renal Tubule Cells. Apoptosis is
programmed cell death, which is characterized by cell sur-
face blebbing, volume reduction, internucleosomal cleavage
of DNA and the formation of apoptotic bodies. Previous
studies have suggested that the activation of cellular signal
transduction contributes to apoptosis and that apoptosis
plays a role in the development of DN [77–80]. Through
detailed study, scholars have found that the MAM is
involved in the induction of apoptosis in renal tubular epi-
thelial cells in DN.

The biopsy of kidneys from patients with DN has
revealed that enhanced apoptosis occurs in renal tubular epi-
thelial cells [78, 81]. A detailed study by Yang et al. found
increased renal apoptosis and tubulointerstitial fibrosis in
patients with DN and in STZ-induced diabetic mice that
was positively correlated with renal damage [82]. In addi-
tion, DsbA-L can inhibit apoptosis while maintaining
MAM integrity and Mfn2 expression, which subsequently
ameliorates renal damage in animals with DN and in high
glucose-incubated HK-2 cells. Thus, these results provide
momentum for investigating agonists of the MAM and
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DsbA-L as potential therapeutic agents to help regulate apo-
ptosis, leading to the inhibition of DN progression.

5.3. Regulating Calcium Overload and the Function of
Mitochondria in Podocytes. Appropriate mitochondrial cal-
cium levels maintain normal oxidative respiration and
ATP production by mediating the activity of TCA cycle
rate-limiting enzymes and the ATP synthase [83–85]. The
disturbance of mitochondrial calcium homeostasis, such as
calcium overload, contributes to enhanced oxidative stress,
apoptosis and inflammation [86–90].

Emerging evidence has proven that the MAM is involved
in insulin and glucose signaling and plays a vital role in con-
trolling glucose metabolism [72, 91, 92]. As a consequence,
enhanced formation of the MAM serves as a major target
promoting mitochondrial dysfunction in DN. Wei et al.
reported that the hyperglycemic status-induced augmented

formation of the MAM in podocytes is the indispensable
step leading to calcium overload and renal injury in db/db-
or STZ-induced diabetic mice [93]. The activation of cal-
cium channel transient receptor potential cation channel
subfamily V member 1 (TRPV1) by dietary capsaicin can
promote AMPK activation, thus decreasing MAM-
regulated mitochondrial calcium overload and dysfunction
in podocytes [93].

In addition, the functional role of the MAM in inflam-
mation has raised great concern. Systemic and local low-
grade inflammation and the release of proinflammatory
cytokines are common features in the development and pro-
gression of DN [94]. A recent study proved the relationship
between NLRP3 inflammasome formation and the MAM.
Resting NLPR3 is located in the ER, whereas the activated
NLRP3 inflammasome is located in the MAM. Mitochon-
drial ROS induce the activation of NLRP3 via VDAC.

Diabetes

Target organ

Normal kidney

Target cell

Renal tubule cell Podocyte

Glucose Apoptosis

Target organelles

MAM

lipids
StressInflammation

Potential mechanisms
Dysfunction

Regulating lipid deposition

Regulating calcuim overload and function of mitochondria in podocyte

Diabetic kidney

Reducing the apoptosis of renal tubule cell

Mfn2

ROS
Ca2+

Figure 4: The role of the mitochondrial-associated ER membrane in diabetic nephropathy. The content and functions of MAM are changed
under the conditions of DN. A dysfunctional MAM accounts for the development of DN. Note: ER, endoplasmic reticulum; DN, diabetic
nephropathy; MAM, mitochondria-associated ER membrane.

6 Oxidative Medicine and Cellular Longevity



VDAC facilitates the uptake of calcium into the mitochon-
dria from the MAM to enhance mitochondrial activity [95,
96]. Excessive mitochondrial calcium influx leads to calcium
overload. Calcium communication links MAM and NLRP3
inflammasome activation in DN [93]. Calcium overload is
associated with mitochondrial destabilization, thus trigger-
ing NLRP3 inflammasome activation [97]. Further studies
are encouraged to identify the underlying mechanisms by
which the MAM regulates the inflammatory response.

In summary, the importance of the MAM in the devel-
opment of DN has been gradually recognized. Renal tubular
epithelial cells and podocytes are the main target cells for
dysfunction of the MAM. In patients with DN and in dia-
betic animals, the integrity of the MAM is impaired. Dam-
aged MAMs result in lipid deposition and increasing
apoptosis of renal tubular cells, promoting calcium overload
and disturbing podocytes. Gene disruption of DsbA-L and
activation of the TRPV1 channel alleviate renal damage in
diabetic nephrology in vivo and in vitro by regulating the
MAM. More studies are encouraged to explore the role
and mechanism of the MAM in DN.

6. Conclusions

The MAM is a highly plastic structure with structural
parameters. Several enzymes, molecules, and chaperones
are located in the MAM. Thus, under pathological condi-
tions, such as hyperglycemia, ER stress, and inflammation,
enhanced formation of the MAM is involved in cellular
activities.

The function of the MAM was summarized in this arti-
cle. However, additional details need further study. First,
the role of the ER and mitochondria in the pathophysiology
of DN has aroused great interest, but the role of the MAM in
DN has not received sufficient attention. Second, the MAM
not only initiates cellular activities associated with mito-
chondria and the ER but also provides a place where inflam-
masome and mitochondrial fission occurs by recruiting
master effector proteins and signaling molecules. Third,
emerging proteins located at the MAM are involved in con-
trolling the function of the MAM. However, their functions
in DN are not fully understood and require further research.

7. Future Perspectives

At present, there remain three obstacles to determining the
role of the MAM in DN. First, although the isolation of puri-
fied MAM has been studied and continuously improved, it is
nevertheless important to bear in mind that the MAM is not
an isolated compartment but a dynamic and transient lipid
raft domain in the ER, defined by the activities located
within it. Our existing protocols for isolating the MAM
require a large number of materials and cannot capture its
dynamic nature. In addition, some protein modifications
or interactions might be affected due to the lengthy
procedure.

Second, the effects of MAM formation in different cell
types have not been identified and may show different
results. For the kidney, the nephron includes several cell

types such as tubular epithelial cells, podocytes, glomerular
endothelial cells and mesangial cells. It is important to
explore the roles of MAMs in a cell-specific manner. An
improved understanding will help to develop new therapeu-
tic targets for MAM-related diseases.

Third, regulating the communication of the MAM is a
double-edged sword. For example, enhanced formation of
the MAM increases mitochondrial calcium uptake and cal-
cium overload, leading to mitochondrial swelling and cell
apoptosis. Mitochondrial calcium levels need to be con-
trolled within a certain range. Therefore, precisely regulating
the formation and function of the MAM might be a promis-
ing target for future studies.

We believe that ongoing studies will shed light on the
role and specific mechanism of the MAM in DN. A better
understanding of this axis will provide clues for more
advanced therapeutic targets in DN.
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