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Pulmonary tuberculosis (PTB) is characterized by lung granulomas, inflammation and
tissue destruction. Here we used within-subject peripheral blood gene expression over
time to correlate with the within-subject lung metabolic activity, as measured by positron
emission tomography (PET) to identify biological processes and pathways underlying
overall resolution of lung inflammation. We used next-generation RNA sequencing and
[18F]FDG PET-CT data, collected at diagnosis, week 4, and week 24, from 75 successfully
cured PTB patients, with the [18F]FDG activity as a surrogate for lung inflammation. Our
linear mixed-effects models required that for each individual the slope of the line of [18F]
FDG data in the outcome and the slope of the peripheral blood transcript expression data
correlate, i.e., the slopes of the outcome and explanatory variables had to be similar. Of
10,295 genes that changed as a function of time, we identified 639 genes whose
expression profiles correlated with decreasing [18F]FDG uptake levels in the lungs.
Gene enrichment over-representation analysis revealed that numerous biological
processes were significantly enriched in the 639 genes, including several well known in
TB transcriptomics such as platelet degranulation and response to interferon gamma,
thus validating our novel approach. Others not previously associated with TB
pathobiology included smooth muscle contraction, a set of pathways related to
mitochondrial function and cell death, as well as a set of pathways connecting
transcription, translation and vesicle formation. We observed up-regulation in genes
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associated with B cells, and down-regulation in genes associated with platelet activation.
We found 254 transcription factor binding sites to be enriched among the 639 gene
promoters. In conclusion, we demonstrated that of the 10,295 gene expression changes
in peripheral blood, only a subset of 639 genes correlated with inflammation in the lungs,
and the enriched pathways provide a description of the biology of resolution of lung
inflammation as detectable in peripheral blood. Surprisingly, resolution of PTB
inflammation is positively correlated with smooth muscle contraction and, extending our
previous observation on mitochondrial genes, shows the presence of mitochondrial
stress. We focused on pathway analysis which can enable therapeutic target discovery
and potential modulation of the host response to TB.
Keywords: gene expression, [18F]FDG PET-CT, RNA-sequencing, mixed-effect models, pathway analysis,
transcription factor binding site, tuberculosis, treatment response
INTRODUCTION

Tuberculosis (TB) is among the leading causes of mortality due to
infectious diseases worldwide, with 1.5 million deaths recorded in
2018 (1). TB is caused by Mycobacterium tuberculosis and
transmitted via inhalation of air droplets expelled by a person
with active TB. The primary site ofM. tuberculosis infection is the
lung, which leads to pulmonary TB (PTB).

Lung inflammation seen in PTB is a result of the effector
functions of host immune cells at the site of infection. In the
absence of outright eradication of M. tuberculosis at the site, an
accumulation of immune cells around invading bacteria leads to
granuloma formation in an attempt to control infection. During
disease progression, persistent lung inflammation results in the
coalescence of granulomas into larger lung lesions with
concomitant necrosis and formation of cavities (2, 3). Cavities
can be detected using radiological methods such as chest X-ray
and computed tomography (CT) (4, 5).

Positron emission tomography-computed tomography (PET-
CT) is a medical imaging method, in which PET provides
functional and CT structural information (6–10). 18F-labeled
fluorodeoxyglucose (FDG) is a common PET tracer, and its
accumulation in tissues of the body indicates enhanced glucose
metabolism (11–17), which, in inflammatory diseases, can be
used as a surrogate for the extent of inflammation (18). PET-CT
is, however, a very expensive procedure (19) that is not readily
available in resource-limited settings with high TB incidence and
exposes subjects to radiation (20, 21) while not providing any
information about underlying pathophysiological changes.

A number of prior studies have identified gene expression
signatures from whole blood which reflect changes in transcript
levels in response to TB as well as response to treatment (22–30).
Some studies aimed at developing blood transcriptomic signatures
for diagnosis of active (31, 32) or incipient (28, 33) TB showed that
the signatures correlatedwith [18F]FDGuptake levels.Most of these
studies focused primarily on biomarker discovery by analyzing
group differences between timepoints in peripheral blood (24, 25,
28, 31). In contrast to previous studies (31, 33, 34), we focused on
elucidation of biology by constraining the transcriptional changes
to resolution of lung inflammation, i.e., correlation with the PET
org 2
metrics, within subject over time. Previous studies have suggested
correlation between peripheral blood transcriptional changes and
the resolution of lung inflammation (28, 31–33, 35). Here we used a
linearmixedmodels approach tomodel the response of each subject
separately using the [18F]FDG decrease over time as an outcome
variable and requiring that the slope of the gene expression over
time as an explanatory variable correspond with that of the [18F]
FDG. That is, there had to be within-subject correlation between
outcome and explanatory variable, and then we modeled to overall
groupwise trends. Thismodeling constrains the gene response to be
tightly correlated with the [18F]FDG metric and therefore with
resolution of lung inflammation. Gene expression and PET-CT
measurementswere analyzed from75patientswhowere considered
cured based onmicrobiological tests during the course of successful
treatment (16). Using our models, we were able to account for the
inherent intra- and inter-subject correlation and accommodate
missing data as well as the hierarchical data structure. Linear
mixed-effect models are statistically more powerful than merely
modelling the means of groups, as is done in more conventional
statistical analyses (36). In contrast to the 10,295 genes that changed
as a function of time, our method identified 639 genes whose
expression levels were consistent with decreasing [18F]FDGactivity
in the lung, during PTB treatment. These genes could reveal more
about the inflammation-related biological processes involved in the
lung disease than models that do not account for within subject
variation and do not constrain the transcriptional changes to the
changes in PETmetrics. We also performed cellular deconvolution
with the transcriptomics data to determine the influence of cell type
on the modeling, and found that variations in cell proportions
change the genes and pathways identified as correlated with
PET metrics.
MATERIALS AND METHODS

Study Design
We analyzed [18F]FDG PET-CT scan metrics and whole blood
RNA-sequencing (RNA-seq) data available from study subjects
(Figures 1 and S1, and Table 1). In previously published studies
(16, 28, 37), 99 patients were followed up during TB treatment
February 2021 | Volume 11 | Article 596173
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TABLE 1 | Summary of available data.

RNA-seq PET-CT RNA-seq and PET-CT

Dx W01 W04 W24 N Dx W04 W24 N Dx W04 W24 N

P 1 P P P 76 P 1a

P P 2 P P 5

P P P 3 P P 5

P P 1 P P 1

P P P 1 P P P 64

P P P 4

P P P 1

P P P P 63

Total 76 76 76
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Dx, diagnosis; W01, week 1; W04, week 4; W24, week 24; N, number of subjects; P, data available.
aSubject removed from analysis, since RNA-seq data were available for only one-time point.
FIGURE 1 | Workflow for data analysis. RNA-seq data from 75 PTB patients at Dx, Week 4 (W04) and Week 24 (W24) was merged with [18F]FDG PET-CT data
from 75 patients at the same time points. Linear mixed-effect models with varying intercepts, and varying slopes were built with lme4 in R. Whole blood
deconvolution of RNA-seq data was performed with CIBERSORT, and the proportions of naïve B cells, CD8+ ab T cells, CD14+ monocytes and neutrophils were
used as a covariable in the models. Transcription factor binding sites (TFBS) over-presentation and co-expression analyses were performed on the results from
Models 2.1 to 2.5. The results from co-expression analysis were used to construct an induced gene regulatory network and perform gene set enrichment.
Overrepresentation analysis was also performed on the genes from Model 1.
3

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Odia et al. Blood Transcriptome Correlated With PET
from diagnosis (Dx), week 1 (W01), week 4 (W04), to week 24
(W24). Approval was obtained from the Health Research Ethics
Committee (HREC) of Stellenbosch University (registration
number N10/01/013), to recruit patients and collect specimens.
For the current study to re-analyze the PET-CT and mRNA
expression data, we received a separate HREC approval (X18/
09/029).

PTB patients for the original study were recruited from the
local communities or at Tygerberg Academic Hospital in Cape
Town, South Africa. They were 16 – 70 years old, had no other
lung disease, were non-diabetic, and were HIV-negative at
diagnosis. They had also not been on any steroid medication
in the past 6 months, were not pregnant and did not have cancer
(for a detailed list of inclusion and exclusion criteria, see
Supplementary Methods). The study patients received
treatment as prescribed by the South African National
Tuberculosis Programme, based on WHO guidelines. This
consisted of 6 months of combination therapy: 2 months of
intensive phase with rifampicin, isoniazid, pyrazinamide and
ethambutol daily, followed by 4 months of continuation phase
with rifampicin and isoniazid daily (for details, see
Supplementary Methods) (1, 16). All subjects were diagnosed
with active TB by microbiological sputum culture examination at
Dx. After 2 years of follow-up, 76 patients were designated
“cured”; 8 “failed treatment”; 12 “recurrent TB”; and 3
“unevaluable” by microbiological sputum culture at the end of
treatment (W24).

RNA-seq was performed on specimens from time points: Dx,
W04 and W24. We used 75 cured subjects out of the 76, who had
[18F]FDGPET-CTscansandRNA-seqdataavailableat aminimum
of 2 time points (Table 1). We chose to use all available data, i.e.,
perform an incomplete-case data analysis since 85% of the cases
were complete andwould stabilize the estimates againstwild swings
from the incomplete cases. Additionally, another 6% of the data
consisted of start and end timepoints which should result in less
divergence of the slope estimates than cases missing either the first
or the last timepoint. There is extensive literature that indicates that
performing a complete-case analysis will lead to greater bias than
performing an incomplete-case analysis (i.e., all available data, cases
with complete data plus those with missing data) (38–50). One
approach to incomplete data is imputation. In this instance
imputation was not possible. Fortunately, linear mixed models as
implemented in generalized linearmixedmodels are robust against
missingness even under less restrictive assumptions (i.e., missing at
random as opposed to missing completely at random), thus using
incomplete-case data is plausible for the current analyses (48, 51).

We downloaded log2 transformed RNA-seq read counts from
Gene Expression Omnibus (GSE89403) (28). Read pairs were
previously aligned and mapped to human genome hg19 with
STAR version 2.3.1d (52), and htseq version 0.6.0 (53) was used
for counting the overlaps of reads with genes. Read counts were
normalized with the cpm function in edgeR package (54) inR (55),
and transformed to log2 values, hence no further pre-processing or
quality control stepswereperformedonthedata in this study.Reads
were mapped to transcripts identified by Ensembl IDs and were
mapped to Entrez Gene IDs using biomaRt (56).
Frontiers in Immunology | www.frontiersin.org 4
PET-CT Metrics
We had PET-CT scan data at time points Dx, W04 and W24 for
75 “Cured” subjects, whose RNA-seq data were available (Table
1). In previous studies (57, 58), mean standardized lesion activity
(MSLA) was one of the quantified PET metrics. MSLA is a
normalized mean intensity of [18F]FDG uptake in the area of the
lung above a background threshold, computed as Z-score (58). It
describes mean lesion intensity in a specified area of the lung.
MSLA decreased nearly linearly over time, when time was treated
as an ordinal (ordinal time in weeks corresponds approximately
to the cube root of weeks). MSLA was also characterized by large
variance (Figure S2), hence we included it in our models as an
outcome variable. MSLA is a PET metric, previously used to
calculate [18F]FDG lung lesion activity, and was reported to
correlate with changes in lung inflammation (16, 57). It should
be noted that few subjects had MSLA of 0 at the end of treatment,
and that most (67 of 75) of the PET-CT scans were considered
not resolved at the end of treatment. For statistical modeling,
[18F]FDG PET-CT scan data were merged with whole blood
RNA-seq data, using R version 3.6.1 (55).

Estimation of Cell Proportion by
Deconvolution
To estimate the proportions of lymphocyte types in the peripheral
blood samples, we performed deconvolution using the gene
expression counts and CIBERSORT (59) and the immunoStates
expression matrix (60). The CIBERSORT deconvolution uses
linear support vector regression together with an expression
matrix of genes that are differential for one or more cell types.
The immunoStates matrix comprises expression values for 317
genes and 20 cell types. We obtained estimates of cell proportions
for all 20 cell types for each subject and timepoint for which data
were available. For the cell types with non-trivial proportions and
variance we performed a repeated measures ANOVA using lme4
(61) in R (55) to determine if there was evidence for change in
proportion over time.

Statistical Modeling
We fit a linear mixed-effects, multi-level model (61, 62) that
accounts for intra- and inter-subject variation. Mathematically
the model is written as:

yi = aij + bxi + ϵi, for i = 1,  …  , n (1)

where i represents multiple values of the variable, yi is the
outcome variable for the i-th individual at level one, in j-th group
at level two, aij is the varying-intercept, xi is level one predictor
variable, b is the slope, and ϵi is the level one random error. b
represents the rate of change in y per unit in x. The predictor
variables are the independent variables.

We fit a varying-intercept, and varying slope model; treating
the subjects and gene expression levels, as random effects; and
time, as a fixed effect (Figure S1B).

The models were formulated as follows:

Gi = Tij + 1 + TijjSj
� �

Model 1; (2)
February 2021 | Volume 11 | Article 596173
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where G is Gene, T is Time, S is Subject

Mij = Gij + Tij + Cij + 1 + TijjSj
� �

Model 2; (3)

where M is MSLA, G is Gene, T is Time, S is Subject, C is
Cell-type

In the equations, i is the subscript for time point (Dx, W04,
W24) as an ordinal value; and j is the subscript for subject
(n=75). Model 1 was used to extract the slope of each gene in
each subject, while Model 2 constrains the expression levels of
each gene to correlate with MSLA levels, over time, in each
subject (Figure S1). In Model 2, we identified genes with
significant model fit, using Satterthwaite’s method (63, 64), and
Type III ANOVA F statistic test, implemented inAnova function
in the car package (65) in R version 3.6.1 (55, 66, 67). We
corrected for multiple testing using false discovery rate (FDR)
(68), with the p.adjust function in R, and FDR < 0.05 was
considered significant. The linear mixed-effects model imposes
strict constraints on the data (RNA-seq, PET), such that the
expression levels of the genes are correlated with PET levels, over
time. Traditional differential gene expression analysis does not
account for intra- and inter-subject variation.

Adjusting for cell type proportion entails adding variables to
the model and incurs a penalty in terms of the degrees of
freedom. Increasing the model complexity can result in false
negatives due to this penalty. Correction for a single cell type
alone leaves the result poorly interpretable, since significance can
be driven by changes in cell proportion in any of the remaining
cell types. We therefore selected a set of 4 cell types, i.e., naïve B
cells, CD8+ ab T cells, CD14+ monocytes and neutrophils and
modeled these using a leave-one-out approach.

We generated results for 5 different analyses based on Model 2:

2.1) Base, a model without correction for cell type (Cij omitted)

2.2) B cell, a model correcting for CD8+ ab T cells, CD14+

monocytes, and neutrophils

2.3) CD8 T cell, a model correcting for naïve B cells, CD14+

monocytes, and neutrophils

2.4) Monocyte, a model correcting for naïve B cells, CD8+ ab T
cells, and neutrophils

2.5) Neutrophil, a model correcting for naïve B cells, CD8+ ab T
cells, and CD14+ monocytes.
Gene Set Enrichment Analysis
We performed three different gene set enrichment analyses, using
the following tools: (a) gene set enrichment analysis (GSEA) (69)
using the SetRank package inR (70, 71) and theReactome pathway
database (72) for the gene set definitions; and (b) over-
representation analysis (ORA) using the tmod package (73) in R
with the Reactome pathway database (72) and (c) ORA using
WebGestalt (74). For ORA we used Fisher’s exact test to estimate
the significance of enrichment for a category.Weused theweighted
set cover for gene set redundancy reduction, which finds a
minimum subset of gene sets that include the maximum number
of genes by iteratively adding sets based on a marginal benefit for
adding the set. Themarginal benefit is the number of genes thatwill
Frontiers in Immunology | www.frontiersin.org 5
be added (distinct and not yet present among all included sets)
multiplied by −log10(p) for the set (74). SetRank produces a
network representation of the enriched pathways that was
visualized using Cytoscape (75).

We merged the networks from all 5 models (2.1 to 2.5) into a
single network to create a master layout of all enriched pathways.
The network graph of each model was then represented using the
master layout to generate per-model graphs with identical
positioning of pathways for ease of comparison. Analyses
controlled for false discovery using either the Benjamini and
Hochberg (68) or Holm (76) approach. The SetRank output
includes two rounds of correction with the Holm procedure.
Since this second correction is dependent on the collection of
pathways identified as enriched after applying the first
correction, it is specific to the results for a given model. We
therefore present the results for the comparison of models using
only the p-values adjusted with the first correction.

Identification of Transcription Factors
(TFs) and Their Binding Sites in the
Promoter Regions
We downloaded 485 experimental transcription regulators (TRs)
from ReMap, which includes transcription factors, transcriptional
co-activator and chromatin regulators (77), generated from
previous chromatin immunoprecipitation sequencing (ChIP-seq)
experiments, across 346 cell types.We usedReMap to obtain the
co-ordinates of the TF binding sites (TFBS). For each gene, we
then extracted the TF binding site start (TFStart) and end
(TFEnd), chromosome, TF, track, location, strand, gene
transcription start site (GeneTSS), and symbol for a promoter
of 4,000 bases upstreamof the transcription start site of the target
genes from human genomeGRCh38.p13, using in-house scripts.
To estimate over-representation of the TFs in PETGenes, we first
extracted the TFBS and their genomic features from the list of
PETGenes. Next, we calculated the counts of gene promoters
containing the TFs. The counts are for gene promoters that have
at least one TFBS for the TFs. Finally, we computed the TF over-
or under- representation for a set of TFs comparing the
frequencies in the query set (PETGenes) to that of the
remaining genes in the reference (Human Genome), using
Fisher’s exact test and an FDR < 0.05 (68).

Construction of Gene Regulatory Network
Weused the induced networkmodule analysis in ConsensusPathDB
(78, 79) to build a regulatory network from genes of interest.
ConsensusPathDB is a database that integrates gene regulatory
interaction, physical protein interactions, genetic interactions,
metabolic and signaling reactions, and drug-target interactions, in
human, mouse and yeast, from 30 public resources. The induced
network module analysis uses regulatory information from public
databases to connect genes based on their regulatory interaction.We
exported the built network from ConsensusPathDB, into Cytoscape
(75) for visualization.We integrated theRNA-seq expression data, to
describe the functionality of the gene regulatory network at different
time points. The interaction among genes in this network suggest
transcriptional regulatory interaction, and their expression profiles
February 2021 | Volume 11 | Article 596173
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suggest up-regulation. The feedback loops indicate gene-protein
synthesis, influenced by transcription factors, i.e., a transcription
factor regulates its target gene to synthesize its protein.
RESULTS

To identify biological processes underlying the resolution of lung
inflammation, during PTB treatment, we first identified genes with
significant changes in expression, over time, using Model 1. We
refer to these as TimeGenes. Biological processes enriched in these
genes reflect changes in transcript levels, over time, in response to
PTB treatment. Next, using different forms ofModel 2 (Models 2.1
to 2.5), we identified genes with expression levels significantly
correlated with the changes in the PET metric MSLA, in patients
who were considered cured at the end of the 6-month PTB
treatment. Using GSEA, we could identify the biological processes
and pathways associated with these genes that undergo changes in
transcript levels in peripheral blood, and which correlated with
inflammation in the lungs during PTB treatment.

Deconvolution
Wefiltered cell proportions to remove cell types that did not reach a
mean proportion > 0.05 at any time point. Seven cell types
remained, namely CD14+ monocytes, CD16+ monocytes, CD4+

ab T cells, CD8+ ab T cells, CD56bright NK cells, naïve B cells and
neutrophils. The results from the ANOVA are shown in Figure 2.
Four of the cell types, naïve B cells, CD8+ ab T cells, CD14+

monocytes and neutrophils, showed changes in proportions over
time in a manner that suggested that they could influence the
statistical model.

Model 1: Changes in Transcript Levels,
Over Time, in Peripheral Blood During PTB
Treatment (TimeGenes)
As a baseline analysis with which to compare our constrained
analysis, we applied a simple model that identified transcripts
Frontiers in Immunology | www.frontiersin.org 6
that change over time. We identified 11,229 transcripts (10,295
genes, with Entrez Gene ID) with significant changes in
expression levels, over time, using Model 1 (Table S1). We
used WebGestalt and ORA to identify gene ontology biological
process annotations enriched in these genes. Among the 289
significantly overrepresented gene ontology biological process
annotations, we observed many related to immune response as
well as annotations like “response to molecule of bacterial origin”
and “cellular response to drug” (Table S2) emphasizing that
Model 1, by not being constrained, detected all changes over time
including numerous processes that do not contribute to
understanding the pathophysiology of TB.

Model 2: Changes in Transcript Levels in
Peripheral Blood, Correlated With Lung
[18F]FDG Uptake Levels (PETGenes)
We found a significant decrease in the average [18F]FDG uptake
levels as represented by MSLA, over time, during PTB treatment
(Figure S2). MSLA is a PET metric, previously used to calculate
[18F]FDG lung lesion activity, and was reported to correlate with
changes in lung inflammation (16, 57). To identify genes with
expression levels in correlation with MSLA levels, over time, we
used Model 2. We found 693 transcripts (639 with Entrez Gene
ID) with significant changes in expression levels, in correlation
with MSLA levels, over time (Table S3) using the Base model
(2.1), and refer to these as PETGenes.

As expected, most of the PETGenes were among the
TimeGenes, with an overlap of 591 (p=1.7e-130; odds
ratio=13.8) genes between TimeGenes and PETGenes (Table 2
and Table S4). Only 48 genes were new to the PETGenes and not
amongst the TimeGenes, a result of intra-subject correlation
between the gene expression and PET levels. The 591
overlapping genes represent changes in transcript levels in
peripheral blood, associated with the resolution of
inflammation in the lungs, during PTB treatment.

We performed GSEA using the model fit results per gene and
SetRank with the Reactome pathways (72). We identified 47
FIGURE 2 | Cell proportions estimated using CIBERSORT. Line plot of repeated-measures ANOVA result. Symbols: filled circles, mean; error bars, standard error of
the mean. Significance of the overall comparison between time points is indicated at the top (Tukey HSD).
February 2021 | Volume 11 | Article 596173
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pathways that were enriched for the Base model (2.1) (Table 3
and Figure S3). Models 2.2 to 2.5 identified 48, 35, 35 and 33
pathways, respectively, as enriched (Table 4). Overall, we
identified 103 Reactome pathways (72) as enriched in one or
more of the models (Figures 3, S3 – S7 and Table 4). Many of
the well-known pathways in TB biology were represented among
the enriched pathways (80), but the results also included some
novel observations. Nine pathways were identified in all models:
“Interferon gamma signaling”, “Response to elevated platelet
cytosolic Ca2+”, “Smooth muscle contraction”, “G alpha I
signaling events” , “Platelet activation signaling and
aggregation”, “Cell surface interactions at the vascular wall”,
“rRNA modification in the nucleus and cytosol”, “PD-1
signaling” and “Interferon signaling” (Table 4).

Many pathways are related by sharing of genes and therefore
function, but some of the other pathways can be grouped
together by related function as shown in Figure 3 .
Approximately half of the pathways represented are connected
(outlined in long black dashed line, Figure 3). The inter-related
pathways include “platelet activation, signaling and aggregation”,
“extracellular matrix reorganization”, “cell surface interactions at
the vascular wall” and “response to elevated cytosolic Ca2+” (grey
dot-dash Figure 3) (80, 81), the interferon and interleukin
signaling cluster (grey dotted Figure 3) (80, 81), and a cluster
of phospholipid acyl chain metabolism that includes
unconnected small clusters of lipid metabolism pathways (red
medium dash Figure 3) (82). Smaller clusters of pathways
include Golgi trafficking (83) and N-glycosylation (dotted dark
blue Figure 3) (84), and “smooth muscle contraction” (light
green dot-dash, Figure 3).

Among the 639 PETGenes identified in Model 2.1, we found 3
distinct clusters of genes, with similar expression patterns over
time (co-expression) (Figure 4A, Table S5). The expression
levels of PETGenes in Cluster 1 started high at Dx, and
decreased over time (378 genes; Figure 4B) whereas genes in
Cluster 2 (191 genes; Figure 4C) and Cluster 3 (66 genes; Figure
4D), started low at Dx and increased over time (Figure 4D), thus
suggesting up-regulation in Clusters 2 and 3 (Figures 4C, D),
and down-regulation in Cluster 1 (Figure 4B).

Pathways related to platelets in Cluster 1 and B cells in Cluster
3 were significantly overrepresented (Table 5, Table S5). Some
new pathways in Cluster 1 included “hemostasis”, “adaptive
immune system”, “innate immune system”, “p130Cas linkage
to MAPK signaling for integrins”, and “GRB2 SOS provides
linkage to MAPK signaling for integrins”. The modules enriched
in B cells included the following PETGenes in Cluster 3: CD19,
VPREB3, CD72, CD22, FCRLA, CD79B, CD79A, HLA-DOB,
P2RX5, FAM129C, FCRL5, PCDH9, BCL11A, PNOC, and
Frontiers in Immunology | www.frontiersin.org 7
BLNK. The expression profiles of PETGenes in Cluster 3,
suggest up-regulation in B cells during treatment response,
whereas Cluster 1, suggests down-regulation in platelet
activation during treatment response. Curiously, there were no
pathways overrepresented in Cluster 2 (Figure 4C).

To validate the PETGenes, we compared our results against
published gene signatures of TB treatment response and
transcriptional profiling of lung biopsies from PTB subjects,
using Fisher’s exact test. We found 63 PETGenes overlapped
(p=7.3e-34; odds ratio=8.34) with the treatment-specific
signature from Bloom et al. (24) (320 microarray probes
mapping to 267 distinct protein-coding genes; Table S6), and
99 PETGenes overlapped (p=3.8e-136; odds ratio=576.1) with
the 393-probe, 307-gene, signature from Berry et al. (22) (Table
S7). Three PETGenes, ITGB3, MMP1, and STAT1 were found to
overlap with “top 15 most highly differentially expressed
regulator genes in lung TB granulomas” from Subbian et al.
(85), 29 genes overlapped (p=7.1e-21; odds ratio=13.7) with “TB
blood biomarkers in the lung” from Subbian et al. (85) (Table
S8), and although 164 overlapped with the “list of significantly
differentially expressed genes common to fibrotic nodules and
cavitary lesions” from Subbian et al. (85) (Table S9), this was not
significant due to the size of the set (4,417 genes) (p=0.99; odds
ratio=0.79). Additionally, we investigated if there was an overlap
between the 639 genes identified here and prior small signatures
(27). Due to the size of the signatures, we did not perform tests
for significance of overlap. We identified 17 prior signatures
(Table S10). Of these 3 were for conditions that are not relevant
to the current study, i.e., prediction of failure, response to
treatment, and diagnosis of active TB from latent TB. The
subjects in this study were not failures, were all cured at end of
treatment, and there were no latent TB cases. After removing
these three signatures, the mean proportion of genes shared was
0.60 (Table S10).

Identification of Transcriptional Regulatory
Factors in PETGenes
We found 254 TFs to be significantly over-represented in the list
of PETGenes, with FDR < 0.05 (Table S11). Among the over-
represented TFs in PETGenes (Table S11), NF-KB1, CREB,
STAT, FOS, and JUN, have been reported to play a critical role
in regulating inflammation in lung diseases (86), and we
extracted their TFBS in the promoter region of their target
genes (Table S12).

Further, we identified an induced regulatory network among
Cluster 3 genes enriched for B cell genes and pathways. The
expression level of genes in this network was low at Dx (Figure
S8), and high at W24 (Figure S9). The induced gene network
suggests transcriptional regulation of B cell genes to synthesize
proteins (Figures S8, S9). The genes in this network were
enriched in “B cell activation” and “B cell receptor signaling
pathway”, thus suggesting up-regulation in B cell activation.
Among Cluster 3 genes, we identified genes coding for TFs
UBTF, MITF, ATF3, GRHL1, SPIB, STAT1, and STAT2. We
extracted their TFBS (see Methods), as well as their target genes
(Table S12). The TFs PAX5, EBF1, and SPIB are included in
TABLE 2 | Significance test for the overlap between TimeGenes and PETGenes.

Not in TimeGenes In TimeGenes

Not in PETGenes 3909 9702
In PETGenes 48 591
Genes were annotated using biomaRt (56). TimeGenes (n=10293); PETGenes (n=639);
Intersection size=591; Overlapping p-value=2.30e-39; Odds ratio=4.96; Overlap tested
using Fisher’s exact test (alternative=greater); Jaccard Index=0.06.
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Cluster 3, and CD19, CD79A, and BLK are direct regulatory
targets of PAX5 (Figure S8, Table S12). PAX5 and EBF1 have
been reported to regulate the expression of B cell genes and play
an important role in B cell development (87, 88). Gene set
enrichment revealed that B cell receptor signaling pathway is
significantly enriched in Cluster 3 genes: PAX5, SPIB, EBF1,
CD19, CD79A, BLK, BLNK, CD79B, CD22, and CD72 (31).

We identified a regulatory network among Cluster 1 genes
enriched in genes related to platelet activation and signaling. The
expression profiles of the genes included in this network were
Frontiers in Immunology | www.frontiersin.org 8
high at Dx and low at W24 (Figure S10, and Figure S11,
respectively). The following genes were significantly enriched
in platelet degranulation: F13A1, ITGA2B, ITGB3, LY6G6F, PF4,
PPBP, RAB27B, SERPINE1, and STTL4. The KEGG pathway
“platelet activation” was significantly enriched in Cluster 1 genes:
F2RL3, GP1BA, GP6, GP9, ITGA2B, ITGB3, PRKG1, and PTGS1.
Also, we observed high expression level in platelet surface
markers: GP9, GP1BA, GP6, PF4, GP1BB, ITGB3, ITGA2B,
F2RL3, and ITGB5 at Dx (Figure S10), and low expression at
W24 (Figure S11), thus suggesting down-regulation of platelet
TABLE 3 | Reactome pathways enriched by GSEA using SetRank for the base model (not corrected for cell proportion).

Pathway Size Set Rank Corrected
P-Value*

Adjusted
P-Value†

Platelet activation signaling and aggregation 229 0.0753 1.12E-04 5.93E-10
Response to elevated platelet cytosolic Ca2+ 114 0.0493 2.28E-11 5.93E-10
Interferon gamma signaling 82 0.0480 3.95E-11 5.93E-10
Interferon alpha beta signaling 56 0.0259 1.44E-07 5.93E-10
Antimicrobial peptides 32 0.0192 1.38E-04 5.93E-10
Cell surface interactions at the vascular wall 117 0.0372 2.16E-04 5.93E-10
Non integrin membrane ECM interactions 47 0.0223 4.02E-04 5.93E-10
Cross presentation of soluble exogenous antigens (endosomes) 48 0.0121 5.54E-04 5.93E-10
Antigen processing cross presentation 95 0.0141 6.88E-04 5.93E-10
G alpha I signaling events 248 0.0301 8.14E-04 5.93E-10
Interferon signaling 175 0.0259 9.42E-04 5.93E-10
GPCR ligand binding 243 0.0206 9.54E-04 5.93E-10
Defective F9 activation 4 0.0121 9.71E-04 5.93E-10
Platelet aggregation plug formation 31 0.0121 1.01E-03 5.93E-10
Collagen degradation 43 0.0121 1.95E-03 5.93E-10
Interleukin 27 signaling 10 0.0141 2.01E-03 5.93E-10
Metal sequestration by antimicrobial proteins 4 0.0121 2.37E-03 5.93E-10
Class B/2 (secretin family receptors) 62 0.0121 3.85E-03 5.93E-10
Peptide ligand binding receptors 97 0.0121 4.20E-03 5.93E-10
The canonical retinoid cycle in rods (twilight vision) 11 0.0121 4.41E-03 5.93E-10
Regulation of insulin like growth factor (IGF) transport and uptake by insulin like growth factor binding proteins
(IGFBPs)

79 0.0121 5.20E-03 5.93E-10

Growth hormone receptor signaling 21 0.0171 5.88E-03 5.93E-10
Interleukin 20 family signaling 19 0.0121 6.10E-03 5.93E-10
Neutrophil degranulation 457 0.0121 9.92E-03 5.93E-10
Amyloid fiber formation 58 0.0121 9.93E-03 5.93E-10
Smooth muscle contraction 33 0.0223 1.28E-07 3.19E-06
cGMP effects 12 0.0121 5.11E-03 3.19E-06
Nitric oxide stimulates guanylate cyclase 16 0.0121 6.97E-03 3.19E-06
CD22 mediated BCR regulation 5 0.0121 9.21E-06 2.21E-04
Antigen activates B cell receptor (BCR) leading to generation of second messengers 29 0.0121 2.82E-04 2.21E-04
Erythrocytes take up oxygen and release carbon dioxide 9 0.0121 2.05E-04 4.71E-03
PD-1 signaling 20 0.0121 2.32E-04 5.11E-03
Costimulation by the CD28 family 65 0.0121 6.84E-03 5.11E-03
Regulation of cytoskeletal remodeling and cell spreading by IPP complex components 8 0.0121 4.64E-04 9.75E-03
Acyl chain remodeling of PS 11 0.0223 5.24E-04 1.05E-02
Acyl chain remodeling of PI 7 0.0121 5.24E-04 1.05E-02
rRNA modification in the nucleus and cytosol 59 0.0121 5.84E-04 1.11E-02
Diseases of base excision repair 5 0.0121 9.89E-04 1.78E-02
Elastic fibre formation 34 0.0121 1.18E-03 2.00E-02
Synthesis of very long chain fatty acyl CoAs 21 0.0121 1.84E-03 2.94E-02
RUNX1 regulates transcription of genes involved in BCR signaling 6 0.0121 2.02E-03 3.03E-02
Inflammasomes 19 0.0121 2.49E-03 3.49E-02
Receptor type tyrosine protein phosphatases 12 0.0121 2.55E-03 3.49E-02
Cristae formation 31 0.0121 2.65E-03 3.49E-02
Asparagine N-linked glycosylation 281 0.0121 2.87E-03 3.49E-02
rRNA modification in the mitochondrion 5 0.0121 3.08E-03 3.49E-02
SMAC, XIAP-regulated apoptotic response 8 0.0121 4.76E-03 4.28E-02
Febru
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*Holm correction for multiple testing; †Holm correction 2nd round, correcting for dependence among pathways.
Size indicates the number of genes in the pathway conditioned on the genes detected as transcribed.
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TABLE 4 | Reactome pathways enriched by GSEA using SetRank for all models.

Pathway Name Correcting for 3 cell types

Base* B Cell* CD8 T Cell* Monocyte* Neutrophil*

Interferon gamma signaling 3.95E-11 8.64E-10 9.52E-09 4.94E-09 2.03E-09
Response to elevated platelet cytosolic Ca2+ 2.28E-11 2.33E-09 7.72E-06 6.90E-07 1.43E-06
Smooth muscle contraction 1.28E-07 1.40E-07 2.40E-05 9.34E-06 3.28E-06
G alpha I signaling events 8.14E-04 2.81E-04 2.20E-04 1.32E-04 1.61E-04
Platelet activation signaling and aggregation 1.12E-04 1.19E-03 2.56E-03 2.64E-04 3.80E-03
Cell surface interactions at the vascular wall 2.16E-04 2.96E-04 3.45E-03 8.58E-04 2.12E-03
rRNA modification in the nucleus and cytosol 5.84E-04 3.49E-04 1.34E-03 5.84E-04 1.10E-03
PD-1 signaling 2.32E-04 3.93E-04 5.51E-04 3.57E-04 3.57E-04
Interferon signaling 9.42E-04 8.17E-04 4.50E-03 3.19E-03 8.51E-03
Antigen processing: ubiquitination and proteasome degradation 1.99E-04 1.04E-04 1.99E-03 6.35E-04
Cross presentation of soluble exogenous antigens (endosomes) 5.54E-04 1.53E-04 1.53E-04 2.27E-03
Collagen biosynthesis and modifying enzymes 2.36E-04 2.19E-04 9.13E-04 3.10E-04
Class I MHC mediated antigen processing and presentation 3.23E-04 2.31E-04 2.31E-04 1.56E-03
Defective F9 activation 9.71E-04 3.74E-04 8.17E-03 8.37E-03
Asparagine N-linked glycosylation 2.87E-03 9.78E-04 9.61E-03 1.85E-03
POU5F1 (OCT4), SOX2, NANOG repress genes related to
differentiation

4.36E-03 1.42E-03 1.04E-03 1.24E-03

Interferon alpha beta signaling 1.44E-07 5.23E-07 2.70E-03
EPHB mediated forward signaling 1.60E-05 6.04E-03 1.70E-03
Glycerophospholipid biosynthesis 2.39E-05 2.02E-03 5.27E-03
Synthesis of PA 7.21E-04 1.98E-03 2.13E-04
Neddylation 8.83E-04 4.27E-04 6.54E-04
Diseases of base excision repair 9.89E-04 2.15E-03 1.63E-03
N-glycan trimming in the ER and calnexin/calreticulin cycle 3.78E-03 5.78E-03 8.19E-03
Synthesis of dolichyl phosphate 9.06E-03 5.00E-03 7.09E-03
Synthesis of very long chain fatty acyl CoAs 1.84E-03 5.84E-03 5.38E-03
Nitric oxide stimulates guanylate cyclase 6.97E-03 5.82E-03 9.55E-03
CD22 mediated BCR regulation 9.21E-06 3.29E-04
Antigen activates B cell receptor (BCR) leading to generation of
second messengers

2.82E-04 4.85E-04

TCF dependent signaling in response to WNT 6.01E-04 1.65E-03
Inflammasomes 2.49E-03 6.57E-04
TBC/RABGAPs 4.51E-03 9.03E-04
Regulation of cytoskeletal remodeling and cell spreading by IPP
complex components

4.64E-04 1.00E-03

Intra Golgi traffic 9.76E-03 1.13E-03
Erythrocytes take up oxygen and release carbon dioxide 2.05E-04 1.23E-03
Fatty acid metabolism 1.30E-03 8.86E-03
FcgR activation 4.85E-03 1.62E-03
Regulation of pyruvate dehydrogenase (PDH) complex 7.81E-03 2.05E-03
cGMP effects 5.11E-03 4.26E-03
Synthesis of UDP-N-acetyl-glucosamine 4.82E-03 6.58E-03
Synthesis of PE 5.33E-03 1.00E-02
RUNX1 regulates transcription of genes involved in BCR signaling 2.02E-03 7.66E-03
Neutrophil degranulation 9.92E-03 7.71E-03
SMAC, XIAP-regulated apoptotic response 4.76E-03 8.48E-03
The canonical retinoid cycle in rods (twilight vision) 4.41E-03 9.36E-03
Negative regulation of the PI3K/AKT network 6.85E-04
Mitochondrial fatty acid beta oxidation of saturated fatty acids 8.49E-04
Disassembly of the destruction complex and recruitment of axin to the
membrane

9.02E-04

Deubiquitination 9.25E-04
Acyl chain remodeling of CL 9.83E-04
Beta oxidation of very long chain fatty acids 1.21E-03
NR1H2 and NR1H3 regulate gene expression linked to lipogenesis 1.35E-03
HIV elongation arrest and recovery 1.79E-03
The NLRP3 inflammasome 1.93E-03
Diseases of metabolism 2.04E-03
mRNA splicing minor pathway 2.16E-03
mRNA splicing 2.29E-03
Formation of fibrin clot clotting cascade 2.30E-03

(Continued)
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genes. We identified a complex of interacting platelet surface
receptors, which exhibited high expression at Dx (Figure S10),
suggesting functional activation of platelets at Dx, and low
expression at W24 (Figure S11), suggesting down-regulation
of platelet activation during treatment.

In addition, we observed interaction between tissue factor
pathway inhibitor (TFPI) and MMP1, MMP8, and MMP12,
which were enriched with the biological processes:
“coagulation” and “regulation in response to wounding”,
Frontiers in Immunology | www.frontiersin.org 10
respectively. These genes exhibited high expression at Dx
(Figure S10), and low expression at W24 (Figure S11),
suggesting down-regulation of MMP-driven coagulation.

Smoothmuscle contraction was identified by GSEA as well as by
ORA among Cluster 1 genes. Cluster 1 genes decrease in expression
from Dx to W24 (Figure 4B), suggesting that the pathway is
downregulated during resolution of inflammation. We verified that
15 of the 33 genes in the pathway have mean transcript levels in
excess of 100 transcripts per million, and most of the genes are
TABLE 4 | Continued

Pathway Name Correcting for 3 cell types

Base* B Cell* CD8 T Cell* Monocyte* Neutrophil*

Ras activation upon Ca2+ influx through NMDA receptor 2.37E-03
Triglyceride metabolism 2.42E-03
TYSND1 cleaves peroxisomal proteins 2.59E-03
Phospholipid metabolism 3.14E-03
WNT ligand biogenesis and trafficking 3.58E-03
G1/S specific transcription 3.61E-03
Regulation of RUNX2 expression and activity 3.83E-03
Signaling by NTRK3 (TRKC) 4.09E-03
Signaling by interleukins 4.78E-03
Transport to the Golgi and subsequent modification 5.20E-03
Rho GTPase cycle 5.41E-03
Acyl chain remodeling of DAG and TAG 5.50E-03
Collagen chain trimerization 5.96E-03
Synthesis of bile acids and bile salts 6.35E-03
Nucleotide binding domain leucine-rich repeat containing receptor
(NLR) signaling pathways

6.42E-03

Synthesis of PIPs at the early endosome membrane 6.57E-03
Synthesis of PIPs at the late endosome membrane 6.57E-03
Sphingolipid de novo biosynthesis 7.19E-03
Fatty acyl CoA biosynthesis 7.39E-03
SHC1 events in EGFR signaling 8.26E-03
PI metabolism 8.29E-03
Pyrimidine salvage 8.89E-03
Triglyceride biosynthesis 9.35E-03
Integrin cell surface interactions 9.47E-03
Retrograde transport at the trans-Golgi network 9.76E-03
GPCR ligand binding 9.54E-04
Antimicrobial peptides 1.38E-04
Interleukin 27 signaling 2.01E-03
Acyl chain remodeling of PS 5.24E-04
Non integrin membrane ECM interactions 4.02E-04
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by
Insulin-like Growth Factor Binding Proteins (IGFBPs)

5.20E-03

Peptide ligand binding receptors 4.20E-03
Antigen processing cross presentation 6.88E-04
Acyl chain remodeling of PI 5.24E-04
Amyloid fiber formation 9.93E-03
Elastic fibre formation 1.18E-03
Platelet aggregation plug formation 1.01E-03
Cristae formation 2.65E-03
Growth hormone receptor signaling 5.88E-03
rRNA modification in the mitochondrion 3.08E-03
Receptor type tyrosine protein phosphatases 2.55E-03
Class B/2 (secretin family receptors) 3.85E-03
Collagen degradation 1.95E-03
Metal sequestration by antimicrobial proteins 2.37E-03
Interleukin 20 family signaling 6.10E-03
Costimulation by the CD28 family 6.84E-03
February 20
21 | Volume 11 | A
*Corrected p-value (Pcorr) value using Holm correction for multiple testing [since the SetRank second round of Holm correction (Padj) is dependent on the specific collection of pathways,
results are presented using Pcorr); Bold p-values, minimum p-value for rows with more than one p-value. Models: Base, model 2.1; B Cell, model 2.2; CD8 T Cell, model 2.3; Monocyte,
model 2.4; and Neutrophil, model 2.5 (for details see Methods).
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transcribed above the nominal 10 transcripts per million (after
adjusting for library size). Additionally, it should be noted that the
transcription level is expected to be much higher in the sub-
population of cells in peripheral blood that express the smooth
muscle contraction phenotype. We constructed a gene regulatory
network using the genes in the smooth muscle contraction pathway
as well as the subset of transcription factors identified as enriched
that also occurred in the smooth muscle contraction promoters
(Figure 5). The genes enriched in Cluster 1 were: CALD1,
GUCY1A1, GUCY1B1, ITGB5, MYL9, TPM1, TPM4, VCL. To
these we added the genes whose nominal p-value contributed to
the GSEA enrichment score: ACTA2, ANXA6, DYSF, MEF2A,
MEF2C, MYH11, MYL12B, MYL6, MYLK, SORBS1, SORBS3,
TLN1, TPM2, TPM3, as well as the transcription factors: CREB1,
CREBBP, GATA1, GATA2, GATA4, GATA6, SRF, TEAD1, TEAD4.
All but SORBS1, SORBS3, TPM2, and VCL decreased expression
from Dx to W24. The network demonstrates that a highly
interconnected cluster of contraction proteins connected to
another interconnected cluster of transcription factors (Figure 5).
Frontiers in Immunology | www.frontiersin.org 11
DISCUSSION

In this study using linear mixed-effects models accommodating
intra-subject correlation between outcome and explanatory
variables, we have identified 639 genes which exhibit changes
in blood transcript levels that correlate with [18F]FDG uptake
changes in lung lesions during successful PTB treatment. These
639 genes are almost entirely a subset of the 10,295 genes that
change over time during treatment. Since all modelled subjects
were clinically cured at the end of treatment, the genes identified
by Model 2 are those correlated with resolution of lung
inflammation during PTB treatment. The changes are,
however, those in the peripheral blood that reflect the
resolution of lung inflammation, and not the changes in situ.
These PETGenes also allowed us to identify a number of
biological processes associated with inflammation.

We identified 47 enriched pathways (Table 3) using a model
without correction for cell proportion (Base, model 2.1), and a
total of 103 enriched pathways when accounting for the influence
FIGURE 3 | Merged network of Reactome pathways identified by all models (2.1 to 2.5). Network graphically shows the interconnectedness of many pathways
through sharing of genes. Legend: Enrichment, color indicates the degree of enrichment [−log10(Pcorr)]; Set size, circle size represents the number of genes in the
pathway conditioned on the observed 14,841 genes. Edge (connector) symbols: straight line, limited gene sharing; arrows, subset; and double lines, substantial
overlap; line thickness indicates degree of gene sharing [−log10(Pintersect)]. Related pathways are indicated by the outlines. Long black dashes, the largest
interconnected set of pathways comprising “interferon and interleukin signaling”, “platet activation and degranulation” and “phospholipid metabolism”; dotted red,
inflammasomes; dotted grey, interferon and interleuking signaling; dash-dot grey, platelet activation and degranulation; short-dash green, collagen metabolism;
medium dash red, lipid and phospholipid metabolism; dot-dash light green, smooth muscle contraction; and dotted dark blue, Golgi trafficking and N-linked
glycosylation. Note: in the merged network the pathway colors are represented as the minimum corrected P value [or maximum −log10(Pcorr)] among the five models.
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of cell proportions, of which the 47 are a subset, in one or more of
the 5 models (models 2.1 to 2.5). The correlation of expression of
genes identified by models correcting for cell proportions could
then be due to: a) the change in proportion of the remaining cell
type; b) change in regulation of gene expression in any of the cell
types; c) a change in proportion of another cell type not
estimated by deconvolution; or d) a combination of the above.
Since the proportions of cell types were estimated by
deconvolution, the adjustment might be neither efficient, in
statistical terms, nor as accurate as differential counts.
Therefore, caution needs to be used in the interpretation of the
results obtained here.

We identified several pathways, “CD22 mediated BCR
regulation”, “antigen activates B cell receptor (BCR) leading to
generation of second messengers”, and “RUNX1 regulates
transcription of genes involved in BCR signaling,” whose function
is restricted to B cells (Table 4) in model 2.2 “B Cell”. This supports
the premise of the approach that adjusting for the proportions of
several other cell types permits cautious attribution of at least some
of the gene expression changes to corresponding changes in the
proportions of the remaining cell type (B cells).

Eleven pathways, all consistent with different aspects of lipid
and phospholipid metabolism are enriched in the model 2.3
“CD8 T cell.” The pathways are: synthesis of phosphatidic acid
Frontiers in Immunology | www.frontiersin.org 12
(PA); synthesis of dolichyl phosphate; fatty acid metabolism;
synthesis of phosphatidylethanolamine (PE); beta oxidation of
very long chain fatty acids; triglyceride metabolism;
phospholipid metabolism; synthesis of phosphatidylinositol
phosphates (PIPs) at the early endosome membrane; synthesis
of PIPs at the late endosome membrane; PI metabolism; and
triglyceride biosynthesis. Lipid metabolism has been established
as important to the function of T cells (89), again supporting
attribution of some of the effect to changes in proportions of the
remaining cell type (CD8+ ab cells). There are also several
pathways identified here as potentially relevant to T cells that
have not previously been identified. These include some of the
phospholipid metabolism pathways and the PIP pathways.

For CD14+ monocytes and neutrophils no pathway or
collection of pathways provided support in the same way as for
naïve B cells and CD8+ ab cells. The pathways identified are
generally consistent with inflammatory processes, but not
characteristic of the cell types.

Nine pathways were identified in all models: Interferon
gamma signaling; Response to elevated platelet cytosolic Ca2+;
Smooth muscle contraction; G alpha I signaling events; Platelet
activation signaling and aggregation; Cell surface interactions at
the vascular wall; rRNA modification in the nucleus and cytosol;
PD-1 signaling; and Interferon signaling (Table 4). It seems
A B

D

C

FIGURE 4 | Clusters in PETGenes. (A) Co-expression of PETGenes grouped into clusters. Each cluster contains genes with similar expression pattern, over time. Dark blue,
very low expression level; grey, moderate expression level; and dark red, very high expression level. Expression (log2), average expression of 75 subjects at each time point.
(B) Changes in the expression of Cluster 1 genes. (C) Changes in the expression of Cluster 2 genes, and (D) Changes in the expression of Cluster 3 genes.
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therefore that the proportions of the 4 cell types are not relevant
to their detection. These pathways could be driven by regulation
in all 4 cell types, or by cells of another type, or both. Seven of the
nine pathways, “Interferon gamma signaling”, “Response to
elevated platelet cytosolic Ca2+”, “G alpha I signaling events”,
“Cell surface interactions at the vascular wall”, “Platelet
activation signaling and aggregation”, “PD-1 signaling”, and
“Interferon signaling”, are well-established inflammatory
response pathways and it is reasonable that regulation in all 4
cell types occurs during response to treatment in TB.

The remaining two pathways are: “Smooth muscle
contraction,” and “rRNA modification in the nucleus and
cytosol.” Although smooth muscle contraction has been
identified as a pathway enriched in TB transcriptomics, it was
in the context of lymph node M. tuberculosis infection (90).
rRNA modification in the nucleus and cytosol has not been
identified previously. Here we see both pathways in all models,
suggesting that these are important in the biological changes that
occur during response to treatment.
Frontiers in Immunology | www.frontiersin.org 13
“Smooth muscle contraction” is an interesting pathway to
detect in peripheral blood. Most of the genes characteristic of this
pathway are not expressed in leukocytes. Nevertheless, it is one of
the most enriched pathways in our analysis (Pcorr < 1.3 x 10−7;
Table 4). Although it has been observed before in the context of
TB (90, 91), it was not interpreted or discussed. In the mouse
study (91) it was observed in peripheral blood, but in the human
study (90) it was in a TB-infected lymph node. Prolonged and
coordinated expression of smooth muscle contraction genes in
peripheral blood is unusual. This raises the question about the
origin of the cells that give rise to this expression. One possibility
is proliferation of smooth muscle progenitor cells (SPCs), which
have been observed in peripheral blood, in response to vascular
or tissue injury, for tissue repair and remodeling. SPCs have
previously been identified in human and animal peripheral blood
(92–94). Among the responses to injury and inflammation are
signals that stimulate SPC division and migration from tissue
reservoirs or the bone marrow to the site of injury (95). Platelets
have been shown to interact with SPCs in peripheral blood,
TABLE 5 | Overrepresented Reactome pathways in clusters of PETGenes.

Pathway b B E FDR

Cluster 1
Hemostasis 53 512 3.98 7.12E-15
Platelet activation signaling and aggregation 34 228 5.73 9.46E-14
Response to elevated platelet cytosolic Ca2+ 21 113 7.14 6.26E-10
Interferon signaling 23 175 5.05 6.45E-08
Interferon gamma signaling 16 82 7.50 8.80E-08
Cytokine signaling in immune system 46 728 2.43 5.74E-06
Formation of fibrin clot clotting cascade 8 28 10.98 8.56E-05
Interferon alpha beta signaling 10 56 6.86 3.02E-04
Cell surface interactions at the vascular wall 14 117 4.60 3.60E-04
Innate immune system 47 893 2.02 4.86E-04
Platelet aggregation plug formation 7 31 8.68 0.0017
Smooth muscle contraction 7 33 8.15 0.0024
G alpha I signaling events 19 248 2.94 0.0033
Antigen processing cross presentation 11 95 4.45 0.0039
Adaptive immune system 37 705 2.02 0.0041
Signaling by GPCR 29 524 2.13 0.0110
Class A/1 rhodopsin like receptors 14 171 3.15 0.0142
GRB2 SOS provides linkage to MAPK signaling for integrins 4 12 12.81 0.0155
p130Cas linkage to MAPK signaling for integrins 4 12 12.81 0.0155
Regulation of insulin like growth factor (IGF) transport and uptake by insulin like growth factor binding proteins (IGFBPs) 9 79 4.38 0.0160
GPCR ligand binding 17 243 2.69 0.0161
Common pathway of fibrin clot formation 4 14 10.98 0.026
Signaling by interleukins 22 380 2.22 0.028
Nitric oxide stimulates guanylate cyclase 4 15 10.25 0.032
Intrinsic pathway of fibrin clot formation 4 16 9.61 0.037
Cell extracellular matrix interactions 4 16 9.61 0.037
Interleukin 4 and interleukin 13 signaling 9 92 3.76 0.037
Extracellular matrix organization 15 220 2.62 0.037
Cell-cell communication 9 96 3.60 0.045
Cross presentation of particulate exogenous antigens (phagosomes) 3 8 14.41 0.045
Regulation of cytoskeletal remodeling and cell spreading by IPP complex components 3 8 14.41 0.045
Peptide ligand binding receptors 9 97 3.57 0.046
Cluster 3
CD22-mediated B cell receptor (BCR) regulation 3 5 278.10 1.41E-04
Antigen activates B cell receptor (BCR) leading to generation of second messengers 4 29 63.93 3.17E-04
Signaling by the B cell receptor (BCR) 4 107 17.32 0.041
F
ebruary 2021
 | Volum
e 11 | Artic
N = 14832; Cluster 1 n = 378; Cluster 3 n = 66.
Columns: b, number of genes in the gene set/pathway and in the cluster (n); B, number of genes in the gene set and in the observed genes (N); E, enrichment score; FDR, false
discovery rate.
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where platelets express adhesion receptors that enable them to
interact with endothelial cells, leukocytes and SPCs (92). This
interaction triggers the following in SPCs: mobilization of
progenitor cells from either the bone marrow to peripheral
circulation or from local tissue reservoirs, e.g., pericytes,
chemotaxis to target tissue, adhesion on vascular wall, survival
and engraftment into local tissue, differentiation into mature
functional cell types, such as endothelial cells, and proliferation,
which are essential steps of progenitor cell-mediated tissue repair
(96). The extensive activation of platelets and platelet related
pathways observed in TB (Figure 3 and Figures S3–S7) (80, 81)
suggest that mobilization of SPCs is likely. Almost all the genes in
the “smooth muscle contraction” pathway are down-regulated
during response to treatment consistent with overall wound-
healing and a decreased requirement for angiogenesis, neo- or
revascularization. A critical question for TB is whether the
angiogenesis around granulomas is as dysregulated as around
cancer tumors (97). The dysregulated angiogenesis around
tumors prevents immune cells from crossing into the tumor
and contributes to the inability of the immune system to attack
the tumor (97). This could have implications for TB treatment.

Another enriched pathway “rRNA modification in the
nucleus and cytosol” has previously been reported in
peripheral blood of Friedrich’s Ataxia patients (98), but not in
TB. It can be involved in at least two aspects. First, modification
of rRNA plays a role in stability of ribosomes (99) and their
efficiency in translation (99, 100). In part it is likely a response to
the increased biosynthesis necessary for the immune cells in lung
Frontiers in Immunology | www.frontiersin.org 14
inflammation and wound healing. Second, modification of rRNA
is also involved in progenitor cell differentiation (101). The
“rRNA modification in the nucleus and cytosol” pathway could
therefore tie back in to the SPC differentiation. The origins of the
signal for rRNA modification can also arise in other cell types
and the alterations are important for ribosome stability and
efficiency (100). It is conceivable that rRNA modifications are
necessary during the chronic lung inflammation of PTB and that
the modifications return to homeostatic conditions when the
inflammation subsides.

The cluster of mitochondrion-related pathways is also
interesting. The genes are mostly downregulated during response
to treatment. The pathway of “cristae” formation includes genes for
proteins that induce the folding of the inner mitochondrial
membrane (MICOS10, MICOS13, DNAJC11) and mitochondrial
morphogenesis (TMEM11), but also includes many genes for
mitochondrial complex V, the ATP synthase complex (ATP5F1A,
ATP5F1B,ATP5F1C,ATP5F1D,ATP5F1E,ATP5MC1,ATP5MC2,
ATP5MC3, ATP5ME, ATP5MF, ATP5MG, ATP5PB, ATP5PD,
ATP5PF, ATP5PO, as well as the mitochondrially encoded genes
ATP6 and ATP8), which are all downregulated during treatment.
Downregulationof these genes is consistentwith the requirement of
extensive oxidative phosphorylation during the peak of
inflammation. Cells can increase oxidative phosphorylation by
mitochondrial division or by increasing the density of cristae in
mitochondria, which facilitates a higher density of oxidative
phosphorylation complexes and enables mitochondria to be more
efficient (102). Interestingly, enrichment of the pathways “SMAC
FIGURE 5 | Induced regulatory network of smooth muscle cell contraction. Network generated from genes enriched in the smooth muscle contraction pathway
together with enriched transcription factors present in their promoters. Shapes: maroon dashed-line border, input elements; octagons, input smooth muscle genes
(as proteins); diamonds, input transcription factors (as proteins); triangles, induced elements; light green elements, proteins; light blue, genes; light red, RNA; orange,
complexes. Text prefixes: g, gene; p, protein; r, RNA. Lines: light red dashed, protein interaction; light green, gene regulatory interaction; blue, biochemical
interaction. Target arrow shapes: arrowhead, activator; open circle, product, half circle, substrate; diamond, enzyme activity; T, suppressor; open square, transcribed
product; half arrow/half top, transcription factor binding.
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XIAP regulated apoptotic response” and “rRNAmodification in the
mitochondrion,” which are connected via numerous protein-
protein interactions, further suggests that the demand placed on
the mitochondria has led to some mitochondrial dysfunction.

We used the pathways related to B cells and platelet activation
to validate our approach. First, we demonstrated an increase in
the expression of genes enriched in B cells, B cell activation and B
cell receptor signaling during treatment (Figures 4A, D) and
decrease in expression of genes enriched in platelet activation
(Figure 4B). Second, we constructed induced regulatory
pathways that incorporated TF with enriched TFBS. The
regulatory interaction among PETGenes and their TFs
demonstrates transcriptional regulation among PETGenes.
High expression of genes enriched in “B cell activation”, at the
end of treatment suggests up-regulation in B cells activation
(Figures S8 and S9) and low expression of genes enriched in
“platelet activation” suggests down-regulation (Figures
S10, S11).

Previous studies on TB treatment response (24, 25, 28–30)
have only reported general changes in transcript levels in the
peripheral blood, which are likely to be a collection of responses
to drugs, reduction in bacterial load and inflammation. Four
previous studies on human TB also reported a correlation
between peripheral blood signatures and PET-CT [18F]FDG
uptake measurements (28, 31, 33, 34). The uniqueness of our
findings is that we directly correlated changes in transcripts levels
in peripheral blood with [18F]FDG uptake in the lungs—a
measure of inflammation—over time during TB treatment,
taking into account the inherent intra- and inter-subject
correlation structure of repeated measurements, thus our
results describe more of the biology of lung inflammation in
TB, as well as the temporal dynamics of transcriptional changes,
and with statistical accuracy. Our models (linear mixed-effect
models) identified subtle significant changes in transcript levels
that are ignored in traditional gene expression analyses and
provide robust results for downstream differential expression
analysis and clustering.

Limitations
Our study had some limitations. We used a linear-mixed effect
model to analyze gene expression levels, which only considers
linear correlation or relationship of gene expression with time.
The linear-mixed effect model accounts only for the linear
characteristics of measurements, ignoring other dynamics or
patterns of gene expression and PET measurements which may
be characteristic of TB. Additionally, transcriptomics only
reveals changes in regulation of RNA levels which do not
necessarily correspond to functional changes in proteins;
nevertheless, it does provide insight into the regulatory
responses, especially in longitudinal analyses. Lastly, the
models correcting for cell proportions rely on computational
deconvolution and not on differential counts, and the choice of
which cell types to include in the models is difficult. Including
too many variables (too many cell proportions) can weaken the
inferential power of the models, and including cell types with
little effect reduces power without any benefit. For future studies,
we suggest using mixed-effect models with splines or other non-
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linear models with more time points. Another limitation is that
PET-CT measures only glucose metabolism and not oxidative
phosphorylation, nor does it provide a measure of bacterial
burden; a direct measure of TB load would be ideal.
CONCLUSION

In summary we have demonstrated that the resolution of
inflammation in the lungs during TB treatment, measured with
changes in PET-CT [18F]FDG uptake in the lungs, is positively
correlated with down-regulation of genes enriched in “platelet
activation”, “interferon and interleukin signaling”, and
negatively correlated with up-regulation of genes enriched in
“B cell activation” as well as many other pathways consistent
with prior literature. These results validate our overall approach.
In addition, we have shown that correcting for major cell type
proportions using a leave-one-out approach allows identification
of processes consistent with the remaining cell type. Lastly, we
have identified “smooth muscle contraction” and pathways
related to mitochondrial stress and dysfunction as highly
enriched pathways. The extent of coordinated smooth muscle
contraction gene expression suggests that the signal is derived
from non-leukocyte origins, such as SPCs. The results obtained
from our comprehensive pathway analyses provide important
new insight into the pathobiology of TB. In future studies they
could contribute to therapeutic target discovery and potential
modulation of the host response to TB.
DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE89403.
ETHICS STATEMENT

Approval was obtained from the Health Research Ethics
Committee (HREC) of Stellenbosch University (registration
number N10/01/013), to recruit patients and collect specimens.
For the current study to re-analyze the PET-CT and mRNA
expression data, we received a separate HREC approval (X18/09/
029). The patients/participants provided their written informed
consent to participate in this study.
THE CATALYSIS TB-BIOMARKER
CONSORTIUM

André G. Loxton, Department of Science and Innovation/
National Research Foundation Centre of Excellence for
Biomedical Tuberculosis Research and South African Medical
Research Council Centre for Tuberculosis Research, Division of
February 2021 | Volume 11 | Article 596173

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89403
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89403
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Odia et al. Blood Transcriptome Correlated With PET
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Annare Ellman, Division of Nuclear Medicine,
Department of Medical Imaging and Clinical Oncology,
Faculty of Medicine and Health Sciences, Stellenbosch
University, Cape Town, South Africa; Bronwyn Smith,
Department of Science and Innovation/National Research
Foundation Centre of Excellence for Biomedical Tuberculosis
Research and South African Medical Research Council Centre
for Tuberculosis Research, Division of Molecular Biology and
Human Genetics, Faculty of Medicine and Health Sciences,
Stellenbosch University, Cape Town, South Africa; Caroline G.
G. Beltran, Department of Science and Innovation/National
Research Foundation Centre of Excellence for Biomedical
Tuberculosis Research and South African Medical Research
Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Clifton E. Barry III, Department of Science and
Innovation/National Research Foundation Centre of Excellence
for Biomedical Tuberculosis Research and South African
Medical Research Council Centre for Tuberculosis Research,
Division of Molecular Biology and Human Genetics, Faculty of
Medicine and Health Sciences, Stellenbosch University, Cape
Town, South Africa, Tuberculosis Research Section, Laboratory
of Clinical Infectious Diseases, Division of Intramural Research,
National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Bethesda, MD, United States, Wellcome
Centre for Infectious Diseases Research in Africa, Institute of
Infectious Disease and Molecular Medicine, Faculty of Health
Science, University of Cape Town, Observatory 7925, South
Africa; David Alland, Center for Emerging Pathogens,
Department of Medicine, Rutgers-New Jersey Medical School,
Rutgers Biomedical and Health Sciences, Newark, NJ, United
States; Friedrich Thienemann, Wellcome Centre for Infectious
Diseases Research in Africa, Institute of Infectious Disease and
Molecular Medicine, Faculty of Health Science, University of
Cape Town, Observatory 7925, South Africa, Department of
Medicine, Groote Schuur Hospital, Faculty of Health Science,
University of Cape Town, Cape Town, South Africa; Gerard
Tromp, Department of Science and Innovation/National
Research Foundation Centre of Excellence for Biomedical
Tuberculosis Research and South African Medical Research
Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Gerhard Walzl, Department of Science and Innovation/
National Research Foundation Centre of Excellence for
Biomedical Tuberculosis Research and South African Medical
Research Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; James M. Warwick, Division of Nuclear Medicine,
Department of Medical Imaging and Clinical Oncology,
Faculty of Medicine and Health Sciences, Stellenbosch
University, Cape Town, South Africa; Jill Winter, Catalysis
Frontiers in Immunology | www.frontiersin.org 16
Foundation for Health, San Ramon, CA, United States;
Katharina Ronacher, Department of Science and Innovation/
National Research Foundation Centre of Excellence for
Biomedical Tuberculosis Research and South African Medical
Research Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Kim Stanley, Department of Science and Innovation/
National Research Foundation Centre of Excellence for
Biomedical Tuberculosis Research and South African Medical
Research Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Ilse Kant, Division of Nuclear Medicine, Department of
Medical Imaging and Clinical Oncology, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Lani Thiart, Department of Science and Innovation/
National Research Foundation Centre of Excellence for
Biomedical Tuberculosis Research and South African Medical
Research Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Lance A. Lucas, Department of Science and Innovation/
National Research Foundation Centre of Excellence for
Biomedical Tuberculosis Research and South African Medical
Research Council Centre for Tuberculosis Research, Division of
Molecular Biology and Human Genetics, Faculty of Medicine
and Health Sciences, Stellenbosch University, Cape Town, South
Africa; Laura E. Via, Tuberculosis Research Section, Laboratory
of Clinical Infectious Diseases, Division of Intramural Research,
National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Bethesda, MD, United States, Wellcome
Centre for Infectious Diseases Research in Africa, Institute of
Infectious Disease and Molecular Medicine, Faculty of Health
Science, University of Cape Town, South Africa; Lori E. Dodd,
Biostatistics Research Branch, National Institute of Allergy and
Infectious Diseases, National Institutes of Health Bethesda,
Maryland, United States; Magdalena Kriel, Department of
Science and Innovation/National Research Foundation Centre
of Excellence for Biomedical Tuberculosis Research and South
African Medical Research Council Centre for Tuberculosis
Research, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch
University, Cape Town, South Africa; Nelita Du Plessis,
Department of Science and Innovation/National Research
Foundation Centre of Excellence for Biomedical Tuberculosis
Research and South African Medical Research Council Centre
for Tuberculosis Research, Division of Molecular Biology and
Human Genetics, Faculty of Medicine and Health Sciences,
Stellenbosch University, Cape Town, South Africa; Patrick
Dupont, Laboratory for Cognitive Neurology, Department of
Neurosciences, KU Leuven, Belgium, Division of Nuclear
Medicine, Department of Medical Imaging and Clinical
Oncology, Faculty of Medicine and Health Sciences,
Stellenbosch University, Cape Town, South Africa; Ray Y.
Chen, Tuberculosis Research Section, Laboratory of Clinical
February 2021 | Volume 11 | Article 596173

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Odia et al. Blood Transcriptome Correlated With PET
Infectious Diseases, Division of Intramural Research, National
Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD, United States; Robert J. Wilkinson,
Wellcome Centre for Infectious Diseases Research in Africa,
Institute of Infectious Disease and Molecular Medicine, Faculty
of Health Science, University of Cape Town, South Africa,
Department of Medicine, Groote Schuur Hospital, Faculty of
Health Science, University of Cape Town, Cape Town, South
Africa, The Francis Crick Institute, London, United Kingdom,
Department of Medicine, Imperial College London, United
Kingdom; Shubhada Shenai, Center for Emerging Pathogens,
Department of Medicine, Rutgers-New Jersey Medical School,
Rutgers Biomedical and Health Sciences, Newark, NJ, United
States; Stephanie Griffith-Richards, Division of Radiodiagnosis,
Department of Medical Imaging and Clinical Oncology, Faculty
of Medicine and Health Sciences, Stellenbosch University, Cape
Town, South Africa; Stephanus T. Malherbe, Department of
Science and Innovation/National Research Foundation Centre of
Excellence for Biomedical Tuberculosis Research and South
African Medical Research Council Centre for Tuberculosis
Research, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch
University, Cape Town, South Africa.
AUTHOR CONTRIBUTIONS

TO and GT carried out the computational analyses and drafted
the manuscript. GW designed the original study, obtained
funding for it and oversaw the study. GT designed and
supervised the current bioinformatic analysis reported here.
SMa interpreted PET-CT and provided quantitative data on
PET-CT scans as well as clinical findings. DZ, ET, and FD
contributed to the NGS analysis. SMe provided expertise and
additional supervision on computational analyses. EM, NP, AL,
LK, KR, and GW provided expert immunological and clinical
knowledge on interpreting the results. HK and JW interpreted
results and participated in drafting the manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

TO, SM, GW, and GT were supported by the South African
Tuberculosis Bioinformatics Initiative (SATBBI), a Strategic
Health Innovation Partnership grant from the South African
Medical Research Council and South African Department of
Science and Technology. SMa received funding from the
EDCTP2 program supported by the European Union (grant
number CDF1576). GW received funding from the South
African National Research Foundation (SARChI TB
Biomarkers #86535) and the South African Medical Research
Council. AL is supported by the NRF-CSUR (Grant Number
CSUR60502163639) and by the Centre for Tuberculosis
Research from the South African Medical Research Council
Frontiers in Immunology | www.frontiersin.org 17
(SAMRC). HK was supported by the Faculty of Medicine and
Health Sciences, Stellenbosch University, South Africa. The
Catalysis Biomarker Consortium was funded by the Catalysis
Foundation for Health, the Division of Intramural Research,
National Institute of Allergy and Infectious Diseases, and the
National Institute of Allergy and Infectious Diseases,
International Collaborations in Infectious Disease Research.
ACKNOWLEDGMENTS

The authors acknowledge the Centre for High Performance
Comput ing (CHPC) , South Afr i ca , for prov id ing
computational resources to this research project.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.
596173/full#supplementary-material

Supplementary Figure 1 | Statistical modeling outline. (A) A total of 75 subjects
diagnosed with active PTB, were followed up during treatment, and were
considered cured at the end of treatment (EOT). [18F]FDG PET-CT scans were
collected at Dx, week 4 (W04), and week 24 (W24). We observed a decrease in
average [18F]FDG uptake levels, over time, during treatment. (B) We modelled [18F]
FDG uptake levels, RNA-seq gene expression levels, and cell-type proportions,
over time, using linear mixed-effects models. P, [18F]FDG uptake levels, as
outcome; G, gene expression levels; T, time; C, cell-type proportions; and S,
subjects. G, T and C were used as co-variables (see description of models in
methods).

Supplementary Figure 2 | Changes in MSLA levels, during PTB treatment. In
this study MSLA levels were used as a PET metric for estimating [18F]FDG uptake in
the lungs. PETC-CT data were available on 76 cured patients at diagnosis (Dx),
week 4 (W04) and week 24 (W24) (see Table 1 for more information). P-values were
calculated using ANOVA. (A) Significant changes in the average MSLA levels of all
cured subjects (n=75), during PTB treatment. (B) Temporal changes in MSLA levels
during PTB treatment among cured subjects (n=75).

Supplementary Figure 3 | Network illustrating gene-sharing relationship
between Reactome pathways identified in the base model (no correction for cell
proportion) using SetRank.

Supplementary Figure 4 | Network of Reactome pathways identified by the “B
cell” model (2.2). Description and symbols: see Figure 3.

Supplementary Figure 5 | Network of Reactome pathways identified by the
“CD8+ ab T cell” model (2.3). Description and symbols: see Figure 3.

Supplementary Figure 6 | Network of Reactome pathways identified by the
“CD14+ monocyte” model (2.5). Description and symbols: see Figure 3.

Supplementary Figure 7 | Network of Reactome pathways identified by the
“neutrophil” model (2.5). Description and symbols: see Figure 3.

Supplementary Figure 8 | Induced regulatory network of B cell genes, showing
expression levels at Dx. Directed network showing genes as nodes, and interaction
as edges. Blue broken lines, protein-protein interaction, thick brown lines, gene-
protein synthesis interaction that is regulated by a transcription factor and thick
green lines, regulatory interaction. Triangle, transcription factors; diamond,
repressor; ellipse, transcribed gene; and octagon, interacting proteins. Red, high
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expression; dark red, very high expression; grey, moderate expression; and blue,
low expression. PAX5 interacts with EBF1 to regulate the expression of target
genes CD19, CD79A and BLK, which are involved in B cell development.

Supplementary Figure 9 | Induced regulatory network of B cell genes, showing
expression levels at W24. Directed network showing genes as nodes, and
interaction as edges. Blue broken lines, protein-protein interaction, thick brown
lines, gene-protein synthesis interaction that is regulated by a transcription factor
and thick green lines, regulatory interaction. Triangle, transcription factors;
diamond, repressor; ellipse, transcribed gene; and octagon, interacting proteins.
Red, high expression; dark red, very high expression; grey, moderate expression;
and blue, low expression. PAX5 interacts with EBF1 to regulate the expression of
target genes CD19, CD79A and BLK, which are involved in B cell development. In
the feedback loops, the transcription factors regulate target genes to synthesize
proteins.

Supplementary Figure 10 | Induced regulatory network of platelet genes,
showing expression levels at Dx. Directed network showing genes as nodes, and
interaction as edges. Lines: blue broken line, protein-protein interaction; thick
brown line, gene-protein synthesis interaction that is regulated by a transcription
factor; and thick green line, regulatory interaction. Symbols: transcription factors;
diamond, repressor; ellipse, transcribed gene; and octagon, interacting proteins.
Color: red, high expression; dark red, very high expression; grey, moderate
expression; and blue, low expression.

Supplementary Figure 11 | Induced regulatory network of platelet genes,
showing expression levels at W24. Directed network showing genes as nodes, and
interaction as edges. Lines: blue broken lines, protein-protein interaction; thick
brown lines, gene-protein synthesis interaction that is regulated by a transcription
factor; and thick green lines, regulatory interaction. Symbols: triangle, transcription
factors; diamond, repressor; ellipse, transcribed gene; and octagon, interacting
proteins. Color: red, high expression; dark red, very high expression; grey,
moderate expression; and blue, low expression. In the feedback loops, the
transcription factors regulate target genes to synthesize proteins.
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Supplementary Table 1 | List of genes with significant fit in Model 1. Genes with
expression profiles correlated with Time. [Table_S01.xlsx]

Supplementary Table 2 | List of GO biological processes significantly enriched in
TimeGenes (Model 1). [Table_S02.xlsx]

Supplementary Table 3 | List of genes with significant fit in Model 2.1. Genes
with expression profiles correlated with [18F]FDG uptake. [Table_S03.xlsx]

Supplementary Table 4 | List of genes in TimeGenes (Model 1), PETGenes
(Model 2.1), and the intersection (overlap). [Table_S04.xlsx]

Supplementary Table 5 | List of PETGenes with similar expression pattern over
time, grouped into clusters. [Table_S05.xls]

Supplementary Table 6 | Significance test for overlap between 320-probe
treatment-specific signature from Bloom et al. (24) and PETGenes. [Table_S06.xlsx]

Supplementary Table 7 | Significance test for overlap between 393-probe
signature from Berry et al. (22) and PETGenes. [Table_S07.xlsx]

Supplementary Table 8 | Significance test for overlap between “TB blood
biomarkers in the lung” from Subbian et al. (85) and PETGenes. [Table_S08.xlsx]

Supplementary Table 9 | Significance test for overlap between “list of
significantly differentially expressed genes common to fibrotic nodules and cavitary
lesions” from Subbian et al. (85) and PETGenes. [Table_S09.xlsx]

Supplementary Table 10 | List of small signatures and overlap with 639
PETGenes.

Supplementary Table 11 | List of transcription factor binding sites over-
represented in PETGenes. [Table_S11.xlsx]

Supplementary Table 12 | List of TFs, their target genes and TFBS identified.
[Table_S12.xlsx]
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