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Abstract: The Chenyulan watershed, located in the central mountain area of Taiwan, has been
suffering from earthquakes, typhoons, and heavy rainfalls in recent decades. These sequential natural
disturbances have a cumulative impact on the watershed, leading to more fragile and fragmented land
cover and loss of capacity of soil water conservation. In this study, the Soil and Water Assessment
Tool (SWAT) and a landscape metrics tool (FRAGSTATS) were used to assess the direct impact
(e.g., by annual rainfall) and indirect impact (e.g., by landscape configuration and composition)
of natural disturbances on the ecohydrological processes of the Chenyulan watershed. Six SPOT
satellite images from 2008 to 2013 were analyzed by using the nearest feature line embedding
(NFLE) approach and reclassified into six land cover types: forest, cultivated land, grassland, river,
landslide, and built-up. Forest was found to have the largest patch size, indicating that it is more
resilient to disturbances, while agricultural land tended to expand from the river side toward the
hill. Two land cover change scenarios were compared in the SWAT model. The results showed that
there was no significant difference in simulated streamflow during 2004–2015 and sediment loading
during 2004–2009; however, the model performed better for sediment loading during 2010–2015
with dynamic land cover change (coefficient of determination (R2) = 0.66, Nash-Sutcliffe efficiency
coefficient (NSE) = 0.62, percent bias (PBIAS) = 10.5%, root mean square error observation standard
deviation ratio (RSR) = 0.62) than with constant land cover (R2 = 0.61, NSE = 0.54, PBIAS = −17.3%,
RSR = 0.68), indicating that long-term land cover change should be considered in hydrologic
modeling. Changes in landslides during 2008–2013 were found to significantly affect ecohydrological
processes, especially after 2011. In general, annual precipitation plays a dominant role, and landscape
composition had by far the strongest influence on water yield and sediment yield compared to
landscape configuration. The results can be useful for understanding the effects of land cover change
on ecohydrological processes in the Chenyulan watershed and the potential impact of ecohydrological
changes on the environment and public health.

Keywords: image classification; land cover change; landscape metrics; SWAT; watershed
management

1. Introduction

Land use and land cover are the results of interactions among the natural environment and
human activities, and their distribution can reflect anthropogenic types and decision behaviors [1].
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Many studies have demonstrated the impact of land use and land cover change on streamflow,
sediment exports, and other non-point source pollution loads at various spatiotemporal scales [2–7],
and there is a need to identify the relationship between landscape metrics at the class scale and
hydrological processes [8]. Many metrics and indices have been developed to characterize landscape
compositions and spatial configurations on categorical maps [9,10]. These metrics are applied to
quantify landscape changes over time [11,12], serve as landscape indicators [13–16], suggest strategies
for watershed management [17], and investigate the relationship between landscape patterns and
ecological processes [18].

The Soil and Water Assessment Tool (SWAT), a semi-distributed hydrologic model, is mainly used
to simulate the impact of agricultural management on water quantity and quality in a watershed [19].
SWAT has been applied for hydrologic assessment [20–23], the evaluation of impacts of climate and
land use change on streamflow [24,25] and water quality [26], modeling of ecosystem services [27,28],
and best management practices (BMP) assessment [29,30]. In previous studies, surface runoff was
found to be affected by landscape configuration and structure [31]. An increase in the connectivity
between urban and agricultural lands could result in increased surface runoff [32]. Therefore, there is
a need for a quantitative analysis of how landscape changes influence watershed streamflow and
sediment export using hydrological models, in order to provide support for identifying the critical
areas that require appropriate management and suggest strategies for future land use management
and allocation. Moreover, based on interactions among ecohydrological factors and landscape
configurations, ecohydrological factors that influence floods and landslides could be recognized to
identify effective management practices to reduce their impact on the environment and public health.

Jhuoshuei River is the longest river in Taiwan, and Chenyulan River is its longest tributary.
In recent years, due to inappropriate land use, the Chenyulan watershed has been suffering from
floods, landslides, and debris flows generated by typhoons and heavy rainfall events [33]. As these
natural disturbances have a cumulative impact on the landscape cover and watershed response,
it is necessary to assess the change in ecohydrological processes. In this study, we collected and
classified SPOT satellite images from 2008–2013 and analyzed the changes in spatial patterns by using
FRAGSTATS (University of Massachusetts, Amherst, MA, USA) [34], which can quantify the landscape
structure (i.e., composition and configuration). SWAT was applied to evaluate the impact of land cover
changes during 2008–2013 on watershed responses in terms of water yield and sediment yield from
different land cover types, and streamflow and sediment loading at the watershed outlet. Furthermore,
we established a relationship between landscape metrics, water yield, and sediment yield. Such an
integrated approach and improved understanding of this relationship would be useful for land use
planners to reduce the risk of disasters and increase the ecosystem resilience of the watershed.

2. Materials and Methods

2.1. Study Area

The Chenyulan River, located in Nantou County, Taiwan, is 42 km long and originates from
Mt. Jade at a height of 3910 m above sea level. The Chenyulan watershed has an area of 449 km2

elongated in the north-south direction, with an average altitude of 1540 m and a slope of 32◦ (Figure 1a).
The observation stations include one weather station (namely PCP2 in this study), five automated
precipitation gauges (PCP1, PCP3, PCP4, PCP5, PCP6), and three gauges of streamflow and sediment
export (Shen-Mu, Ho-Sheh, Nei-Mao-Pu). Two gauges (Shen-Mu, Ho-Sheh) stopped recording
streamflow and sediment export in 2001, and only Nei-Mao-Pu station has continuous records until
now. More than 70% of the watershed is covered by forest, and cultivated lands are mostly distributed
in the valley region (Figure 1b). Darkish colluvial soil is dominant (82.38%) in the watershed, followed
by pale colluvial soil (12.29%), lithosol (4.19%), alluvial soil (0.89%), Taiwan clay (0.22%), yellow
soil (0.03%), and red soil (0.002%) (Figure 1c). The major area (49.58%) is of a slope greater than
60%, followed by a slope of 45–60% (19.60%), 30–45% (15.14%), 9–30% (12.38%), and 0–9% (3.30%)
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(Figure 1d). The average annual precipitation in the Chenyulan watershed is between 2000 and
4000 mm, and approximately 80% of annual rainfall is between May and October (typhoon season).
During 2008–2013, there were five to eight typhoons each year, and the most severe were Typhoon
Sinlaku (1468.5 mm of accumulated rainfall at Shen-Mu gauge during 11–16 September 2008), Typhoon
Morakot (2858.5 mm during 5–10 August 2009), Typhoon Fanapi (287.1 mm during 17–20 September
2010), Typhoon Nanmadol (241 mm during 27–31 August 2011), Typhoon Saola (665.5 mm during
30 July to 3 August 2012), and Typhoon Soulik (881 mm during 11–13 July 2013).
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2.2. Data Source and Description

The key input data for hydrological modeling are the digital elevation model (DEM), soil data,
weather data, and land use/cover data. The DEM data are at a 30 m resolution, processed by the
Center for GIS, Research Center for Humanities and Social Sciences (RCHSS), Academia Sinica,
Taiwan, in 2012. The soil data were collected from the Construction and Planning Agency, Ministry
of the Interior, Taiwan. The surveyed soil data contain the soil erodibility factor (USLE-K); hydraulic
conductivity; and percentages of silt, clay, and sand, while other information needed by the SWAT
model (soil bulk density (SOL_BD), available water capacity of the soil layer (SOL_AWC), and saturated
hydraulic conductivity (SOL_K)) were further calculated by using the soil-plant-air-water (SPAW)
model developed by [35]. The basic soil parameters for the SWAT model are shown in Table 1.

Table 1. Basic soil parameters in the Chenyulan watershed.

Soil Type Hydrologic Group USLE-K SOL_BD
(g/cm3)

SOL_AWC
(mm H2O/mm soil)

SOL_K
(mm/hr)

Darkish colluvial soils B 0.36 1.54 1.54 25.91
Pale colluvial soil B 0.19 1.49 0.14 9.65

Lithosol B 0.3 1.56 0.13 4.83
Alluvial soil B 0.4 1.61 0.17 7.87

Taiwan clay 1 B 0.2 1.43 0.15 2.03
Yellow soil B 0.29 1.52 0.15 10.92

Red soil B 0.13 1.60 0.19 21.34
1 The parent material is not seen in this type of soil, which is usually thick-layered and compacted, and has poor
tillage due to poor drainage. USLE-K, soil erodibility factor; SOL_BD, soil bulk density; SOL_AWC, available water
capacity of soil layer; SOL_K, saturated hydraulic conductivity.
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Daily weather parameters (precipitation, minimum and maximum air temperature, relative
humidity, solar radiation, and wind speed) were collected from the Data Bank of Atmospheric and
Hydrologic Research (DBAR), Taiwan. Daily streamflow and sediment loading were collected from
the hydrological yearbook of Taiwan from 2003 to 2015, published by the Water Resources Agency,
Ministry of Economic Affairs. During the study period, the average daily streamflow and sediment
export were 26.34 cms and 4015.2 tons/day, respectively. High flow and high sediment loading are
usually found during May and October. A severe typhoon, Morakot, generated 531–1134.5 mm of
rainfall during 2–13 August 2009, resulting in the highest daily streamflow of 1555.81 cm and highest
sediment loading of 5,535,292.91 tons/day.

In order to evaluate the impact of natural disturbances on the watershed, we collected SPOT
images taken on 28 November 2008, 2 December 2009, 21 November 2010, 22 September 2011,
25 October 2012, and 15 November 2013 (Figure 2). The SPOT images were purchased from the Space
and Remote Sensing Research Center (SRSRC), and further used for watershed land cover classification.
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2.3. Image Processing

2.3.1. Selection of Ground-Truth Points

In order to select the ground-truth points for land cover classification, we first calculated the
normalized difference vegetation index (NDVI) (Equation (1)). NDVI values range from –1 to +1.
Negative values are mainly generated from clouds, water, and snow. A zero value means no vegetation
(i.e., rocks and bare soil), and very low positive values (0.1 and below) represent barren areas. Moderate
values (0.2–0.3) correspond to shrub and grassland, while values close to +1 indicate the highest
possible density of green leaves (i.e., forests).

NDVI = (NIR − R)/(NIR + R), (1)

where NIR denotes near infrared reflectance and R denotes red (visible) reflectance.
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Based on the NDVI maps (Figure 3), the watershed was divided into two groups: NDVI ≤ 0 and
NDVI > 0. The areas of NDVI values smaller than 0 indicate that the possible land cover type is river,
built-up, or landslide, while the areas of NDVI values greater than 0 indicate grassland, cultivated
land, or forest. We additionally collected the land cover classifications of 1996 and 2005 from [33]
and the landslide maps reclassified by satellite images derived from the Forestry Bureau, Council of
Agriculture, Executive Yuan (FBCAEY) as reference maps. Areas where specific land classes were
unchanged between 1996 and 2005 helped to narrow down the supervised boundary, and the FBCAEY
landslide map helped to increase the accuracy of landslide area selection.

A number of points for each land cover type were selected based on the NDVI and reference
maps (Figure 4). For example, 200 points were selected as water within the area of NDVI ≤ 0 in the
NDVI map with reference to the water area in the unchanged 1996–2005 map. According to the relative
sizes of land cover types, 200 points were selected for built-up, landslide, and grassland, and 1000 and
1500 points were selected for cultivated land and forest, respectively.
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2.3.2. Nearest Feature Line Embedding

In our previous study [36], we proposed a nearest feature line (NFL) embedding transformation
for land cover classification. The feature points (prototypes) were manually collected and labelled
for classifier training. Since there are very few collected feature points during the training phase,
the discriminant power of the trained classifier is decreased in the classification phase. A feature line
is generated by two feature points and represents a linear interpolation or extrapolation of each pair
of feature points within the same class. An extremely high number of pseudo-prototypes for each
class are generated for training by linear interpolation, which enhances the classification performance.
The NFL embedding strategy was used to construct the point-to-line adjacency matrix instead of the
point-to-point matrix during training. This measurement was directly embedded in the transformation
in the discriminant analysis, not in the classification phase. Class separability, neighborhood structure
preservation, and nearest feature space (NFS) measurement were all considered to find the most
effective and discriminating transformation in the eigenspaces for land cover classification. In this
study, the images from 2008 to 2013 consist of four bands: green, red, near infrared reflectance (NIR),
and shortwave infrared (SWIR). The criterion used for judging the accuracy of final SPOT images was
an overall accuracy value exceeding 70%.

2.4. Landscape Metrics

Landscape metrics are usually used to describe the landscape ecosystem, format, and trend
of landscape change to analyze the interactions among land uses and anthropogenic activities in
watersheds [9,10]. We adopted FRAGSTATS software, developed by the United States Department of
Agriculture (USDA), to quantify the composition and spatial configuration of land cover types [34].
Based on previous studies [37–41], we selected a subset of metrics that are commonly used and can
affect ecohydrological processes to analyze landscape changes in the Chenyulan watershed from
2008 to 2013, and further evaluate how watershed responses and ecohydrological processes were
affected by these changes. Landscape composition was quantified by the proportion of each land cover
type. Configuration metrics included: (1) patch-based metrics: patch density (PD) and area-weighted
mean patch area (AREA_AM); (2) shape metrics: edge density (ED), area-weighted mean radius of
gyration (GYRATE_AM), and area-weighted mean shape index (SHAPE_AM); and (3) aggregation
metrics: aggregation index (AI) and splitting index (SPLIT). The criteria for the landscape metrics
were suggested by cases. Both PD and SPLIT describe the degree of subdivision of the class or
landscape, and can be regarded as the degree of spread of disturbance in this study. AREA_AM, ED,
and GYRATE_AM represent the physical continuity of the landscape, and can indirectly explain the
influences on ecohydrologcial change. SHAPE measures the complexity of patch shape compared to
a standard shape (square) of the same size. Thus, the index equals 1 for square patches of any size.
AI refers to the tendency of patch types to be spatially aggregated. Detailed descriptions and equations
of landscape metrics can be found in the FRAGSTATS documentation [34].

2.5. SWAT Model

2.5.1. Model Description

The Soil and Water Assessment Tool (SWAT) was used to evaluate watershed responses to
landscape changes induced by natural disturbances and anthropogenic activities in the Chenyulan
watershed. The SWAT model was developed by the USDA Agricultural Research Service (USDA-ARS)
in 1994, and it can predict long-term impacts of land use management on streamflow, sediment,
and nutrient loadings in a watershed at different spatiotemporal scales [19]. In the SWAT model,
a watershed is delineated into several subwatersheds, which are further portioned into homogeneous
units (hydrologic response units, HRUs) with a unique combination of land use/cover, soil, and slope.
For streamflow simulation, the surface runoff volume is computed using a modified Soil Conservation
Service (SCS) curve number method [42]. The modified universal soil loss equation (MUSLE) was
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used to estimate soil loss at the HRUs [43]. More details on the theory can be found in the SWAT 2009
Theoretical Documentation [44].

2.5.2. Land Cover Update Module

In order to incorporate land cover changes during 2008–2013 into the SWAT model, the land cover
update (LUP) module in SWAT was activated. Two land cover scenarios were simulated to quantify
the impact of land cover changes on water yield and sediment yield. They are constant land cover
(CLC), which assumes that land cover remains constant since 2005, and updated land cover (ULC),
which represents the dynamic land cover during 2008–2013. To activate the LUP module, two types of
files need to be prepared. One is an lup.dat file, which lists the order of changing dates of each land
cover, and the other is the HRU fraction (HRU_FR) file of different land covers of concern. For the
ULC scenario, the SWAT model starts to read the land cover data on the date when the SPOT image
was taken, and stops reading on the previous date before the next SPOT image was taken.

2.5.3. Model Calibration and Validation

The sensitivity analysis, calibration, and validation of the SWAT model were done by using
the SWAT Calibration Uncertainty Program (SWAT-CUP), which is open source software developed
by [45]. In this study, Sequential Uncertainty Fitting version 2 (SUFI2) was selected for uncertainty
analysis. The model performance was evaluated by using four statistical measures: coefficient of
determination (R2), Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), and root mean
square error (RMSE)—observation standard deviation ratio (RSR), as suggested by [46].

3. Results

3.1. Classification Results

The SPOT images were classified into six land cover types (river, grassland, built-up, cultivated
land, landslide, and forest) (Figure 5 and Table 2), with the overall classification accuracy ranging
between 73.70% and 83.74% (Table 3). Forest was the major land cover, occupying 74.45–76.75% of the
watershed. Cultivated lands are usually developed along streams, with an area between 11.87% and
14.05% of the watershed. However, cultivated lands tended to be smaller and aggregated during the
study period. The image classification results showed that river, grassland, and built-up areas did not
change much during 2008–2013, with ranges of 2.97–3.63%, 4.34–5.72%, and 0.44–0.76%, respectively.
Due to several severe typhoons during 2008–2009 and the cumulative impact of typhoons, landslides
increased from 2.00% in 2008 to 2.73–3.11% during 2010–2013.

It should be noted that the land cover data for 2008–2013 were adjusted based on the 2005
HRUs for updated land cover (ULC) scenario modeling. Compared to the original land cover areas,
the adjusted land cover during 2008–2013 changed by −0.01 to 2.27 km2, −7.94 to 0.13 km2, −0.37 to
0.13 km2, 1.25–4.14 km2, 0.01–0.80 km2, and −4.99 to 4.30 km2 for water, grassland, built-up, cultivated,
landslide, and forest, respectively (Table 2). In particular, grassland in 2005 was not evenly distributed
in all subwatersheds. If grassland was identified in a subwatershed in any year during 2008–2013
where there was no grassland HRU in 2005, the grassland area would be replaced by cultivated
land and forest. Therefore, the adjusted grassland area was generally smaller than the original area,
while cultivated land and forest areas increased slightly after adjustment.
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Table 2. Land cover area (km2) in 2005 and 2008–2013.

Land Cover Type 2005 2008 2009 2010 2011 2012 2013

River 15.42 13.76 (13.75) 1 16.31 (16.29) 15.19 (15.20) 14.96 (14.60) 15.55 (17.82) 13.31 (13.39)
Grassland 19.77 20.21 (17.40) 19.47 (17.68) 19.62 (15.43) 25.67 (17.73) 20.12 (20.24) 23.81 (17.23)
Built-up 3.42 2.60 (2.27) 2.33 (2.27) 2.17 (2.17) 1.98 (1.75) 2.10 (2.23) 2.86 (2.50)

Cultivated land 63.07 56.55 (58.07) 62.58 (63.84) 55.31 (57.91) 56.87 (61.01) 54.05 (56.05) 53.27 (56.58)
Landslide 12.97 8.96 (8.97) 7.57 (7.57) 12.70 (13.50) 13.97 (13.97) 12.53 (12.87) 12.24 (12.39)

Forest 334.15 346.72 (348.20) 340.54 (331.02) 343.82 (344.46) 335.36 (339.66) 344.47 (339.48) 343.31 (345.27)
1 Numbers in parentheses are adjusted areas simulated for updated land cover scenario.

Table 3. Assessment index of classification accuracy.

Year 2008 2009 2010 2011 2012 2013

Overall accuracy 82.22% 83.74% 81.00% 81.81% 77.80% 73.70%

3.2. Landscape Metrics Analysis

3.2.1. Landscape Level

Table 4 shows the Pearson’s correlation for seven landscape metrics at the landscape level,
and their values for 2008–2013 are shown in Table 5. There is a strong positive relationship between
PD and ED, with more patches and longer edge lengths, indicating a high level of fragmentation.
SHAPE_AM was found to be positively correlated with PD and ED. A high SHAPE_AM value
indicates that patch shapes are less compacted. GYRATE is equal to the mean distance between each
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cell and the centroid of that patch. GYRATE has a zero value when the patch consists of only one
pixel, and increases without limit as the patch grows. Therefore, GYRATE_AM is sensitive to patch
area (AREA_AM). SPLIT is negatively correlated with GYRATE_AM and AREA_AM, while AI is
negatively correlated with PD and SHAPE_AM.

A dramatic change was found in PD, AREA_AM, ED, and GYRATE_AM for the period 2010–2012
(Table 5). PD and ED values increased in 2011 and then dropped in 2012, while AREA_AM and
GYRATE_AM values decreased in 2011 and then increased in 2012. Both grassland and forest are
non–human-dominated green land cover types in this study; in particular, the change in forest
dominates the change in landscape metrics. During 2010, 2011, and 2012, the grassland PD value
was 1.06, 3.00, and 0.53 N/100 ha, and the grassland ED value was 10.44, 18.80, and 7.60 m/ha,
respectively. In the same time period, the grassland AREA_AM value was 24.81, 6.52, and 91.51 m2,
and the GYRATE_AM value was 215.63, 109.80, and 417.39 m, respectively. Forest PD and ED values
were 0.49, 0.55, and 0.37 N/100 ha, and 27.37, 36.27, 29.49 m/ha, respectively, while AREA_AM and
GYRATE_AM values were 33,154.72, 31,302.18, and 33,558.53 m2, and 8727.52, 8221.91, and 8766.38 m,
respectively. Additionally, annual precipitation from 2010–2012 was 2206, 2098, and 3130 mm,
respectively. Therefore, rainfall could influence grassland and forest configuration in the watershed.
This finding is consistent with studies indicating that increased rainfall results in a higher percentage
of shrub patches, with a higher shrub density and height [47,48]. Moreover, it was found that the
GYRATE_AM value increased during 2008–2013, except in 2011, showing the process of fragmentation
of a land cover patch beginning with a reduction in patch area and an increase in the proportion of
edge-influenced patch area [49].

Table 4. Correlation matrix of landscape metrics at the landscape level. PD, patch density; AREA_AM,
area-weighted mean patch area; ED, edge density; GYRATE_AM, area-weighted mean radius of
gyration; SHAPE_AM, area-weighted mean shape index; AI, aggregation index; SPLIT, splitting index.

Metrics PD AREA_AM ED GYRATE_AM SHAPE_AM AI SPLIT

PD 1
AREA_AM −0.319 1

ED 0.968 ** −0.283 1
GYRATE_AM −0.396 0.931 ** −0.335 1
SHAPE_AM 0.879 * −0.036 0.930 ** −0.094 1

AI −0.969 ** 0.282 −1.000 ** 0.335 −0.930 ** 1
SPLIT 0.321 −1.000 ** 0.286 −0.935 ** 0.041 −0.285 1

** p < 0.01; * p < 0.05.

Table 5. Landscape-level metrics during 2008–2013.

Land Cover Type 2008 2009 2010 2011 2012 2013

PD 4.98 3.63 3.66 6.11 2.95 6.80
AREA_AM 25,331.01 24,734.56 25,550.06 23,471.01 25,895.42 25,801.08

ED 38.98 31.80 35.12 45.48 33.63 47.09
GYRATE_AM 6741.61 6780.94 6984.70 6527.08 7003.28 6970.06
SHAPE_AM 14.43 12.59 12.93 15.94 14.21 17.79

AI 80.39 84.03 82.36 77.14 83.12 76.31
SPLIT 1.79 1.83 1.77 1.92 1.74 1.75

3.2.2. Class Level

Table 6 shows the values of class-level landscape metrics and their Pearson’s correlations (Table 7).
Forest occupies more than 70% of the watershed and usually exhibits as clusters. It is expected that
forest has a low PD; the lowest SPLIT; and the highest AREA_AM, ED, GYRATE_AM, SHAPE_AM,
and AI. As built-up is the smallest land cover type in the watershed, it has the smallest AREA_AM,
ED, and GYRATE_AM. A small AI and high SPLIT indicate that built-up has very low connectivity.
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Generally, ED is positively correlated with PD for all land cover types, except forest. Similar to
what is found in landscape-level results (Table 4), SPLIT is negatively correlated with GYRATE_AM
and AREA_AM for all land cover types, as there is a strong positive correlation between GYRATE_AM
and AREA_AM (Table 7). Moreover, some relationships are not found at the landscape level, but are
significant at the class level, except forest (positive relationship among SHAPE_AM, AREA_AM,
and GYRATE_AM, and negative relationship between SPLIT and SHAPE_AM). Forest is the major land
cover type of the Chenyulan watershed, thus the uncorrelated relationships between SHAPE_AM and
AREA_AM, between SHAPE_AM and GYRATE_AM, and between SPLIT and SHAPE_AM for forest
could significantly affect these relationships at the landscape level. However, the relationship between
PD and SHAPE_AM is not consistent at the landscape and class levels. While PD was positively
correlated with SHAPE_AM at the landscape level, the relationship between PD and SHAPE_AM was
positive for river and landslide, and was negative for grassland, built-up, and cultivated land.

Table 6. Average landscape metrics during 2008–2013 for all land covers.

Land Cover PD AREA_AM ED GYRATE_AM SHAPE_AM AI SPLIT

Grassland 1.85 25.94 13.32 190.40 1.67 33.01 77,723.66
Built-up 0.37 2.39 1.81 66.75 1.10 12.88 3,900,140.18

Cultivated land 1.26 549.57 21.20 1255.08 5.87 57.51 1264.99
Landslide 0.54 26.01 5.22 223.12 1.60 49.15 81,111.31

Forest 0.44 32,791.92 31.46 8537.20 17.79 89.41 1.81

Table 7. Pearson’s correlation for seven landscape metrics at the class level.

Landscape Metrics
Land Cover

River Grassland Built-up Cultivated Land Landslide Forest

AREA_AM PD 0.575 −0.822 * −0.417 −0.779 0.370 −0.705
ED PD 0.927 ** 0.993 ** 0.975 ** 0.972 ** 0.935 ** −0.123
ED AREA_AM 0.768 −0.806 −0.207 −0.802 0.628 −0.106

GYRATE_AM PD 0.401 −0.885 * −0.598 −0.771 0.462 −0.559
GYRATE_AM AREA_AM 0.925 ** 0.991 ** 0.888 * 0.988 ** 0.989 ** 0.905 *
GYRATE_AM ED 0.539 −0.867 * −0.437 −0.761 0.701 0.171
SHAPE_AM PD 0.694 −0.923 ** −0.534 −0.805 0.755 −0.285
SHAPE_AM AREA_AM 0.823 * 0.955 ** 0.850 * 0.905 * 0.808 0.137
SHAPE_AM ED 0.736 −0.893 * −0.377 −0.727 0.901 * 0.970 **
SHAPE_AM GYRATE_AM 0.739 0.984 ** 0.984 ** 0.954 ** 0.880 * 0.387

AI PD −0.523 −0.961 ** −0.032 −0.970 ** −0.385 0.047
AI AREA_AM −0.019 0.942 ** 0.886 * 0.859 * 0.616 0.165
AI ED −0.278 −0.944 ** 0.180 −0.991 ** −0.105 −0.997 **
AI GYRATE_AM 0.022 0.978 ** 0.603 0.827 * 0.519 −0.128
AI SHAPE_AM −0.568 0.989 ** 0.548 0.796 0.070 −0.953 **

SPLIT PD −0.639 0.928 ** −0.128 0.849 * −0.731 0.752
SPLIT AREA_AM −0.948 ** −0.765 −0.846 * −0.662 −0.865 * −0.984 **
SPLIT ED −0.851 * 0.929 ** −0.340 0.744 −0.894 * 0.207
SPLIT GYRATE_AM −0.806 −0.832 * −0.643 −0.718 −0.904 * −0.853 *
SPLIT SHAPE_AM −0.742 −0.864 * −0.643 −0.853 * −0.900 * −0.029
SPLIT AI −0.051 −0.901 * −0.932 ** −0.793 −0.324 −0.270

** p < 0.01; * p < 0.05.

3.3. Swat Results

3.3.1. Model Calibration and Validation

SWAT was used to simulate the streamflow and sediment loading for constant land cover (CLC)
and updated land cover (ULC) scenarios during 2003–2015. We selected 2003 as the warmup year,
and 2004–2009 and 2010–2015 as the calibration and validation periods, respectively. A number of
model parameters suggested by [50–52] were first examined for the sensitivity analysis. For streamflow
parameters, a total of seven parameters with a p-value < 0.05 were selected for calibration. They were
curve number (CN2), plant uptake compensation factor (EPCO), surface runoff lag time (SURLAG),
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baseflow alpha factor (ALPHA_BF), effective hydraulic conductivity in main channel alluvium
(CH_K2), and Manning’s “n” value for the main channel (CH_N2). In order to reflect the heterogeneity
of parameters at different locations in the watershed, some parameters were calibrated separately for
head streams (subwatershed nos. 17, 20–23), subwatersheds at a slope greater than 60% (nos. 4, 8, 12, 16,
18, 19), and downstream subwatersheds (nos. 1–3, 5–7, 9–11, 13–15) (Figure 6). Table 8 lists the model
parameters along with their default values, calibrated ranges, and fitted values. Details of the model
parameters and their functions can be found in the SWAT 2012 Input/Output documentation [53].

CN2, which governs the surface runoff response, was calibrated for three land covers: forest
(FRST), grassland (RNGE), and cultivated land (AGRL). The adjusted CN2 values indicate that the
SWAT model with default parameters overestimated the daily streamflow. EPCO ranging from 0.01
to 1.00 was also calibrated in other studies [54,55]. When EPCO = 1.00, the model allows more of
the water uptake demand to be met by lower layers in the soil. Therefore, a reduced EPCO indicates
that the model allows less variation from the original depth distribution to take place. SURLAG
controls the fraction of total available water that will be allowed to enter the reach on any one day [53].
As SURLAG increases, the streamflow hydrograph simulated in the reach will be smoother due to
the delay in the release of surface runoff. ALPHA_BF can reflect the groundwater flow response to
changes in recharge. A high value of CH_K2 indicates that the bed material has a very high loss
rate and the stream is characterized as a flow-through stream that simultaneously receives and loses
groundwater. As the head streams have more condense vegetation in the watershed, the CH_N2 value
was calibrated higher than other reaches.

The calibration and validation results for daily streamflow showed that there was no significant
difference between two land cover scenarios. The model performance was very good in terms of
R2 = 0.81, NSE = 0.81, PBIAS = −17.3%, and RSR = 0.44 for calibration, and R2 = 0.71, NSE = 0.7,
PBIAS = 0.2%, and RSR = 0.55 for validation (Figure 7).
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Table 8. Calibrated parameters for streamflow. CN2, curve number; EPCO, uptake compensation
factor; SURLAG, surface runoff lag time; ALPHA_BF, baseflow alpha factor; CH_K2, effective hydraulic
conductivity in main channel alluvium; CH_N2, Manning’s “n” value for the main channel; FRST,
forest; RNGE, grassland; AGRL, cultivated land.

Parameter Unit Default Value
Calibrated value

Min. Max. Fitted

CN2 -
60 (FRST) 35 (−41.94%) 57 (−4.66%) 37 (−38.68%)

69 (RNGE) 39 (−44.10%) 61 (−12.05%) 39 (−43.38%)
77 (AGRL) 43 (−44.10%) 68 (−12.05%) 44 (−43.38%)

EPCO - 1 0.10 0.44 0.42

SURLAG - 4 6.43 18.15 11.50

ALPHA_BF 1/days 0.048 (sub1–3, 5–7, 9–11, 13–15) 0.18 0.53 0.34
0.048 (sub4, 8, 12, 16, 18, 19) 0 0.43 0.23

CH_K2 mm/hr
0 (sub1–3, 5–7, 9–11, 13–15) 342.85 555.75 510.51

0 (sub4, 8, 12, 16, 18, 19) 333.03 583.73 571.82
0 (sub17, 20–23) 293.20 579.25 439.80

CH_N2 - 0.014 (sub4, 8, 12, 16, 18, 19) 0.10 0.23 0.18
0.014 (sub17, 20–23) 0.19 0.32 0.22Int. J. Environ. Res. Public Health 2019, 15, x FOR PEER REVIEW  13 of 22 
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Figure 7. Comparison of simulated and observed daily streamflow during 2004–2015 at the
Nei-Mou-Pu station.

Two sediment-related parameters, the peak rate adjustment factor (PRF) for sediment routing
in the main channel and the linear parameter for calculating the maximum amount of re-entrained
sediment in the channel (SPCON), were calibrated for daily sediment prediction (Table 9). Both values
increased, so the daily measured versus simulated sediment agreed well (Figure 8). For both land cover
scenarios, the model performance was very good for calibration (R2 = 0.83, NSE = 0.81, PBIAS = −7.4%,
and RSR = 0.44). Similar results from the calibration period (2004–2009) were mainly because the land
cover started to change since 2008 in the ULU scenario and land cover change during 2008–2009 had
little impact on the simulation. However, the model with the ULC scenario (R2 = 0.66, NSE = 0.62,
PBIAS = 10.5%, and RSR = 0.62) performed better for validation than that with the CLC scenario
(R2 = 0.61, NSE = 0.54, PBIAS = 17.3%, and RSR = 0.68), indicating that activating the LUP module in
SWAT improved the model prediction.

Table 9. Calibrated parameters for sediment. PRF, peak rate adjustment factor; SPCON, linear
parameter for maximum re-entrained sediment.

Parameter Unit Default Value
Calibrated Value

Min. Max. Fitted

PRF - 1.0 1.01 1.82 1.49
SPCON - 0.00001 0.008 0.016 0.013
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Nei-Mou-Pu station.

3.3.2. Swat Simulation Results

Annual flow simulation was dominated by rainfall, leading to a similar trend of sediment loadings
during 2005–2015 (Figure 9). For both land cover scenarios, annual flow ranged between approximately
3.3 × 1011 m3 and 6.6 × 1011 m3. Annual sediment loading ranged between 246,000 and 589,100 tons
for the CLC scenario, and between 245,700 and 589,300 tons for the ULC scenario. The differences in
annual flow and sediment between the two scenarios are mainly due to land cover changes and the
yields from different land cover types (Table 10). Moreover, the impact of land cover change could be
magnified by the rainfall. While built-up, landslide, and cultivated land decreased and forest increased
in 2008, annual flow and sediment increased by 5 × 106 m3 and 1900 tons under the ULC scenario,
respectively. It should be noted that most of the SPOT images were taken late in the year, thus the
impact of land use and land cover would be seen in the next year. Thus, the increase in annual flow
and sediment under the ULC scenario could be the result of higher precipitation in 2008 magnifying
the difference between 2005 and 2008 land covers. Since 2009, land cover change in the previous year
had a greater impact in the simulation year than rainfall. Compared to the simulation of the CLC
scenario in 2009, the amount of annual flow and sediment decreased under the ULC scenario due
to a decrease in built-up, landslide, and cultivated land and an increase in forest in 2008. As for the
cumulative impact of land cover change since 2008, the amount of annual flow and sediment decreased
by 7.8 × 106 m3 and 4000 tons in 2012 under the ULC scenario.
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Table 10. Annual average water yield (WYLD) and sediment yield (SYLD) from different land covers
under ULC scenario.

Land cover Grassland Built-up Cultivated Land Landslide Forest Average

WYLD (mm) 2381.49 2109.56 2102.97 2548.91 2432.68 2386.46
SYLD (tons/km2) 50,868.24 24,281.99 271,683.10 1,591,249.74 53,825.47 125,447.62

4. Discussion

4.1. Impact of Land Cover Change on Ecohydrological Processes

For the two scenarios, the annual water yields generated from different land covers (cultivated
land, landslide, forest, grassland, and built-up) during 2005 and 2008–2014 were compared (Figure 10).
The results showed that water yields were mainly affected by rainfall, so there was a similar trend
of water yield generated and a similar average composition of water yield for all land cover types.
For the constant land cover scenario, the water yield from cultivated land was composed of 50.92%
surface runoff, 14.45% lateral flow, and 34.63% groundwater recharge; from forest, it was 34.69%
surface runoff, 32.62% lateral flow, and 32.69% groundwater recharge; and from grassland, it was
44.30% surface runoff, 31.37% lateral flow, and 24.33% groundwater recharge. For the updated land
cover scenario, the water yield from cultivated land was composed of 50.84% surface runoff, 13.46%
lateral flow, and 35.70% groundwater recharge; from forest, it was 34.67% surface runoff, 32.32% lateral
flow, and 33.00% groundwater recharge; and from grassland, it was 43.85% surface runoff, 30.63%
lateral flow, and 25.51% groundwater recharge. However, land cover change had a slight impact on
water yields generated from landslide and built-up. The composition of the water yield from landslide
was 66.93% surface runoff, 13.52% lateral flow, and 19.55% groundwater recharge for the constant
land cover scenario, and 67.72% surface runoff, 16.76% lateral flow, and 15.50% groundwater recharge
for the updated land cover scenario. The contribution of lateral flow increased and groundwater
recharge decreased for the land cover change scenario compared to the constant land cover scenario,
indicating increasing pore water pressure, groundwater exfiltration from the bedrock, and hydraulic
uplift pressure from below caused by landslides [56]. Similar changes in ecohydrological processes
were found for built-up areas. The composition of water yield from built-up areas was 57.56% surface
runoff, 4.46% lateral flow, and 37.98% groundwater recharge for the constant land cover scenario and
58.08% surface runoff, 6.74% lateral flow, and 35.17% groundwater recharge for the updated land
cover scenario.

The difference in water yield was directly reflected by the change in land cover area during
2008–2014 (Figure 10f–j). Generally, due to decreasing areas of cultivated land, grassland, and built-up
areas in the watershed, water yields decreased by 2.7 × 109 to 19.6 × 109 m3, 12.5 × 109 to 5.2 × 109 m3,
and 3.5 × 109 to 1.8 × 109 m3, respectively, during 2008–2014 compared to the constant land cover
scenario results.

Landslides slightly increased after 2010, resulting in greater water yields for the updated land
cover scenario (Figure 10g). However, the composition of the landslide water yield for both land
cover scenarios changed. Surface runoff was the major contributor to the change in water yield during
2008–2011, while increasing lateral flow and decreasing groundwater recharge contributed during
2012–2014. The proportion of groundwater varied and the lateral flow surpassed surface runoff during
2012–2014. Moreover, the landslide areas similarly ranged between 12.39% and 13.97% for 2005 and
2010–2013. This shows that during the process of changing landslide proportion in the watershed
over the years, the ecohydrological processes were altered. The variation in ecohydrological processes
in landslide areas could be because the failures caused by landslide are mainly attributed to rapid
transient variations in groundwater conditions [57].
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Forest area was the smallest in 2005. Increasing forest area resulted in an increased water yield
(Figure 10h). It was also found that the contribution of groundwater increased, indicating continuous
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groundwater recharge and replenishing rates. Built-up areas primarily consisting of impervious
surfaces increase surface runoff and prevent groundwater from recharging to the land. Therefore,
decreases in surface runoff (−46.45% to −65.80%) and groundwater recharge (−33.68% to −56.05%)
were the two major contributors to the change in built-up water yield between land cover scenarios
(Figure 10j).

4.2. Relationship between Landscape Metrics and Watershed Responses

Table 11 shows the interactions between water yield, sediment yield, and landscape metrics at the
class level. It should be noted that subwatershed landscape metrics at the class level were individually
calculated for each year from 2008–2013, and water yield and sediment yield were simulated under the
updated land cover scenario. Because most of the SPOT images were taken in the second half of the
year, under simulation, the landscape pattern shows the impact the following year. Thus, simulated
watershed responses during 2009–2014 were compared with landscape metrics during 2008–2013.
Although the SWAT model is a semi-distributed hydrological model and the simulation results are
dominated by landscape composition rather than landscape configuration, the relationship between
landscape metrics and watershed responses could be regarded as a cause-and-effect relationship
between landscape composition and configuration.

It was found that all built-up landscape metrics (configuration) were not significantly correlated
with water yield and sediment yield, as built-up area is the smallest in the watershed. The patch
density (PD) of grassland, cultivated land, and forest was negatively correlated with water yield,
indicating that water yield could increase due to increasing greenland in amount and size. In a defined
area, a higher patch density means smaller patch areas and more patch edges. The edge density (ED)
of grassland, cultivated land, and forest was relatively higher (13.32 m, 21.20 m, 31.46 m, respectively)
than the other land covers (built-up 1.81 m, landslide 5.22 m) (Table 7). The PD and ED analyses
proved that the higher the patch and edge density of grassland, the lower the generation of water in
cultivated land and forest. This result is in agreement with the finding that increasing agricultural
patch density leads to a decrease in surface runoff and sediment yield [17].

Through the fragmentation process, landscape composition and spatial configuration are affected
(e.g., patch area, number of patches, patch shape complexity, number of patch edges, distances between
patches), resulting in a change in landscape connectivity [49]. Thus, the aggregation index [58] and
splitting index [59] are usually used to assess this change. AI reflects the physical aggregation of
land covers within a watershed, and a higher value means more aggregation [34]. At the class level,
the AI metric was positively correlated with water yield from forest and sediment yield from landslide,
while it had a negative relationship with water and sediment yield from cultivated land (Table 11).
As baseflow decreases, an increase in surface runoff is induced by the increasing AI of forest [17].
Moreover, when the landscape is dominated (e.g., >60%) by a given cover type, it is nearly always
well connected [60]. The different relationships between the AI metric and water/sediment yield
indicate that more water and sediment are found when forest and landslide are more aggregated and
cultivated lands are more scattered over the watershed. This finding also indicates that when those
landscape areas expand, forest and landslide tend to be more aggregated and cultivated lands tend to
be more scattered. Land cover patterns could affect ecohydrological processes and components of the
water yield, but also control the amount of water and sediment yield within the watershed. Moreover,
the shape metric (SHAPE_AM) of landslide had a positive trend with sediment yield, indicating that a
large shape can intensify erosion [39].

The shape indices (ED, GYRATE_AM, and SHAPE_AM) of cultivated lands had negative
relationships with water yield and sediment yield, while those indices of landslide had positive
relationships with both yields. Usually, the flow rates between land cover types can be enhanced or
disrupted, depending on the hardness of the edges [8]. Cultivated land that is disrupted by humans
has straight and sharp edges [61], and natural landslides have more curvilinear borders. Thus, the edge
characteristics may partially determine the erosion characteristics and sediment export [8]. Moreover,
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a lower aggregation index (AI) and higher splitting index (SPLIT) resulting in a greater water yield
and sediment yield indicate that many small and interspersed land cover patches are more likely to
accelerate soil erosion and increase sediment yields [8].

Table 11. Interaction between water yield, sediment yield, and landscape metrics at the class level.

Water Yield

Land Cover PD AREA_AM ED GYRATE_AM SHAPE_AM AI SPLIT

Grassland −0.271 ** 0.1025 −0.278 ** 0.1007 0.0054 0.2052 −0.0382
Built-up −0.1534 0.0599 −0.0848 0.0302 −0.0161 −0.0815 0.0613

Cultivated land −0.207 * −0.1702 −0.341 ** −0.270 ** −0.252 ** −0.421 ** 0.375 **
Landslide −0.0030 0.0158 0.0829 0.0558 0.1030 0.0625 −0.0625

Forest −0.282 ** 0.394 ** −0.350 ** 0.353 ** 0.0314 0.304 ** −0.1547

Sediment Yield

Land Cover PD AREA_AM ED GYRATE_AM SHAPE_AM AI SPLIT

Grassland 0.0240 0.0944 0.0622 0.1102 0.0613 0.0182 −0.1205
Built-up −0.0805 −0.0328 −0.0836 −0.0018 0.0035 −0.0468 −0.0842

Cultivated land −0.228 ** −0.0849 −0.377 ** −0.216 * −0.223 * −0.431 ** 0.327 **
Landslide 0.1777 0.1796 0.349 ** 0.281 ** 0.341 ** 0.238 * −0.1639

Forest −0.0156 −0.0541 0.213 * 0.0442 0.257 ** −0.0851 −0.0390

** p < 0.01; * p < 0.05.

5. Conclusions

Landscape structures and patterns can affect runoff and non-point source pollution loadings in
watersheds [58], and the impact of a single land cover can be affected by other land cover types at the
watershed scale [39]. In this study, we first classified SPOT images into six land cover types by using
the nearest feature line embedding (NFLE) method, and then quantified the landscape patterns by
FRAGSTATS at the landscape and class levels. Our goals were to investigate how landscape patterns
affect the water yield and sediment yield from different land cover types, and also to understand
how ecohydrological processes are changed when updated land cover change is considered in the
SWAT model. The results showed that SWAT could more accurately predict changes in streamflow
and sediment exports under the updated land cover scenario. Although the SWAT model is a
semi-distributed hydrological model, the relationship between landscape metrics and watershed
responses could be regarded as a cause-and-effect relationship between landscape composition
and configuration.

The indirect impact of natural disturbances was reflected in the change in landscape configuration,
in terms of more fragmentation during 2009–2011 with increasing patch density (PD), edge density
(ED), and area-weighted mean shape index (SHAPE_AM). Annual precipitation was the dominant
influence on the amount of water yield, while the difference in water yield between land cover scenarios
was led by the change in land cover area (landscape composition). The relationships between landscape
metrics, water yield, and sediment yield were significant but with a relatively low statistical value,
indicating that landscape composition had by far the stronger influence. This finding is in agreement
with other studies [62–64]. Moreover, the shape indices (ED, GYRATE_AM, and SHAPE_AM) of
cultivated lands had a negative relationship with water and sediment yield, while those indices of
landslide had a positive relationship with water and sediment yield. However, [39] found that a proper
fragile landscape status and more complicated patches can reduce the soil erosion yield and more
patch edges can prevent soil erosion by disturbing formation and transportation; and [65] suggested
that spatial distribution and the number of farmland areas need to be considered to reduce sediment
yields. The contrasting results of previous studies and this study show the complicated relationship
between landscape patterns and sediment yield.

By identifying the contributions of different hydrological components to water yield, we can
understand how changes in land cover affect ecohydrological processes and how the ecohydrological
changes could further affect the environment and public health. Therefore, landscape characteristics
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that can influence ecohydrological processes should be considered in watershed management,
and landscape configuration at the subwatershed level should be considered in the SWAT
model. The various interactions between class-level landscape metrics, water yield, and sediment
yield are useful for providing guidelines on soil erosion prevention and sustainable hydrologic
ecosystem services.
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