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While progress has been made in the treatment of both hematologic cancers and solid 
tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and 
salvage chemotherapy or radiation expose patients to intolerable toxicities and may not 
be effective. Hematopoietic stem cell transplant offers the promise of cure for many 
patients, and while mismatched, unrelated or haploidentical donors are increasingly 
available, the recipients are at higher risk of severe immunosuppression and immune 
dysregulation due to graft versus host disease. Viral infections remain a primary cause 
of severe morbidity and mortality in this patient population. Again, many therapeutic 
options for viral disease are toxic, may be ineffective or generate resistance, or fail to 
convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is 
a targeted therapy that is efficacious and has minimal toxicity in immunocompromised 
patients with CMV and EBV infections in particular. Products have since been generated 
specific for multiple viral antigens (multi-VST), which are not only effective but also confer 
protection in 70–90% of recipients when used as prophylaxis. Notably, these products 
can be generated from either virus-naive or virus-experienced autologous or allogeneic 
sources, including partially matched HLA-matched third-party donors. Obstacles to 
effective VST treatment are donor availability and product generation time. Banking of 
third-party VST is an attractive way to overcome these constraints and provide products 
on an as-needed basis. Other developments include epitope discovery to broaden the 
number of viral antigens targets in a single product, the optimization of VST generation 
from naive donor sources, and the modification of VSTs to enhance persistence and 
efficacy in vivo.

Keywords: cell therapy, immunotherapy, adoptive, virus-specific T  cells, immunocompromised host, ex vivo 
expansion, posttransplant complications

iNTRODUCTiON

While hematopoietic stem cell transplant (HSCT) offers a chance of cure for patients with many 
high risk cancers or primary immunodeficiency syndromes, transplant recipients remain vulner-
able to infectious complications due to prolonged and profound immunosuppression (1–4). These 
risks are modified by preparative regimen, transplant type, and duration of myelosuppression 
(1–4). With advances in conditioning regimens and improved posttransplant management, an 
increasing number of patients are eligible to receive mismatched, unrelated, or haploidentical 
donor HSCT. While there have been great improvements in outcome for patients with severe 
or otherwise untreatable disease, the immunosuppression required for engraftment and, when 
indicated, to treat graft versus host disease (GVHD), opens the door for infection. In particular, 
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Table 1 | Antigen selection and presentation.

antigen/aPC advantage Disadvantage

Whole virus/viral 
lysate

Potent antigen Live virus, lengthy  
production time

Whole proteins Readily available Less potent antigen

Viral vectors Reproducible Lengthy production time

Peptide/peptide 
mixtures

Reproducible, 
standardized, readily 
available

Need identified immunodominant 
epitopes

Dendritic cells Potent stimulators Limited cell numbers, difficult  
to isolate

Monocytes Easily isolated Reduced potency

B cells More robust numbers Reduced generation of Tmem (26), 
increased production time

PHA blasts Reduced production 
time, easily expanded

Moderate potency

Artificial APC Easily expanded and 
maintained; effective 
costimulation

Varying efficacy
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viral infections cause significant morbidity and mortality, 
and the risk increases when T  cell immune reconstitution is 
delayed (1–3). The relationship between immunosuppression, 
immune reconstitution, and the effects of GVHD, and infection 
are complicated and intertwined (5). Pharmacologic treatment 
and prophylactic options for viral infections remain limited 
and often ineffective, with associated morbidities notably from 
acute kidney injury and myelosuppression. Treatment may 
also generate resistance, and does not confer extended protec-
tion leaving patients at risk for viral reactivation (4). Given 
the correlation between delay in T cell immune recovery and 
viral disease, adoptive cell therapy is a logical alternative to 
pharmacologic therapy. Unmanipulated lymphocyte infusions 
from seropositive donors have been infused in patients with 
life-threatening disease such as EBV-associated lymphoma, 
demonstrating clinical efficacy with risks primarily associated 
with GVHD (6). This strategy has evolved over the past two 
decades, and donor lymphocyte products have been success-
ful in reconstituting viral immunity in the host as a treatment 
for viral disease (including reactivation, new exposure, and 
lymphoma) and as prophylaxis (7). Following these initial 
studies, virus-specific T cell (VST) selection and/or expansion 
has been refined to maximize viral cytotoxicity and minimize 
alloreactivity to reduce and largely eliminate the risk of GVHD. 
In the current studies, VSTs offer targeted therapy and have 
demonstrated a very good safety profile to date (8–11). This 
review will detail developments in the manufacturing process, 
describe clinical success of VSTs and discuss future directions, 
including the use of naive donor sources and third-party banks.

MaTeRialS aND MeTHODS

antigen Selection
To successfully generate and expand VSTs, specific immuno-
genic epitopes need to be defined for each pathogen. It is well 
established that some viruses, notably CMV and EBV, are known 
to have certain antigens expressed at various stages of disease 
(12–14). Using available tools, epitope mapping has allowed 
identification of immunogenic antigens for other viruses, 
including adenovirus, human herpes virus 6 (HHV6), and BK 
virus (15–18). For many of these viruses, the immunodominant 
and subdominant antigens have been characterized, as well 
as antigens which promote enhanced T  cell proliferation and 
immune protection in vivo (19). Several methods have been used 
to expand and select VSTs. Most recently, antigen-presenting 
cells (APCs) exposed to peptide mixtures consisting of overlap-
ping, 15mer peptide libraries have proved highly successful for 
direct stimulation of CD4+ and CD8+ T cells (17–19). Alternative 
approaches use APC exposed to whole virus, viral lysates, whole 
proteins, or viral vectors (7, 9, 15, 20–24).

antigen Presentation
Once an appropriate antigen has been identified as an immune 
target, it must be effectively presented by APC to T  cells in 
conjunction with costimulatory signals to promote T  cell 
activation and proliferation. The APC type impacts production 

time, cell numbers, and product phenotype. Examples include 
dendritic cells, monocytes, B cells, and various artificial APCs. 
Table 1 summarizes antigen and APC options. While dendritic 
cells are very effective APCs, they are limited by low numbers; 
thus, repeat stimulations require increasing amounts of donor 
cells. Whole virus has also been used to create potent APCs. 
For example, EBV lymphoblastoid cell lines (LCLs) infected 
with the B95-8 EBV strain, are effective and safe APC for gen-
eration of clinically useful products (9). However, this strategy 
is limited by lengthy incubation time with a potential risk of 
infection. Donor PHA blasts are potent, polyclonal stimulators 
of T cells and require only low cell numbers for generation (19). 
Artificial K-562 cells are another potential option for APC, and 
may be especially helpful to provide costimulation for gener-
ating VSTs from seronegative donors. This complementary 
costimulation in the presence of artificial APCs creates an 
effective antigen-presenting complex to promote VST stimula-
tion and expansion (25).

T Cell expansion
Initial attempts at adoptive immunotherapy used unmanipu-
lated donor lymphocyte infusions to transfer cytotoxic and 
memory T cells specific for certain viral infections. While an 
effective antiviral strategy, a major complication was GVHD,  
a natural consequence from infusing alloreactive T cells (6, 27). 
Furthermore this strategy was essentially limited to EBV and 
CMV where high frequencies of VSTs circulate in the donor 
(28). Modifications in the generation and ex vivo expansion 
of these T cell products have minimized GVHD to an almost 
negligible risk (28, 29). These processes have evolved over 
time to select and expand VSTs while minimizing alloreactive 
or naive T  cells in the final product, with the emphasis cur-
rently on reducing production times and maximizing product 
functionality.
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Reduction of Alloreactive Cells
Several strategies have been aimed at inactivating or removing 
alloreactive T cells from donor products. One strategy evaluated 
blockade via monoclonal antibodies to the B7:CD28 costimula-
tory complex to produce an anergic response to recipient cells 
(30). This was successful, although time-consuming and not 
completely effective at preventing GVHD. Other strategies have 
employed selective depletion of alloreactive cells, either ex vivo 
or in  vivo. Ex vivo methods use cells stimulated by recipient 
APCs followed by targeting alloreactive T cells through CD25, 
CD69, or CD95 and eliminating them by magnetic-coupled 
monoclonal antibodies or immununotoxins, photodynamic 
depletion, or apoptosis activation (31–34). These methods have 
seen some success in  vivo, but results have been unreliable in 
terms of conveying viral protection and preventing GVHD. 
In vivo strategies employ a safety or suicide switch to deplete 
alloreactive T cells, to induce apoptosis in response to a specific 
signal. A thymidine kinase gene from herpes simplex virus I, act-
ing as a trigger for cell elimination via ganciclovir exposure, was 
found to be effective but hampered by increased immunogenic-
ity and a delay of several days to clinical effect after ganciclovir 
administration (35). Newer studies have transduced cells with 
the suicide gene-inducible caspase 9 (iC9), which triggers apop-
tosis after exposure to a dimerizing drug (36, 37). In this case, 
VSTs conveyed viral protection, and patients showed clinical 
improvement of GVHD symptoms soon after administration of 
the “safety switch” dimerizing drug.

Approaches for Selection and Expansion of VSTs
Isolation of VSTs with or without ex vivo expansion offers an 
alternative means of eliminating alloreactive cells. More recent 
methods have simplified this process to reduce production times 
and simplify manufacturing strategies.

Selection of VSTs
Virus-specific T  cells may be isolated directly from donor 
peripheral blood with the use of peptide-HLA multimers to 
facilitate the identification and purification of antigen-specific 
T  cells. This process was originally hindered by irreversible 
binding and significant changes in T cell phenotype. The use of 
streptamers greatly improved this method, acting as multimers 
that use an HLA-peptide complex to reversibly bind the desired 
T cells without altering T cell phenotype or functional status. 
While a major benefit of this method is the rapid availability 
of an antigen-specific T  cell product, the selected T  cells are 
limited by HLA-restriction imposed by the streptamer (38–40). 
This process also requires knowledge of defined Class I HLA-
restricted viral epitopes for effective isolation, and it selects 
for a limited repertoire of CD8+ cells rather than the entire 
polyclonal, polyfunctional population of CD4+ and CD8+ T cells 
recognizing the full spectrum of available viral antigens. Despite 
noted limitations, investigators have been successful using  
VSTs isolated in this manner in the adoptive therapy for diseases 
with higher numbers of circulating VSTs, such as CMV and  
EBV. Such infused VSTs have also demonstrated expansion 
in vivo following transfer of these selected cells (41).

Interferon-γ (IFN-γ) capture also directly selects circulating 
VSTs from peripheral blood. Peripheral blood mononuclear 

cells (PBMCs) are stimulated with antigens specific for targeted 
virus and incubated over 4–16 h, inducing IFN-γ production 
in stimulated cells. A monoclonal antibody to IFN-γ coupled 
to a leukocyte-specific antibody (anti-CD45) then captures the 
IFN-γ producing cells, which are then selected via magnetic 
beads. This also allows rapid selection of VSTs free of HLA-
restriction with the added benefit of stimulating and capturing a 
polyclonal population of CD4+ and CD8+ cells. This is clinically 
relevant, as the presence of CD4+ cells enhances the memory 
and effector response and supports persistence and expansion 
of the cytotoxic T  cells (42, 43). It also allows for selection 
of VSTs responding to multiple viral epitopes and has been 
successful in generating clinically functional VSTs targeted to 
various viruses (44–47).

Both these capture methods allow for rapid and precise 
selection of circulating VSTs, with obvious benefits for timely 
treatment of patients with active disease. However, they require 
VSTs to be circulating at a detectable level and leukapheresis is 
often needed to collect clinically relevant cell numbers. These 
methods are thus not useful for naive donors and ineffective if 
numbers of circulating VSTs are too low to generate a useful 
product.

Expansion of VSTs
The process of ex vivo T cell selection and expansion has been 
refined over the past two decades, with an emphasis on decreas-
ing production times and complexity and optimizing in  vivo 
function. The first techniques using EBV-LCL lines required at 
least 3 months to generate the APC and make a product. Despite 
still taking at least 10 days, current VST culture expansion sys-
tems generate polyclonal and polyfunctional products, properties 
which enhance in  vivo expansion, function, and persistence. 
Clinical trials using ex vivo stimulated and expanded VSTs show 
that infused T cells persist long-term, detectible by gene-marking 
studies for as long as 9 years (48, 49). Ex vivo stimulation and 
expansion requires only a small volume of blood to establish the 
culture, eliminating the need for costly, time-consuming, and 
invasive leukapheresis. Lastly, expansion cultures make possible 
the generation of VSTs from low levels of circulating VSTs and 
naive donor sources (19–21, 50). Expanded VSTs infused in post-
HSCT recipients carries a potential risk of causing GVHD. While 
some studies have shown cross reactivity of these VSTs with 
recipient targets in vitro, no increase in either acute or chronic 
GVHD has been reported (51). In fact, even when mild cross-
reactivity of expanded VSTs with HLA-mismatched targets has 
been demonstrated in vitro, it has not correlated with increased 
risk of GVHD in vivo (52). Further refinements in this process 
continue to evolve as these procedures become standardized, 
including the use of overlapping peptide pools and alternative 
APCs to improve reliability and reproducibility of products.

ReSUlTS OF vSTs iN CliNiCal USe

CMv
Human cytomegalovirus is a pervasive β-herpes virus with 
prevalence rates of 50–100% in the general population. 
While it may manifest as mild self-limiting disease in the 
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immunocompetent host, CMV can cause severe life-threatening 
disease in the immunocompromised host. Because CMV per-
sists in the latent form after acute infection, CMV-specific CD4+ 
and CD8+ T cells are necessary to maintain viral quiescence. In 
post-HSCT patients, in the absence of donor immunity and in 
other immunodeficient states, CMV may reactivate in the form 
of retinitis, pneumonitis, hepatitis, or enterocolitis (53). The 
adoptive transfer of CMV-specific T  cells is a logical strategy 
for treating and preventing CMV reactivation in such individu-
als, and numerous clinical trials confirm the overall excellent 
efficacy of VST (10, 41, 46, 54–60). CMV-specific VSTs gener-
ated from naive T  cells in umbilical cord blood (UCB) have 
also proved effective. These VSTs show specificity for atypical 
epitopes while maintaining functionality (21). Naive donor 
sources such as UCB are being explored as a source for other 
VSTs for generating third-party banks for on-demand use as 
well (see Other Viruses and Third-Party VST Products) (21).

ebv
EBV is a ubiquitous, highly immunogenic γ-herpesvirus that 
can cause unique complications following transplant. Over 90% 
of the general population have been infected and retain lifelong 
seropositivity. Manifestations of primary EBV infection vary 
widely from asymptomatic infection to a debilitating viral ill-
ness (61). Thereafter in most cases, EBV remains latent lifelong 
in a B cell and mucosal epithelial reservoir under continuous 
T  cell immune surveillance. In these healthy individuals, up 
to 2% of circulating T cells are EBV specific. In the period of 
immune deficiency after HSCT, EBV reactivation may cause 
viremia and life-threatening posttransplant lymphoprolifera-
tive disease (PTLD). While the monoclonal antibody rituximab 
successfully treats severe EBV disease in many patients by 
eliminating B cells in which the EBV virus resides, it results in 
long-term reduction in antibody production and is not always 
successful at controlling PTLD (61). Adoptive T cell therapy for 
PTLD is facilitated by the high probability of finding healthy 
EBV-exposed donors with measurable frequencies of circulat-
ing EBV-specific T cells. First attempts using donor lymphocyte 
infusions to treat EBV-PTLD were complicated by high rates of 
GVHD (6). Subsequent ex vivo strategies to select and expand 
EBV-specific T cells show broad efficacy and safety of EBV VST 
in numerous clinical trials for prevention and treatment of 
viremia and PTLD (47–49, 62–68).

adenovirus
Adenovirus infection can range from mild upper respiratory  
tract infections to a spectrum of life-threatening pneumonia, 
gastrointestinal, hepatic, renal, and neurologic complications. 
Following infection, latency is maintained in the lymphoid tissues, 
but the virus can reactivate during periods of prolonged absence 
of T cell immunity (69). Adenovirus causes potentially lethal viral 
complication in post-HSCT recipients. Antiviral drugs such as 
ribavirin are largely ineffective. However, adenovirus-specific 
T  cells generated from healthy donors have proven effective 
at treating even advanced disease (45, 70, 71). For this reason 
adenovirus antigens are often incorporated in the generation of 
multivirus-specific T cell products (see below).

Other viruses
The BK and JC polyomaviruses, normally latent in healthy 
tissues of most adult individuals, reactivate after HSCT and in 
immunodeficient individuals (72). BK virus may manifest as 
nephropathy and life-threatening hemorrhagic cystitis (HC). 
Rarely, the closely associated JC virus causes fatal brain damage 
from progressive multifocal leukoencephalopathy (73). Polyoma-
specific VST are being developed to combat these viruses. 
A single case report describes the successful use of BK VSTs,  
after which the patient had complete resolution of HC without 
bystander organ toxicity, GVHD, or graft rejection (74). It is 
now clear that the platforms developed for ex vivo selected and 
expanded VSTs are readily adaptable to many other viruses that 
complicate immune deficient states, and future developments 
include developing VST to target an array of viruses including 
VZV, HHV, and even HIV (16, 75–79).

vSTs Targeting Multiple viruses
Given the success in prophylaxis and treatment of individual 
viral infections with single-virus-specific VST, the targeting of 
multiple viruses in a single product is a logical extension for 
managing the post-HSCT patient at risk from multiple viral 
infections. Several groups have successfully manufactured 
multivirus-specific T cells for the more common viruses (11, 76, 
80). Challenges, as with single virus-specific products, include 
production time, labor, and cost. Several groups have increased 
manufacturing efficiency through use of viral plasmids, standard-
ized pepmixes, alternative APCs, and alternative donor sources 
such as UCB to produce polyclonal, clinically efficacious VSTs 
(19, 81, 82). A potential obstacle for multivirus pepmixes is the 
risk that the most immunodominant antigens will outcompete 
other T  cell expansions and dilute the final product of clonal 
diversity. Various ways to maintain multiviral specificity are 
being explored (80, 83). To broaden the applicability of multivi-
rus VST, Hanley et al used virus naive donors and UCB sources to 
generate tri-virus-specific T cells with success (20, 84). The viral 
repertoire of multi VST products is continually being extended 
and there is no apparent limit to the number of viruses that could 
be targeted in a single product. As an example, Gerdemann 
et al established a Good Manufacturing Practices (GMP) grade 
method for generating VST targeting seven different viruses: 
CMV, EBV, adenovirus, BK virus, HHV6, RSV, influenza (19). 
More recently, the group at Children’s National has established 
a rapid, reproducible method in GMP-compliance for generat-
ing VSTs to CMV, EBV, Adenovirus, and BK virus from naive  
(cord blood) donor sources (82), paving the way for establishing 
third-party VST banks for “off the shelf ” distribution.

Third-Party vST Products
One of the more exciting developments in VST therapy is the 
generation of third-party VST banks. The development of a bank 
of efficacious, clinical-grade cell therapy products which pass all 
release testing requires an initial outlay in time, labor, and cost. 
However, immediate product availability avoids any risky delay 
in treatment of life threatening viral disease. Several groups have 
created third party VST banks for “off the shelf ” administration. 
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Table 2 | VSTs in clinical trials.

Target N Method of 
T cell selection

antigen presentation GvHD occurrences CMv status Reference/
institution

CMV 18 IFN-γ capture Peptide mixes of pp65 3 patients with grade I aGVHD; 
3 patients with grade II/III 
aGVHD; 3 patients with cGVHD

11 developed CMV reactivation, all  
responded to antivirals or repeat  
infusion of T cells

(46)/UCLa

7 Ex vivo 
expansion 

CMV lysate and peptide 
mixes of pp65

No GVHD Only 1 patient had persistent CMV viremia, 
one reactivation after steroids; CMV- 
specific T cell expansion in 6 patients

(54)/MKPb

14 Ex vivo 
expansion 

Dendritic cells with CMV-
infected fibroblasts; only 
CD8 clonal population 
infused

3 patients developed grade  
I/II aGVHD, all responding to 
steroids

No CMV disease, CMV immunity restored (55)/FHCRCc

16 Ex vivo 
expansion

Dendritic cells with CMV-
infected fibroblasts

3 patients with grade I  
aGVHD only

8 patients also required ganciclovir but  
subsequently cleared viremia; 2 patients  
developed CMV reactivation postinfusion;  
CMV immunity restored

(10)/UCL

25 Ex vivo 
expansion

CMV antigen; only CD4  
clonal population infused

1 case of GVHD 7 patients with CMV reactivation;  
5 patients with clinical disease; 2 patient 
deaths from CMV

(56)/U of Perugiad

18 IFN-γ capture pp65 protein 1 case of GVHD 4 patients died of CMV-related disease;  
15 patients with in vivo expansion 

(57)/UCHe

7 Ex vivo 
expansion

Dendritic cells with 
peptide mixes (pp65, IE1)

No GVHD 4 patients cleared CMV; 2 with reactivation  
(1 associated with high dose steroids),  
1 with transient increase in CMV PCR

(58)/PSHCHf

9 Ex vivo 
expansion

Dendritic cells with 
peptide mix (pp65)

3 patients with grade III aGVHD,  
with one associated death;  
2 patients with cGVHD

2 patients with reactivation not requiring 
treatment

(59)/U of Sydneyg

16 Ex vivo 
expansion

Dendritic cells with 
peptide mix (pp65)

No GVHD 14 patients cleared CMV (60)/MSKCCh

2 Streptamer- 
selection

PBMCs with pp65-HLA 
beads

No GVHD Both cleared CMV with CMV-specific 
expansion

(41)/U of Ulmi

EBV 39 Ex vivo 
expansion

PBMCs with LCLs No aGVHD or new cases  
of GVHD

EBV-specific immunity restored, clearance  
of viremia, no PTLD 

(49)/SJCRHj

10 IFN-γ capture EBNA1 overlapping 
peptide mixtures

1 patient with Grade I/ 
II aGVHD

Expansion of EBV-specific T cells in  
8 patients and clinical/virologic response  
in 7 patients

(47)/UCH

6 IFN-γ capture EBV peptide mix No GVHD Resolution of PTLD in 3 patients;  
progression of PTLD in 3 patients  
(all late stage at time of transfer)

(63)/HZMk

114 Ex vivo 
expansion

PBMCs with LCLs No de novo GVHD; 8 patients 
with reactivation of Grade  
I/II GVHD; 11 patients with 
limited cGVHD; 2 patients  
with extensive cGVHD 

No PTLD development; remission of 
preexisting PTLD in 11 of 13 patients

(48)/BCMl

19 Ex vivo 
expansion

T cells with LCLs No GVHD Resolution of PTLD in 13 patients; 2 patients  
with PD received DLI and 1 achieved CR

(64)/MSKCC

36 Ex vivo 
expansion

T cells with LCLs No aGVHD, 4 patients with  
limited cGVHD

No PTLD development (65)/SJCRH

42 Ex vivo 
expansion

T cells with LCLs No GVHD No PTLD development, reconstitution  
of EBV-specific immunity

(66)/SJCRH

4 Ex vivo 
expansion

PBMCs with LCLs No GVHD Clearance of PTLD or EBV viremia (67)/U of Paviam

(Continued )
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Since these products are derived from unmatched donors and not 
autologous or HLA-matched sources, they carry an increased risk 
of GVHD. Nevertheless, with attempts to match at least one HLA 

molecule with the recipient, third-party VST products have been 
successful in several clinical trials (Table 2) (85, 86). Predictably 
higher number of HLA matches between the VST product and 
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Target N Method of 
T cell selection

antigen presentation GvHD occurrences CMv status Reference/
institution

Adenovirus 9 IFN-γ capture Adenovirus antigen C Exacerbation of preexisting  
skin GVHD

5 patients responded with expansion of 
adenovirus-specific T cells in 5 patients

(70)/UCH

30 IFN-γ capture Hexon protein 2 grade I GVHD; overall  
decrease in patients with GVHD

21 patients responded (45)/UCH

1 IFN-γ capture Hexon protein No GVHD Complete response (71)/BGCHn

BK virus 1 IFN-γ capture Large-T, VP1 No GVHD Complete response (74)/HHo

Multivirus specific

EBV-CMV-
Adeno

10 Ex vivo 
expansion

Dendritic cells 
nucleofected with viral 
plasmids: EBV (LMP1, 
LMP2, bzlf), CMV (IE1, 
pp65), adenovirus (hexon, 
penton)

1 grade I/II GVHD 8 patients with CR; 1 patient with  
stable EBV disease without PTLD

(81)/BCM

EBV-Adeno 12 Ex vivo 
expansion

PBMCs with Ad5f35 
vector and LCLs

No GVHD Expansion of virus-specific immunity, 
resolution or prevention of clinical disease 

(11)/BCM

EBV-CMV-
Adeno

11 Ex vivo 
expansion

PBMCs with LCLs 
transformed with Ad5f35-
CMVpp65 vector

No GVHD Expansion of EBV- and CMV-specific 
immunity in all patients, adenovirus-specific 
immunity in patients with clinical disease; 
clearance of all clinical disease

(80)/BCM

EBV-CMV-
Adeno-VZV

10 Ex vivo 
expansion

PBMCs with Ad5F35-
pp65, Ad5F35-EBNA1/
LMP, VZV vaccine

1 grade II GVHD,  
1 grade III GVHD

6 patients with CMV reactivation, only 
one receiving antiviral therapy; no EBV, 
adenovirus, or VZV reactivation

(76)/U of Sydney

EBV-CMV-
Adeno-
BKV-HHV6

11 Ex vivo 
expansion

PBMCs with pepmixes 
(LMP2, BZLF, EBNA1, 
penton, hexon, pp65, 
IE-1, VP1, large T, U11, 
U14, U90)

1 grade II aGVHD No viral reactivation in 3 patients infused 
prophylactically; EBV—5 patients with CR, 
including PTLD; CMV—2 patients with CR, 1 
PR; adenovirus—1CR; BKV—5 patients with 
CR, 1 PR, 1 NR; HHV6—2 patients with CR

(75)/BCM

Third party

EBV 8 Ex vivo 
expansion

PBMCs with LCLs No GVHD 3 patients with CR; 1 patient with PR, 
subsequently refused treatment; 2 patients 
with no response; 2 patients passed away 
before evaluation (unrelated to VSTs)

(85)/U of  
Edinburghp

EBV 33 Ex vivo 
expansion

PBMCs with LCLs No GVHD 21 patients with CR or PR; 6 month  
OS 79%

(86)/U of  
Edinburgh

EBV-CMV-
Adeno

50 Ex vivo 
expansion

PBMCs with LCLs 
transformed with Ad5f35-
CMVpp65 vector

6 with grade I GVHD; 1  
with grade II GVHD, 1 with  
grade III GVHD

17 of 23 with PR/CR for CMV; 14 of  
18 PR/CR for adenovirus; 6 of 9  
PR/CR for EBV

(22)/BCM

EBV 2 Ex vivo 
expansion

PBMCs with LCLs No GVHD Both with CR (87)/MSKCC

N = number of patients in study.
aUniversity College London, London, England.
b Medizinische Klinik und Poliklinik, Tübingen, Germany.
cFred Hutchinson Cancer Research Center, Seattle, WA, USA.
dUniversity of Perugia, Perugia, Italy.
eUniversity Children’s Hospital, Tübingen, Germany.
fPenn State Hershey Children’s Hospital, Hershey, PA, USA.
gUniversity of Sydney, Sydney, NSW, Australia.
hMemorial Sloan-Kettering Cancer Center, New York, NY, USA.
iUniversity of Ulm, Ulm, Germany.
jSt. Jude Children’s Research Hospital, Memphis, TN, USA.
kHelmholtz Zentrum München and Ludwig-Maximilians-Universität, Munich, Germany.
lBaylor College of Medicine, Houston, TX, USA.
mUniversity of Pavia, Pavia, Italy.
nBambino Gesù Children’s Hospital, Rome, Italy.
oHammersmith Hospital, London, UK.
pUniversity of Edinburgh, Edinburgh, UK.
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the recipient (particularly HLA class I) correlate with better 
in  vivo proliferation and superior efficacy (86). However, even 
less closely matched products can be effective despite limited 
persistence of these mismatched T  cell products. In one study, 
third-party cells were identified up to 12 weeks after infusion and 
approximately 70% of VST recipients benefited (22). Reassuringly 
there is no indication of enhanced alloreactivity from the VST 
as measured by GVHD or graft rejection. Third-party banks  
are thus emerging as a promising option for treating refractory 
post-transplant viral infections.

DiSCUSSiON aND FUTURe DiReCTiONS

Over the past two decades, VST treatment has evolved from 
first proof of principle to a broadening acceptance that these 
cell products are a valuable, low-risk and effective tool to treat 
viral infections in immunocompromised individuals. Response 
rates reach approximately 90% for patients post-HSCT receiv-
ing VST from the matched transplant donor, and are around 
70% for patients receiving third-party VST products (Table 2). 
VSTs appear promising as prophylaxis for high risk patients, 
conferring a high probability of protection against reactivation. 
A recent review of VSTs given to 36 patients with primary immu-
nodeficiency syndromes over the past 10 years reported excellent 
responses to VSTs both for treatment (response rates 76–100% 
depending on the virus) and prophylaxis (81% of patients 
protected from viral reactivation) (24). Improved technology, 
including standardized pepmixes and alternative APCs, has 
improved the speed and efficiency of the manufacturing process. 
In parallel, the successes with VST from naive donor sources, 
multivirus-specific products, and generation of third-party 
banks have widened the scope of VST applicability. Ongoing 
studies are evaluating the safety and feasibility of increasing the 
number of viruses in a single product and extending the size of 
third-party banks for rapid use. Given the success seen in viral 
infections, the expansion of antigen-specific adoptive cell therapy 
to other complicated diseases, including HIV, fungal disease,  
and malignancies is increasingly within reach.

The studies included in Table  2 demonstrate the safety of 
VSTs in various settings. The risk of GVHD, a primary concern 
in initial trials using unmanipulated donor products, has been 
decreased by improved methods of selecting and expanding VSTs. 
Current GVHD rates after VST do not exceed those expected for 
patients post-HSCT. Of studies with particularly high rates of 
GVHD, nearly all of the patients who developed GVHD (both 
acute and chronic) had prior risk factors that would explain 
these outcomes, including history of or active GVHD, subthera-
peutic immunosuppression, or recipients of T cell-replete grafts  
(46, 59). Critical, taking into consideration the patient-specific 
risk factors, no correlation has been identified between GVHD 
development and the method of VST generation, product pheno-
type, or duration of in vivo activity of infused VSTs.

Through the multitude of clinical trials utilizing VSTs, we 
have gained some important information regarding predic-
tors of response. Most methods of generating antigen-specific 
T cells yield a very heterogenous population of CD4+ (typically  
about 30%) and CD8+ T cells, unless they are generated against 

a single CD8+-restricted epitope. While we know this polyclonal 
phenotype supports persistence of VSTs in vivo (43), it is not clear 
whether differing proportions of CD4+/CD8+ T cells are associ-
ated with increased or decreased clinical efficacy. One special 
situation is the use of third-party products, where it appears 
critical to ensure that there is shared antiviral activity through a 
shared HLA allele when selecting the “right” product. This can be 
either class I or class II for most cases, although the endogenous 
immune response is HLA-specific for certain viruses and must be 
matched accordingly. For example, the response to adenovirus is 
mediated through HLA class II, thus products for patients with 
adenoviral disease should be matched through HLA class II, 
whereas for CMV class I matching is typically preferred.

Immune reconstitution studies in patients following infu-
sion of VSTs have also lead to increased knowledge about the 
in vivo activity of different VST products. For latent viral infec-
tions (e.g., CMV and EBV), enhanced detection of circulating 
antiviral T  cells has been correlated with a better response 
(10); however, this is not always the case for viruses that are 
not latent (e.g., adenovirus) (80). While the gene marking stud-
ies by Heslop and Rooney suggest that adoptively transferred 
EBV-specific T cells can persist for a decade, there is also the 
suggestion that adoptive transfer of VSTs can stimulate endog-
enous anti-viral immunity. Additionally, epitope spreading is 
another marker of improved immune response as illustrated in 
the EBV-associated lymphoma setting (88).

For all the successes observed with VST products over the 
years, some patients still fail to respond to therapy with no identi-
fiable mechanism. Hence, an important area of ongoing research 
is evaluating the mechanisms underlying VST resistance. For 
example, tumor (or virus)-secreted TGFβ inactivates antigen-
specific T  cells. To overcome this obstacle, gene manipulation 
of the TGFβ receptor on the antigen-specific T cells to render 
them resistant to the effects of TGFβ is being explored (89, 90). 
Other groups have found success infusing galunisertib, a small 
molecule inhibitor of TGFβ, abrogating the anti-inflammatory 
effect (91). Targets may also evade the immune system by upreg-
ulating expression of immunomodulators such as programmed 
death-1 ligand, which binds PD-1 on T  cells in response to 
IFNγ. Checkpoint inhibitors, such as pembrolizumab targeted 
to PD-1, have increasing applications to many malignancies or in 
combination therapies and may also enhance VSTs especially in 
the HIV setting (92). Such modifications may therefore increase 
the in  vivo efficacy of adoptively transferred VSTs in patients 
post-HSCT or for virus-associated diseases.

Other challenges of treatment are related to the severe 
immune dysregulation in the majority of patients at risk of viral 
disease. Steroid treatment, often used in high doses to treat 
GVHD, can reactivate dormant viruses and also render VST 
infusion futile through inactivation of the product. To this end, 
VST have been gene manipulated to inactivate the glucocorticoid 
receptor, allowing them to maintain cytotoxicity in the presence 
of steroids (93). T cells can also be genetically manipulated to be 
resistant to calcineurin inhibitors (cyclosporine A and tacroli-
mus, commonly used in post-HSCT setting), which inhibit T cell 
activation in  vivo (94, 95). Such transduced VSTs proliferate,  
lack alloreactivity, and maintain cytotoxicity.
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