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ABSTRACT Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first
step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome.
Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased
estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed
Segnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented
a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment
to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct
estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment
strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes
over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations.

NA sequencing (RNA-seq) has transformed our under-

standing of gene expression and transcriptional regula-
tion (Lister et al. 2008; Mortazavi et al. 2008; Nagalakshmi
et al. 2008; Wang et al. 2009). Alignment of short read
sequences (reads) is a critical first step in the analysis of
an RNA-seq experiment. The most widely used alignment
strategies rely on a reference genome, a single haploid
sequence that serves as the representative for a genetically
diverse species. For example, the mouse reference genome
is derived from the C57BL/6J inbred strain (Mouse Ge-
nome Sequencing Consortium 2002). Polymorphisms in in-
dividual RNA samples will generate reads that differ from
the reference genome. These differences are indistinguish-
able from sequencing errors in the read-alignment step
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where alignment algorithms allow for mismatches and
small insertions or deletions (indels). Polymorphisms can
be distinguished from sequencing errors in post hoc analy-
sis of the multiple-read alignments (McKenna et al. 2010)
when the read alignments are assumed to be correct. How-
ever, polymorphisms have a demonstrated potential to cre-
ate systematic errors in alignment that can affect many
reads and lead to biases in the quantification of transcript
abundance (Degner et al. 2009). Known variants can be
masked or substituted in the reference genome (Satya
et al. 2012) but this strategy discards important informa-
tion that can aid correct read alignment.

The target of read alignment can be a whole genome or
only the transcribed portion of the genome (transcriptome).
Whole-genome alignment must allow for reads that span
splice junctions; specialized alignment algorithms have been
developed to address this problem (Li and Durbin 2009;
Trapnell et al. 2009, 2010; Wu and Nacu 2010). Transcriptome
alignment substantially reduces target complexity by limiting it
to known transcripts, including all possible splice isoforms (Li
and Dewey 2011).
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The genomes of most organisms include gene families
and transcribed pseudogenes with varying degrees of sequence
similarity. As a result, it is not always possible to obtain a single
unique alignment for a given read. Genomic regions consisting
of common or repeat sequences that prevent unique read
alignment are said to have low mappability (Derrien et al.
2012; Graze et al. 2012; Stevenson et al. 2013). We refer to
reads that align to multiple such locations in the genome as
genomic multireads. Transcriptomes include multiple isoforms
with shared exons. Thus reads that align uniquely in the
genomic sequence can be shared by two or more isoforms.
We refer to these as isoform multireads. When the alignment
target is diploid, consisting of two copies of a genome or
transcriptome, reads may align equally well to both copies.
We refer to these as allelic multireads. A given read may
belong to one or more of these classes of multireads simulta-
neously. However, it is assumed that each read is derived
uniquely from one gene, isoform, and allele. Appropriate meth-
ods for resolving the probable origin of multireads are key to
obtaining accurate transcript abundance estimates (Mortazavi
et al. 2008). Restricting attention to only uniquely mapping
reads is problematic, as we illustrate below.

Quantification of transcript abundance is based on parti-
tioning of the target genome or transcriptome into discrete
units, which may be genes, isoforms, exons, or allelic copies
of any of these. The posterior probability that a read originated
from one of the loci to which it aligns can be computed using
an expectation-maximization (EM) algorithm (Li et al. 2010;
Nicolae et al. 2011; Roberts and Pachter 2013; Patro et al.
2014). The probabilities serve as weights that sum to one
for each read and relative abundance is estimated as the
sum of weights for all reads that align to that locus. In this
way, a read may be aligned to more than one locus but the
total weight contributed by the read is one. In this work we
align reads to the transcriptome at the isoform level and we
summarize transcript abundance at the gene level. Alignhment
to the transcriptome allows us to capture junction-spanning
reads and to apply appropriate length adjustments. However,
we find that the precision with which we can estimate isoform
proportions is low with current sequencing technologies and
therefor focus on estimates of gene-level abundance. Gene-
level abundance is computed as the sum of the estimated
transcript counts across all isoforms of the gene.

In outbred populations, heterozygous sites are informative
for allele-specific expression. Current approaches to analysis
of allele-specific expression from RNA-seq construct two
haploid genome sequences corresponding to the two parents
(McManus et al. 2010; Rivas-Astroza et al. 2011; Rozowsky
et al. 2011; Graze et al. 2012; Shen et al. 2013). Reads
are aligned sequentially to the haploid maternal and paternal
genomes and reads that map uniquely to one parent are used
to estimate allelic imbalance. Bayesian hierarchical models can
be used to test allelic imbalance across multiple SNPs within
a gene (Skelly et al. 2011). These methods discard allelic mul-
tireads that map to both parents and fail to account for
reads that are simultaneously genomic and allelic multireads.
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Including all reads by allocating the allelic multireads using an
EM algorithm improves the accuracy of allele-specific expres-
sion (Turro et al. 2011). We adopt a similar approach here.

The focus of this work is to evaluate the impact of
individualized genomes on transcript quantification. Toward
this end we have made what we regard to be a reasonable
choice in the methods used to quantify aligned reads. We
evaluate the impact of alignment to individualized diploid
genomes on RNA-seq analysis with an emphasis on exper-
imental multiparent populations. We have developed the
Seqnature software to construct individualized genomes and
transcriptomes for inbred strains and multiparent populations,
including the Diversity Outbred (DO)—a multiparent popula-
tion derived from eight inbred mouse strains (Churchill et al.
2012; Svenson et al. 2012). Seqnature performs two main
functions. For inbred strains, Seqnature incorporates SNPs
and small indels (<100 bp) into a reference genome to create
a strain-specific genome sequence. For multiparent popula-
tions, Segnature uses inferred founder haplotypes to construct
a pair of individualized haploid genome sequences incor-
porating known SNPs and indels from the founder strains.
The software merges these two sequences to produce an
individualized diploid genome. Seqnature also modifies
gene annotation files to account for coordinate offsets from
indels and constructs a diploid transcriptome file in a format
suitable for RNA-seq read alignment.

We incorporate Seqnature into an RNA-seq analysis pipe-
line that uses existing software for read alignment [Bowtie
(Langmead et al. 2009)] and quantification [RSEM (Li and
Dewey 2011)]. Other software tools can be substituted into
this pipeline. We demonstrate, using real and simulated
data, that individualized transcriptomes improve the accu-
racy of read alignment and quantification. The Seqnature
pipeline provides direct estimates of allele-specific expres-
sion for genes with heterozygosity. We demonstrate that in
expression quantitative trait locus (eQTL) mapping, read
alignment to individualized transcriptomes reduces the
number of spurious linkages and unmasks extensive local
genetic variation affecting gene expression.

Materials and Methods
Animals

Male and female Diversity Outbred mice (J:DO stock no.
009376) were obtained from The Jackson Laboratory (JAX,
Bar Harbor, ME). Animals were received at 3 weeks of age,
housed at JAX, and given free access to either standard
rodent chow containing 6% fat by weight (LabDiet 5K52;
LabDiet, Scott Distributing) or a high-fat, high-sucrose diet
containing 44.6% kcal from fat and 34% (by weight)
sucrose (TD.08811) from wean age throughout the study.
DO mice were phenotyped for multiple metabolic and hema-
tological parameters as described in Svenson et al. (2012). At
26 weeks of age, liver samples were collected from each animal
and stored in RNAlater solution (Life Technologies) at —80°.



All procedures on DO mice were approved by the Animal Care
and Use Committee at JAX.

Breeder pairs of each of the eight DO founder strains were
obtained from JAX, housed at the University of Wisconsin
(Madison, WI), and used to generate male pups that were
utilized for our study. To supplement this breeding, male mice
for CAST/EiJ and NZO/HILtJ were obtained from JAX at
~3 weeks of age. Beginning at 4 weeks of age and maintained
throughout the study, mice were given free access to either
a semipurified control diet containing 16.8% kcal from fat
(TD.08810) or a high-fat, high-sucrose diet containing 44.6%
kcal from fat and 34% (by weight) sucrose (TD.08811). With
the exception of NZO/HILtJ (NZO) mice, animals were killed
at 26 weeks of age, and liver samples were collected, snap
frozen, and shipped on dry ice to JAX for RNA-seq analysis.
Due to a high level of lethality of NZO mice that were
maintained on the high-fat/high-sucrose diet, all NZO mice
were killed at 20 weeks of age. All animal procedures were
approved by the Animal Care and Use Committee at the
University of Wisconsin.

RNA sequencing

Total RNA was isolated from livers of 26-week-old mice and
quantitated by single-end RNA sequencing. Male mice from
the DO founder strains (n = 128 total, eight biological repli-
cates for each strain:diet group) and both male and female DO
mice (n = 277) were profiled. Total liver RNA was isolated
using the Trizol Plus RNA extraction kit (Life Technologies)
with on-column DNase digestion, and then messenger RNA
(mRNA) was purified from total RNA, using biotin-tagged
poly(dT) oligonucleotides and streptavidin beads. The
mRNA was then fragmented and double-stranded ¢cDNA was
generated by random hexamer priming. Indexed mRNA-seq
libraries were generated from 1 g total RNA following the
Nlumina TruSeq standard unstranded protocol and then
checked for quality and quantitated with the Agilent Bioanalyzer
and the Kapa Biosystems qPCR library quantitation method.
Finally, 100-bp single-end reads were generated on the Illumina
HiSeq 2000. To minimize technical variation, samples were
randomly assigned to lanes, barcoded, and multiplexed at
12-24X per lane, and two to four technical replicates for
each DO sample were sequenced. Base calls were performed
using CASAVA v1.8.0, and fragmented fastq files were concat-
enated and then filtered to remove low-quality reads, using the
MMumina CASAVA-1.8 Fastq Filter.

Construction of individualized genomes
and transcriptomes

High-confidence SNPs and indels of <100 bases from the
DO founder strains were obtained from the Sanger Mouse
Genomes website [(Keane et al. 2011) Release 20111102,
ftp://ftp-mouse.sanger.ac.uk]. “High-confidence” SNPs were
defined by Sanger’s criterion and denoted in the variant file
by an above-threshold genotype (ATG) value = 1. There are
additional variants in these genomes that will not be captured
but the individualized genomes represent a good approximation

to the actual genomes of these strains. SNPs and indels were
incorporated into the reference mouse genome sequence
(NCBIM37) to construct a strain-specific genome in fasta for-
mat. Genome coordinates in the gene annotation file (Ensembl
version 67) were adjusted to reflect indels in each strain. The
individualized genome and gene annotation files were used to
construct strain-specific transcriptomes containing all annotated
gene isoforms with SNPs and indels incorporated.

Genomic DNA was extracted from each DO mouse and
genotyped at 7664 SNPs on the Mouse Universal Genotyping
Array (“MUGA”, GeneSeek) (Welsh and McMillan 2012).
Founder haplotypes were inferred from SNP probe intensi-
ties, using a hidden Markov model in the DOQTL R package
(Broman et al. 2012; Gatti et al. 2014). At each SNP, the
genotype with the highest posterior probability was recorded,
and genotype state transitions were inferred at the physical
midpoint between adjacent markers with differing geno-
types. Individual chromosomes were phased to construct hap-
lotypes by minimizing the number of recombination events
consistent with the observed genotypes. Accurate long-range
phasing is not critical for our purposes. For each DO sample,
this process yields two genotype transition files [designated
left (“I) and right (“R”)] from which a pair of homologs is
reconstructed. Chromosomal coordinates are mapped back to
the reference genome (NCBIM37) to obtain annotation specific
to each homolog. A diploid transcriptome is constructed with
two copies of each transcript, one for each homolog.

Seqnature uses the genotype transition files and founder
strain variant call data to construct individualized genomes
and gene annotation files. Seqnature scans through the
variant call format (VCF) files, and at each position with
a known SNP or indel, if the sample haplotype matches the
founder strains with the variant, the variant is added to the
individualized genome. For each sample two haploid genomes
are produced and merged into one diploid genome file with
chromosomes designated as L or R [e.g., chromosome (Chr)
1L, Chr 1R]. Offset tracking data are used to update the coor-
dinates of features in the gene annotation file (Ensembl v67),
and the two annotation files are merged. The pair of records
for each feature in the merged file is annotated to the L or
R chromosomes and an additional annotation indicates the
founder strain origin (A-H) of each feature. Features that
span inferred recombination boundaries are labeled with
both founders. One copy of the reference mitochondrial
genome and any unassigned contig sequences are added
to the merged genome sequence. One copy of the reference
Y chromosome sequence is added to male samples.

Simulation of CAST and Diversity Outbred
RNA-seq reads

We simulated RNA-seq reads from the CAST inbred strain
and from a reconstructed DO individual, using the Flux
Simulator (version 1.2) (Griebel et al. 2012). For each sample,
we simulated 10 million and 30 million 100-bp single-end
(CAST and DO) or paired-end (CAST only) reads with a stan-
dard error model (0.028% average mutations per sequence,
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34.96 quality). For paired-end reads, we set the average
fragment size at 280 with a standard deviation of 50, consis-
tent with the fragment size distribution we observe in real
MMumina RNA-seq data from current enzymatic fragmentation
methods. Isoform abundance estimates derived from C57BL/
6J liver RNA-seq data (aligned to the NCBIM37 reference)
provide transcript abundance values for the FLUX parameter
files. We simulated isoform abundance estimates for both
alleles independently in the DO sample. We defined ground
truth to be the realized abundance values obtained for the
simulated RNA-seq reads. These will deviate somewhat from
the input values due to simulated variation in the Flux library
preparation and sequencing steps. The complete Flux param-
eter specifications are listed in Supporting Information, File S1.

For the eQTL simulations, we simulated 30 million 100-bp
single-end reads from 277 DO genomes, using the rsem-
simulate-reads command in RSEM [v1.2.8 (Li and Dewey
2011)]. We derived model files from abundance estimations
on real DO samples (see the rsem-calculate-expression com-
mand and parameters described below) and used these values
as initial input parameters for simulation. We set the fraction
of reads that do not derive from any known transcript at the
mean value of the proportion of unaligned reads observed in
the real data (6, = 0.018).

Alignment of simulated and real RNA-seq reads to
individualized transcriptomes

We used individualized transcriptomes to construct Bowtie-
compatible indexes with the RSEM software (version 1.2.1)
(Li and Dewey 2011). For inbred genomes (CAST and NCBIM37),
each Ensembl transcript identifier (e.g., ENSMUST00000000001)
corresponds to a single sequence. For diploid genomes, each
transcript identifier corresponds to two allelic sequences that
are further differentiated with the L/R chromosome des-
ignation and their A-H founder strain designation (e.g.,
ENSMUSTO00000000001FL and ENSMUST00000000001HR).
The Bowtie aligner (version 0.12.8) (Langmead et al. 2009)
aligns single-end reads, allowing up to three mismatches
(-v 3), and only the best “strata” of alignments are reported.
For a given read, the best stratum consists of the alignment(s)
with the fewest mismatches. For paired-end reads, we set
the maximum fragment size at 1000 (-X 1000) and used
the -y option to maximize Bowtie’s sensitivity to find paired
alignments.

Estimation of transcript abundance from
read alignments

We obtained isoform- and gene-level abundance estimates
with RSEM (version 1.2.1) (Li and Dewey 2011). RSEM exe-
cutes an EM algorithm to compute a proportionate allocation
of the reads with multiple alignments. RSEM estimates iso-
form-level abundance; gene-level abundance is calculated as
the sum of the corresponding isoform counts. For diploid DO
individuals, two allele-level abundance estimates are output
for both isoforms and genes, and sample-level estimates are
computed as the sum of alleles.
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eQTL mapping

We obtained RNA-seq data from liver samples of 277 male
and female DO mice fed a high-fat or standard chow diet.
We mapped expression QTL, using gene-level counts estimated
from alignment of reads to the reference NCBIM37 tran-
scriptome and again using counts estimated from align-
ment to individualized transcriptomes. We applied the
same processing and analysis steps to both sets of alignments.
We included only genes with nonzero count values in =85%
(=233) of the DO samples in the eQTL analysis (17,125 genes
from alignment to the NCBIM37 reference, 16,985 genes from
alignment to individualized transcriptomes, and 16,924 genes
in the common set). Raw counts in each sample were normal-
ized to the upper quartile value and transformed to normal
scores. We mapped expression QTL with DOQTL (Gatti et al.
2014), using a linear mixed model with sex, diet, sex by diet,
and batch as additive covariates and a random polygenic term
to account for genetic relatedness (Cheng et al. 2011).

We established significance thresholds by performing
100,000 permutations and fitting an extreme value distribu-
tion to the maximum logarithm of the odds ratio (LOD) scores
(Dudbridge and Koeleman 2004). We converted permutation-
derived P-values to g-values with the QVALUE software, using
the bootstrap method to estimate 1, and the default A tuning
parameters (Storey et al. 2004). We set the significance
threshold for declaring an eQTL at a false discovery rate of
1% (Chesler et al. 2005).

Results

Construction of individualized genomes for RNA-seq
read alignment

The DO is an outbred population derived from eight inbred
mouse strains (Svenson et al. 2012). The seven nonrefer-
ence founder strains of the DO population (A/J, 12951/
SvimJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and
WSB/EiJ) differ from the reference strain C57BL/6J geno-
mic sequence (NCBIM37) at a large number of loci (Table 1).
Variation is especially high in the three wild-derived strains
(CAST, PWK, and WSB). SNPs in the CAST transcriptome
relative to the NCBIM37 reference occur at a rate of 1/217
bases and indels are present at 1/1650 bases. Thus half of
all 100-bp reads from CAST should contain at least one SNP
or indel.

The homologous chromosome pairs of a DO animal are
each composed of a unique mosaic of founder strain haplotypes
with several hundred recombination events. We used high-
density genotyping and applied a hidden Markov model to
estimate the phased haplotypes of each DO chromosome
(Gatti et al. 2014) and placed haplotype transitions at the
physical midpoint between the two flanking markers at each
inferred recombination event. Intragenic transitions were rare;
we observed 118 intragenic events of 75,124 total events,
corresponding to 0.16% of recombination events in a typical
DO genome. We create an individualized diploid genome by
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Table 1 Annotated SNPs and indels segregating among the eight CC/DO founder strains

Genome Transcriptome
Strain SNPs Insertions Deletions SNPs Insertions Deletions
A) 4,198,324 401,264 422,424 104,358 7,846 8,394
12951/Svim) 4,458,004 428,081 458,055 109,598 8,154 8,875
NOD/ShiLt) 4,323,530 389,285 407,801 108,881 7,599 8,168
NZO/HILt) 4,492,372 396,393 410,118 108,026 7,551 7,905
CAST/EI) 17,673,726 1,359,607 1,367,482 410,805 26,975 27,474
PWK/PhJ 17,202,436 1,247,627 1,388,258 411,647 25,226 27,842
WSB/EIJ 6,045,573 588,061 608,945 146,495 10,966 11,559
All strains 31,593,523 2,963,385 3,213,340 746,993 56,354 61,204

For each of the founder strains, the cumulative numbers of high-quality SNPs, insertions, and deletions that differ from the NCBIM37 genome and transcriptome are listed.
Transcript boundaries are based on the Ensembl v67 annotation. The bottom row tabulates the total number of variants segregating among the founder strains that differ

from NCBIM37.

introducing known variants—SNPs and small indels—into two
copies of the NCBIM37 reference genome. We use gene and
isoform annotations (Ensembl version 67) to extract a diploid
transcriptome, which will serve as the target for alignment of
RNA-seq reads for the individual DO animal (Figure 1).

Performance on simulated data

We used simulated data to evaluate the accuracy of read
alignment and transcript abundance estimation. We simulated
10 million 100-bp single-end reads from CAST and from a
reconstructed DO genome, using the Flux Simulator (0.028%
average mutations per sequence, 34.96 average quality) (Griebel
et al. 2012). We aligned the simulated reads to NCBIM37
and to the individualized CAST and DO transcriptomes,
allowing for three or fewer mismatches in the alignment
algorithm. We compared the alignment of each read to its
simulated origin and summarized results at the gene and
isoform levels. We compared gene- and isoform-level abundance
estimates from RSEM to the realized values from the simulated
read set aligned using both stringent (zero mismatches allowed)
and more relaxed (three or fewer mismatches allowed)
alignment criteria.

At the gene level, a read can (i) align uniquely to the
correct location; (ii) align to multiple locations, one of which is
correct; (iii) fail to align to any locus with three or fewer
mismatches; (iv) align to multiple locations, none of which are
correct; or (v) align uniquely to the incorrect location.
Categories are ordered from best to worst outcome. When
comparing two alignment methods, we consider the number
of reads that improve in these categories and the degree of
improvement.

CAST alignment

We aligned 9,999,923 simulated CAST reads to each of the
NCBIM37 and CAST transcriptomes and assessed gene-level
alignment quality by the above criteria (Table 2). A total of
458,297 reads improve by alignment to the CAST transcrip-
tome (Table 2, italic entries), of which 93% (427,016 of
458,297 reads) improve by two or more categories (Table
2, underlined italic entries). In comparison, only 10,533
reads improve by alignment to NCBIM37 (Table 2, entries

in boldface type) of which only 3% (326 of 10,533 reads)
improve by two or more categories (Table 2, entries in
underlined boldface type). Isoform-level alignment is also
improved by alignment to CAST. The frequency of multiple
alignments at the isoform level is increased because many
reads align to shared exons in multiple isoforms of a gene
(Table S1).

Read alignment errors occur most frequently in genes
with polymorphisms between CAST and NCBIM37, espe-
cially in genes with closely related gene family members or
retrotransposed pseudogenes. The 3643 reads that align
uniquely to the correct location in CAST but to an incorrect
unique location in NCBIM37 (Table 2) originate from 163
genes and incorrectly align to 168 other genes (Table S2).
These alignment errors occur between pairs or small sets of
gene family members. For example, 1119 simulated reads
from Mugl (murinoglobulin 1) align uniquely but incor-
rectly in NCBIM37 to the family member Mug2 (murino-
globulin 2). Genes with retrotransposed pseudogenes are
similarly sensitive to misalignment. For example, 130 reads
from the protein-coding gene Vcp (valosin-containing pro-
tein) align uniquely but incorrectly in NCBIM37 to the
pseudogene Vcp-rs (valosin-containing protein, related se-
quence). This extreme class of alignment error can cause
major deviations in gene abundance estimates. In the case
of Vcp-rs, the pseudogene is mistakenly classified as an
expressed transcript. We also examined 405,895 reads that
failed to align to NCBIM37 but are rescued to the unique,
correct locus in CAST. These reads derive from nearly
10,000 genes (9599 genes with =1 reads; 4601 genes with
=10 reads). Expression estimates for these genes are under-
estimated by alignment to NCBIM37.

CAST abundance estimates

Alignment of simulated CAST reads to the CAST tran-
scriptome improves the accuracy of gene-level abundance
estimation compared to alignment to NCBIM37 (Table 3).
We restricted our analysis to genes for which either the
ground truth or the estimated count was at least 10, yield-
ing 12,186 genes after alignment to NCBIM37 and 12,108
after alignment to CAST. Highly accurate abundance
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estimates—those within 5% of ground truth—occur for
4319 genes (35%) after alignment to NCBIM37 and for
8718 genes (72%) after alignment to CAST. A total of
8217 genes (67%) have gene-level abundance estimates
within 10% of the ground truth after alignment to
NCBIM37, compared to 10,544 (87%) of gene-level abun-
dance estimates from alignment to CAST. There are 174
gene-level abundance estimates that differ by >50% from
ground truth for the CAST alignment, vs. 485 such esti-
mates after alignment to NCBIM37. If we consider only
perfect-matching reads (reads that align with zero mis-
matches), only 24% of gene estimates from the NCBIM37
alignment are within 10% of ground truth compared to
79% of gene estimates from the CAST alignment. Increas-
ing the read depth does not affect these conclusions
(Table S3).

Diversity Outbred alignment

We aligned 9,999,338 simulated reads from a reconstructed
DO genome to each of the NCBIM37 and individualized DO
transcriptomes (Table 2). A total of 186,248 reads improve
by alignment to the DO transcriptome (Table 2, italic
entries) and most (146,083) improve by two or more cate-
gories (Table 2, underlined italic entries). In comparison,
only 5384 reads improve by alignment to NCBIM37 (Table
2, entries in boldface type) and only 77 improve by two or
more categories (Table 2, entries in underlined boldface
type). As with CAST simulated reads, polymorphic genes
with closely related gene family members or retrotransposed
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outputs two 8-state genotype transition files. Segnature
constructs two haploid genomes by incorporating founder
strain SNPs and indels into the reference genome according
to the genotype transition files and creates two gene an-
notation files with adjusted coordinates (to offset insertions
and deletions) and founder strain appended to feature
identifiers. The two genomes and annotation files are
merged, and then individualized diploid isoform sequences
(individualized transcriptome) are constructed and indexed.
Sample RNA-seq data are aligned with Bowtie to the in-
dividualized transcriptome, and allele-, isoform-, and gene-
level abundances are estimated using an EM algorithm
(RSEM) to resolve multimapped reads.

pseudogenes are most sensitive to read alignment errors.
A total of 5618 reads from 73 genes align to the correct
unique location in the individualized DO transcriptome but
align uniquely to 79 other genes in NCBIM37. Another
137,938 reads from 5759 genes fail to align to NCBIM37
but align uniquely to the correct gene in the individualized
transcriptome (Table S4).

Diversity Outbred abundance estimates

Alignment of DO reads to the individualized diploid DO
transcriptome improves estimates of gene abundance (Table
3). We restricted our analysis to genes with ground truth or
estimated counts of at least 10, yielding 11,899 genes after
alignment to NCBIM37 and 11,863 genes after alignment to
the individualized DO transcriptome. Highly accurate abun-
dance estimates—those within 5% of ground truth—occur
for 7260 genes (61%) after alignment to NCBIM37 and for
8569 genes (72%) after alignment to the individualized DO
transcriptome. A total of 9805 genes (82%) have gene-level
abundance estimates within 10% of the ground truth value
after alignment to NCBIM37, compared to 10,471 (88%) of
gene-level abundance estimates from alignment to the in-
dividualized DO transcriptome. There are 161 gene-level
abundance estimates that differ by >50% from ground truth
for the individualized DO alignment, vs. 230 such estimates
after alignment to NCBIM37. If we consider only perfect-
matching reads, only 40% of gene abundance estimates
from alignment to NCBIM37 are within 10% of ground
truth, compared to 81% of gene estimates from alignment
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Table 2 Summary of read alignment in the simulated CAST and DO data

Aligned to CAST

CAST gene-level Incorrect Incorrect Unmapped Correct Correct

summary Read class unique reads multireads reads multireads unique reads Total

Aligned to NCBIM37 Incorrect unique reads 1,076 0 4 11,225 3,643 15,948
Incorrect multireads 0 531 0 5,145 1,104 6,780
Unmapped reads 13 1 1,709,356 8332 405,895 2,123,597
Correct multireads 15 4 6 976,821 22,949 999,795
Correct unique reads 3 0 291 10,200 6,843,309 6,853,803
Total 1,107 536 1,709,657 1,011,723 7,276,900 9,999,923

Aligned to DO

DO gene-level Incorrect Incorrect Unmapped Correct Correct

summary Read class unique reads multireads reads multireads unique reads Total

Aligned to NCBIM37 Incorrect unique reads 799 1 7 3,675 1,136 5,618
Incorrect multireads 0 367 0 2,732 595 3,694
Unmapped reads 1 0 1,712,660 3,796 137,938 1,854,395
Correct multireads 13 0 2 865,550 36,368 901,933
Correct unique reads 1 0 62 5,305 7,228,330 7,233,698
Total 814 368 1,712,731 881,058 7,404,367 9,999,338

The simulated reads were aligned to the NCBIM37 and individualized transcriptomes, and alignments were collapsed to the genomic location. Reads that improve by
alignment to the individualized transcriptomes are in italics, with those that improve by two or more categories in underlined italics. Reads that improve by alignment to
NCBIM37 are in boldface type, with those that improve by two or more categories in underlined boldface type. Reads on the diagonal align equivalently by both strategies.

to the individualized DO transcriptome. Increasing the read
depth does not affect these conclusions (Table S5).

Allele-specific expression

Alignment to an individualized diploid transcriptome pro-
vides direct estimates of allele-specific expression. We use
the same EM algorithm that resolves genomic and isoform
multireads to resolve allelic multireads. We analyzed the
simulated DO data and compared the allele-specific count
estimates to the ground truth. We restricted our analysis to
the 5270 genes that were robustly expressed (total count
=100) and had at least five aligned reads that overlapped
one or more polymorphisms that distinguished the two
alleles. Estimates of allele frequency, the proportion of reads
assigned to the L allele in the DO simulation, are strongly
correlated with ground truth (r = 0.82), with a median de-
viation of 4% (Figure 2). A small number of genes deviate
considerably from ground truth. This is most evident for
extreme estimates of allelic imbalance, which appear as hor-
izontal lines of dots at the top and bottom of Figure 2. These
errors may result from one or both of two scenarios. In the
first scenario, they may expose a weakness of the EM algo-
rithm. Even when the total read count is high, if the number
of reads that distinguish the two alleles is low, the likelihood
of sampling reads from only one of the alleles by chance can
be substantial. In such cases, the EM algorithm will assign
all reads to the allele with the unique read alignments.
Bayesian analysis with an informative prior or introduction
of pseudocounts could be implemented to correct this prob-
lem, but these methods will require further study. In the
second scenario one or more allele-specific strain SNPs in
these genes reduce the mappability of that particular allele
and cause reads overlapping that SNP to align with less

precision to multiple places in the genome. Increasing read
depth to 30 million reads and increasing stringency of filter-
ing to require a minimum of 10 unique allelic alignments
reduces this problem (Figure S1), arguing against wide-
spread mappability artifacts. Our diploid alignment strategy
uses all unique allele read alignments within a gene to in-
form estimates of allele-specific expression, thus mitigating
potential mappability artifacts stemming from any single
variant.

Performance on real data

Individualized alignment of liver RNA-seq data from CAST
and DO samples yields alignment statistics that are similar
to our simulation results; this suggests that improvements in
mapping accuracy and gene abundance estimates are also
similar to the simulation results. We find that 75% of CAST
reads align to the NCBIM37 transcriptome with three or
fewer mismatches while 2.1% more reads (+252,905) align
to the CAST transcriptome (Table S6). The difference between
alignments is more striking for perfectly mapping reads (zero
mismatch), as 23% more CAST reads (4+982,229) align per-
fectly to CAST but not to NCBIM37. One-quarter of expressed
genes in the CAST liver sample (2984 of 11,964 genes) yield
gene-level abundance estimates that differ by >10% between
alignment to the CAST and NCBIM37 transcriptomes (Figure
3A). For most of this cohort (2242 of 2984 genes) the simu-
lation results show that the CAST alignment abundance esti-
mates are closer to the ground truth (green circles in Figure
3A). This suggests that simulations can identify the genes that
are most sensitive to choice of alignment target; the median
difference between NCBIM37- and CAST-derived abundance
estimates was 20% in the real data and 12% in the simulated
data (green bars in Figure 3B). A set of 439 genes has
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Table 3 Comparison of gene abundance estimates for simulated CAST and DO RNA-seq data after alignment to NCBIM37 reference and

individualized transcriptomes

No. genes with estimates x% from ground truth

Aligned to Mismatches allowed Genes above threshold <5% <10% >10% >50%
CAST reads
NCBIM37 3 12,186 4,319 8,217 (67) 3,969 (33) 485
CAST 3 12,108 8,718 10,544 (87) 1,542 (13) 174
NCBIM37 0 12,137 1,465 2,925 (24) 9,212 (76) 1,576
CAST 0 12,059 7,023 9,568 (79) 2,491 (21) 152
DO reads
NCBIM37 3 11,899 7,260 9,805 (82) 2,094 (18) 230
DO IRG 3 11,863 8,569 10,471 (88) 1,380 (12) 161
NCBIM37 0 11,879 2,309 4,810 (40) 7,069 (60) 530
DO IRG 0 11,857 7,110 9,575 (81) 2,262 (19) 164

Alignment of simulated CAST reads to the individualized CAST transcriptome results in twice as many gene estimates (N = +4399) that fall within 5% of ground-truth value
and fewer than half as many gene estimates (N = —2427) that deviate >10% from the ground truth. Gene estimates in the simulated DO sample are also improved by read
alignment to the individualized transcriptome, yielding 18% more estimates (N = +1309) within 5% of the ground-truth value and 34% fewer estimates (N = —714) that

deviate >10% from the ground truth.

abundance estimates that differ by >10% in the real data
and showed an improvement over alignment to NCBIM37
in the simulation results (439 of 2984 genes) and the
difference in abundance estimates between alignments
is less variable. The median difference between NCBIM37-
and CAST-derived abundance estimates was 16% in the real
data and 5% in the simulated data (red circles and bars in
Figure 3, A and B). Moreover, this suggests that the simulation
study underestimated the actual differences in gene-level
abundance estimates between alignment strategies, at least
for the set of 2984 genes whose abundance estimates differ
by >10% between alignment strategies in the real liver data.

Individualized alignment also improves read alignment
accuracy and abundance estimates in the DO sample. We
observed that 1% more reads (+151,225) align with three
or fewer mismatches and 9% more reads (+704,522) align
perfectly in the individualized DO transcriptome compared
to NCBIM37 (Table S6). In the comparison of gene abun-
dance estimates, we find that a total of 714 expressed genes
differ by >10% from alignment strategy alone, and most of
these (432 of 714 genes) show more accurate estimates
from individualized alignment in the simulation study
(green circles in Figure 3C). These genes appear to be highly
sensitive to alignment strategy; the median difference in
abundance estimates between NCBIM37 and individualized
alignments was 16% in the real data and 14% in the simu-
lated data (green bars in Figure 3D). Abundance estimates
for 124 genes (124 of 714 genes) differ by >10% between
alignment strategies in the real data and show an improve-
ment from alignment to NCBIM37 in the simulation study
(red circles in Figure 3C). The difference in gene abundance
estimates between alignment strategies is less variable (median
difference: 15%, real data; 5%, simulation study) (red bars in
Figure 3D). Again, the simulation study appears to underesti-
mate the actual differences in gene-level abundance estimates
between alignment strategies.

Overall, the improvements in read alignment and gene-
level abundance estimation are more modest in the DO sample
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relative to the CAST sample. This was expected given that five
of the DO founder strains are closely related laboratory strains
with greater similarity to the NCBIM37 reference compared to
wild-derived strains such as CAST. That said, each DO sample
will have a unique set of SNPs and indels that can bias read
alignment, and in total across a large population of DO mice,
the number of alignment-sensitive genes will approach the
sum of all genes that are sensitive to alignment bias across all
of the eight founder strains.

Individualized alignment reduces errors in RNA-seq
eQTL studies

eQTL mapping on simulated data: We examined the effect
of choice of alignment target on the identification of eQTL.
We simulated 30 million single-end RNA-seq reads from
each of 277 DO genomes and then mapped eQTL from the
realized gene-level abundance values. In the simulated data,
15,027 genes pass the minimum coverage. Of these, 7033
have significant eQTL (6437 local and 596 distant eQTL)
while 7994 genes have no significant eQTL at a false discovery
rate (FDR) of 1%. Next, we aligned the simulated reads to the
GRCm38 reference transcriptome and to the individualized
diploid DO transcriptomes and compared the eQTL results
mapped with the gene-level abundance estimates derived
from these two strategies. Alignment of simulated reads to
individualized DO transcriptomes yields a 98.3% accuracy
rate in assigning eQTL—14,778 of 15,027 total calls are correct—
and the 249 incorrect assignments are equally likely to be
false negative or false positive associations (Table 4). In
contrast, alignment of reads to the reference transcriptome
results in 10% fewer correct assignments—only 13,250 of
15,027 total calls are correct—and most incorrect assign-
ments result in false positive eQTL. Protein-coding genes
are the predominant gene biotype in the simulated data set
and as such account for most of the eQTL call improvements
observed from the individualized alignment strategy (Table
S7). Alignment to individualized transcriptomes improves
eQTL call accuracy for all gene biotypes that exhibit eQTL
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Figure 2 Read alignment to an individualized diploid transcriptome yields
accurate allelic abundance estimates. Estimated allele frequency (y-axis) is
plotted against the ground-truth allele frequency (x-axis) for 5270 genes
in the simulated data set of 10 million DO reads that were robustly expressed
(sum of allele counts =100) and had at least 5 uniquely aligned reads that
differentiated the two gene alleles. Allele-level gene abundances are strongly
correlated to the ground-truth values (r = 0.82), with the estimated frequency
of the lower-expressed allele differing on average by <7% (median = 4%)
from the ground-truth value. Most genes have a ground truth and estimated
allele frequency near 0.5 (red and orange regions), and some estimates show
absolute allele-specific expression (i.e., 0 or 1) while the ground truth is some-
where in between (horizontal lines of dots at top and bottom).

differences from alignment strategy in the simulation;
pseudogenes in particular are sensitive to false positive
distant eQTL when aligned to the reference transcriptome
(see explanation below). A comprehensive summary of the
eQTL simulation results can be found in Table S8.

eQTL mapping on real data: We compared eQTL mapping
on real liver RNA-seq data from 277 DO mice aligned to the
NCBIM37 reference and to individualized DO transcriptomes.
We identified significant local eQTL for 53% of expressed
genes (8997 of 16,985 genes expressed above threshold;
FDR = 1%) after alignment to individualized transcriptomes.
Only 40% of expressed genes (6797 of 17,125 genes; FDR =
1%) had significant local eQTL after alignment to NCBIM37.
For 2900 genes, a local eQTL is revealed only after alignment
to individualized transcriptomes (Figure 4A). Among the 6097
local eQTL that are identified by both alignment strategies,
most increase in significance from individualized alignments
(Figure 4B). Individualized alignment improves the mapping
resolution of local eQTL. Half of the 8997 significant local
eQTL map within 372 kb of the midpoint of the gene they
control (Table S9), compared to 428 kb for the 6767 local
eQTL mapped in the NCBIM37 alignment (Table S10).
Significant distant eQTL are less common than strong
local associations, accounting for 12% of the total eQTL

(n = 931/7698; FDR = 1%) from alignment to NCBIM37
(Table S9) and 9% of total eQTL (n = 887/9884; FDR =
1%) from alignment to individualized transcriptomes (Table
S10). Moreover, we find that many of the most highly sig-
nificant distant eQTL are spurious and arise from alignment
errors in NCBIM37. For example, after alignment to
NCBIM37, expression of the pseudogene Rps12-ps2 (located
on Chr 14) appears to be controlled by a distant regulator on
Chr 10 at the location of the Rpsi2 protein coding gene
(Figure 4C). DO animals that are CAST or PWK in the Chr
10 eQTL region exhibit apparently higher expression of
Rps12-ps2 (Figure S2A). Alignment of DO samples to indi-
vidualized transcriptomes eliminates the distant eQTL for
Rps12-ps2 (Figure 4C and Figure S2B) and also eliminates
a local eQTL peak at Rps12 that showed a mirror-image
pattern of allele effects. CAST- and PWK-derived reads in
the individualized transcriptome align to the parent gene Rps12
rather than to the retrotransposed pseudogene Rps12-ps2.

Concordance between inferred founder allele effects in
the DO and observed expression patterns in the founder
strains provides additional evidence in support of local
eQTL. RNA-seq was performed on 128 male liver samples
from the eight DO founder strains. We aligned reads to strain-
specific transcriptomes and estimated gene-level abundance,
following the same procedure as above. For example, the long
noncoding RNA (lincRNA) Gm12976 is associated with a local
eQTL on Chr 4 and with a distant eQTL on Chr 3 only after
alignment to individualized transcriptomes (Figure 5A). DO
animals with the chromosome 4 region derived from the
129S1/SvIimJ founder strain show higher expression of
Gm12976 (Figure 5A, inset). Allele-specific estimates of
gene expression demonstrate that this local eQTL is acting
in cis through expression of 129S1-derived alleles in the
DO animals (Figure 5B). We observed this same pattern
of expression in the eight founder strains (Figure 5C),
and we observe high concordance overall between expression
in the founder strains and founder allele estimates in the DO
for genes with significant local eQTL (Figure S3).

Discussion

RNA-seq is a robust and highly informative technology;
however, the increase in information content comes with
increased analytical complexity. We have demonstrated that
alignment of RNA-seq reads to a reference genome can
result in biased transcript abundance estimates, much in the
same way that a reference-based probe design can bias
hybridization of genetically diverse samples to microarrays
(Walter et al. 2007). Mismatch tolerance in the alignment
algorithm can increase the number of reads that align in the
presence of sequencing errors or genetic variation. However,
error tolerance will also increase the frequency of misalign-
ment to gene family members and pseudogenes. This problem
is amplified in genetically diverse multiparent populations like
the outbred DO stock and inbred Collaborative Cross (CC)
strains. We have experimented with many different alignment
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Figure 3 Gene-level abundance estimates in real data are improved by the individualized alignment strategy. (A) Gene-level abundance estimates are
plotted for one CAST sample after alignment to the NCBIM37 (x-axis) and CAST transcriptomes (y-axis). Points are colored based on the difference
between alignments and the results of the simulation study (n = 11,964 total genes). Gray circles denote genes with abundance estimates that differ by
<10% between alignment strategies (n = 8980). Green denotes genes that differ in the real data by >10% between alignment strategies and for which
the alignment to CAST improved the abundance estimate in the simulation study (n = 2242). Red denotes genes that differ by >10% in the real data
and for which alignment to NCBIM37 improved the abundance estimate in the simulation study (n = 439). Black denotes genes that differ by >10% in
the real data but for which the two alignment strategies yielded the same abundance estimates in the simulation study (n = 71). (B) The differences in
gene-level abundance estimates between alignment strategies in the real CAST data are plotted as a stacked histogram. The percentage of difference
between CAST and NCBIM37 alignments is plotted on the x-axis, and the total number of genes with that difference is plotted on the y-axis. The same
coloring conventions are used as in A. White bars denote genes that differ by >10% in the real data but that were not expressed above threshold in the
simulated data set (n = 232). Differences were scaled to a maximum value of 100%. (C) Gene-level abundance estimates are plotted for one DO sample
after read alignment to the NCBIM37 (x-axis) and individualized transcriptomes (y-axis). A total of 714 genes in the real data differ by >10% between
alignment strategies (n = 714/12,248), of which 432 gene estimates were improved by alignment to the individualized transcriptome in the simulation
study (green circles), 124 were improved by alignment to NCBIM37 in the simulation (red circles), and 16 yielded the same gene estimate by both
alignment strategies in the simulation study (black circles). (D) The difference in gene-level abundance estimates between alignment strategies in the real
DO data are plotted as a stacked histogram. The percentage of difference between DO and NCBIM37 alignment is plotted on the x-axis, and the total
number of genes with that difference is plotted on the y-axis. The same coloring conventions are used as in C. White bars denote genes that differ by
>10% in the real data but that were not expressed above threshold in the simulation study (n = 142).

tools and consistently found the same problems in our eQTL  genetic regulatory information that was masked by align-
mapping. While some alignment problems remain, the intro- ment to the reference sequence.

duction of individual genome sequences corrects the majority Our knowledge of the genomes of the DO founder strains,
of obvious anomalies and reveals a surprising amount of especially the wild-derived strains, remains incomplete. These
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genomes were assembled by alignment of short DNA sequence
reads to the mouse reference genome as a first step in
identifying SNPs, indels, and structural variants (Keane et al.
2011). However, comprehensive elucidation of these genomes
encompassing copy number variation and large-scale rear-
rangements will require de novo assembly from longer reads/
fragments (e.g., mate pair sequences) and optical mapping.
Similarly, we lack a comprehensive understanding of differen-
ces in transcription and splicing among these strains. In this
study we restricted our focus to the reference set of Ensembl
gene annotations largely derived from B6, with the under-
standing that this may not reflect some of the most important
differences between highly diverse founder strains. We find
evidence for this inadequacy by comparing the alignment sum-
mary statistics for B6 and CAST liver samples aligned to their
respective strain-specific transcriptomes. Compared to CAST,
more B6 reads align with fewer mismatches to fewer positions
in the transcriptome, resulting in increased alignment specific-
ity. A similar number of reads from CAST yield nearly twice as
many valid alignments, and relaxing the aligner settings does
not correct this problem (data not shown). We developed
Seqgnature software and the associated analysis pipeline as a
first step toward maximizing the power and utility of sequenc-
ing technologies in multiparent mapping populations. As we
learn more about the structure of the founder genomes and
transcriptomes, this knowledge can be incorporated to produce
more accurate representations of the individual transcriptomes
sampled in our study. Alignment to individualized genomes
presents a challenge for comparison and visualization of sam-
ple alignments; however, new tools make conversion back to
reference genome coordinates straightforward (Huang et al.
2013).

For many genes, estimates of transcript abundance are
relatively unaffected by alignment strategy. For example,
75% of expressed genes in CAST (n = 8980/ 11,964) have
gene abundance estimates that differ by <10% after align-
ment to NCBIM37 and CAST, and most (n = 6855/ 11,964)
differ by <5%. The subset of genes most sensitive to align-
ment method in real data consists primarily of closely related
gene families and protein-coding genes with retrotransposed
pseudogenes. Our simulations confirmed that pseudogenes
can act as “read sinks” that shunt significant numbers of reads
away from the protein-coding parent gene. Pseudogenes have
long been considered functionless evolutionary relics; how-
ever, recent evidence suggests that some are actively tran-
scribed and play critical roles in gene regulation (Zheng
and Gerstein 2007; Muro et al. 2011; Poliseno 2012). There
is not a clear delineation among gene, gene family, and pseu-
dogene, and we feel that it is better to obtain accurate read
alignments than to mask regions of low genomic mappability
in the reference or apply a post hoc filtering based on gene
annotations. After an individual’s genetic variation is included
in the alignment, particularly in the parent gene, many of
these reads will align uniquely to the parent gene and be
weighted accordingly by the EM algorithm (Figure S4 and
Figure S5).

Table 4 Comparison of gene expression QTL (eQTL) from simulated
DO RNA-seq data aligned to individualized or GRCm38 reference
transcriptome

Aligned to

Assignment individualized Aligned to GRCm38

Correct assignment
Local eQTL (n = 6,437) 6,349 5,973
Distant eQTL (n = 596) 540 438

No eQTL (n = 7,994) 7,889 6,839

Total correct (%) 14,778 (98.3) 13,250 (88.2)
Incorrect assignment

False negative 128 508

False positive, local 64 1,086

False positive, distant 57 183

Total incorrect (%) 249 (1.7) 1,777 (11.8)

Thirty million 100-bp RNA-seq reads were simulated from 277 DO genomes. eQTL
mapping on the simulated gene expression values yields 7033 significant
associations, including 6437 local and 596 distant eQTL, as well 7994 genes with
no significant eQTL. Alignment of simulated DO reads to individualized tran-
scriptomes improves the accuracy of eQTL mapping relative to alignment to
GRCm38.

We have demonstrated that alignment to an individual-
ized transcriptome is required to obtain accurate estimates
of gene-level abundance when RNA is sequenced in genet-
ically diverse samples. Many studies attempt to bypass this
requirement by aligning reads to a common reference and
discarding reads that do not align to a unique location
(Lappalainen et al. 2013; Battle et al. 2014). However, it is
clear from our analysis that many reads align uniquely in the
individualized genome but align to multiple locations or fail
to align to the reference genome—these highly informative
reads would be discarded after alignment to the reference.
Moreover, our results confirm published reports that relative
gene abundance estimates based solely on unique read
counts are biased—genes composed primarily of unique
sequence are overestimated while genes with closely
related pseudogenes or family members are underestimated
(Mortazavi et al. 2008; Li and Dewey 2011). The inclusion
of multireads adds complexity to the abundance estimation
problem but EM algorithms are well suited to this task (Li
and Dewey 2011; Nicolae et al. 2011; Turro et al. 2011;
Roberts and Pachter 2013).

Read alignment to individualized transcriptomes improves
estimation of isoform abundance; however, isoform-level
resolution remains challenging due to splicing complexity,
shared exon sequence, and the short length of reads from
current sequencing platforms. Forty percent of mouse genes
have multiple isoforms (n = 15,079/37,991 genes; median =
4 isoforms) that share substantial exon sequence. Most 100-bp
reads align equally well to multiple gene isoforms and in the
absence of unique isoform reads the EM algorithm cannot
assign isoform reads to a single isoform with any confidence
(Table S11). Paired-end sequencing produces modest improve-
ments in isoform quantification (Table S12); however, in our
experience current enzymatic fragmentation protocols yield
fragments that are too short to provide a clear benefit from
paired-end sequences. Longer fragments and reads will
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Figure 4 Alignment of Diversity Outbred mice to individualized transcriptomes (DO IRGs) reveals significant local eQTL and reduces the number of
spurious pseudogene eQTL. (A) An example of a local eQTL unmasked by alignment to individualized transcriptomes. Expression estimates for Hebp1 do
not appear linked to local genotype when reads are aligned to the common reference (red line). Accounting for individual genetic variation in the
alignment step uncovers a strong local eQTL with a peak centered at the gene (blue line; black arrow denotes gene location). (B) Venn diagram showing
the overlap of local eQTL from the individualized or common reference alignment strategy. Local eQTL are identified for a majority of expressed genes by
one or both alignment strategies. Alignment to individualized transcriptomes (DO IRGs) identifies 2900 novel local associations. Even in the case of the
6097 local eQTL that are identified as significant by both alignments (overlapping region), LOD significance scores are generally higher after alignment
to individualized transcriptomes (y-axis in scatterplot) compared to NCBIM37 (x-axis). (C) Alignment to individualized transcriptomes reduces the number
of spurious distant eQTL at pseudogenes. Accounting for segregating founder strain polymorphisms in the parent protein-coding gene Rps72 ablates
the distant Chr 10 eQTL peak for the pseudogene Rps72-ps2 (compare blue to red lines) located on Chr 14.

improve isoform resolution in the future, but we found
that summarization at the gene level with 100-bp single-
end reads is robust.

Alignment to individualized transcriptomes yields new
insights into gene regulation in multiparent populations. For
example, by aligning reads from DO mice to a single search
space that includes individualized sequences of both alleles
for every annotated isoform, our analysis approach provides
direct estimates of allele-specific expression. By simulation,
we have shown that 10 unique allele-level read alignments
provide enough specificity to accurately estimate allele-
specific gene expression and that sequencing to a depth of
30 million is sufficient for 5000+ genes to meet this
threshold in a DO sample. The Seqnature software and
analysis approach can be applied to other next generation
sequencing technologies such as Chip-seq to identify allelic
differences in transcription factor occupancy (Reddy et al.
2012) or DNase I sensitivity mapping to identify allele-
specific chromatin activation (Degner et al. 2012).

Previous eQTL studies in genetically diverse populations
suggest that the most significant eQTL tend to be local
(Rockman and Kruglyak 2006; Pickrell et al. 2010; Aylor
et al. 2011; Lappalainen et al. 2013). Gene prioritization
methods are becoming more important in the genome-wide
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association studies (GWAS) era (Hou and Zhao 2013), and
genes with local eQTL are promising candidates for under-
lying disease-associated regions in human GWAS studies
(Knight 2005; Chen et al. 2008; Emilsson et al. 2008;
Musunuru et al. 2010; Hou and Zhao 2013; Li et al
2013). An eQTL may arise from any of several biological
mechanisms, including rate of transcription, rate of degre-
dation, or processing of RNA intermediates. The eQTL
reflects a difference in abundance of the transcript that is
associated with a marker locus but does not necessarily
identify the mechanism. We have shown with simulated
and real RNA-seq data that incorporation of individual ge-
netic variation at the alignment step is critical to all down-
stream analyses in high throughput sequencing studies
including eQTL identification. Alignment of short sequence
reads from genetically diverse individuals to a common ref-
erence, as has been done in most previous RNA-seq studies
(Landt et al. 2012), will cause spurious eQTL associations
and mask real associations. In our study, eQTL mapping with
gene abundance estimates derived from read alignment to
the reference transcriptome missed nearly 3000 significant
local eQTL associations. Importantly, all sequencing applica-
tions will be sensitive to these alignment errors. Thus
a causal variant that manifests as a local eQTL may be
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Figure 5 Liver expression patterns observed in the DO founder strains suggest that novel local eQTL are real. (A) Alignment to individualized tran-
scriptomes (DO IRGs, blue line) reveals a strong local eQTL for the lincRNA Gm12976 on Chr 4. The eight founder strain coefficients inferred from the
additive mapping model are plotted in the inset and show that DO animals that derive this region of Chr 4 from the 12951/SvimJ strain have higher
expression of Gm12976. (B) Allele-level abundance estimates in the DO population show that the 12951 allele of Gm12976 is high expressing,
confirming that the local eQTL is due to cis-acting variation. Founder strain origin is listed on the x-axis, and Gm12976 allelic abundance (upper quartile
normalized, square-root transformed) is plotted on the y-axis. (C) This inferred DO strain pattern of Gm12976 expression is concordant with that
observed in the eight founder strains. Strains are listed on the x-axis, and Gm12976 abundance (upper quartile normalized, square-root transformed) is

plotted on the y-axis.

obscured by the common reference alignment approach.
Gene prioritization strategies that utilize sequence data an-
alyzed by the common reference approach will fail to iden-
tify these variants. Conversely, our simulation study shows
that alignment errors to the reference transcriptome can
sensitize a large group of genes to false positive local eQTL.
In summary; failure to incorporate individual genetic variation
at the alignment step will adversely affect read alignment and
consequent analyses such as abundance estimation, eQTL iden-
tification, and eQTL fine-mapping. We have developed Seq-
nature and the associated analysis pipeline to be flexible
with respect to species and type of sequencing application
to support a broad array of experiments in genetically het-
erogeneous populations.

Data accession

Individualized genomes and annotation files for the DO
founder strains A/J, 129S1/SvimJ, NOD/ShiLtJ, NZO/HILtJ,
CAST, PWK/PhJ, and WSB/EiJ, as well as the unmodified

NCBIM37 (~B6) reference genome and Ensembl v67 gene
annotation files, are available for download at http://cgd.jax.
org/tools/Seqnature.shtml. The Seqnature software for con-
structing individualized genomes and gene annotation files
is available for download at https://github.com/jaxcs/Seqnature.
Simulation data are available at http://cgd.jax.org/tools/
Segnature.shtml. Raw RNA-seq fastq files and processed
gene-level data are archived at Gene Expression Omnibus under
accession no. GSE45684.
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File S1
Supplemental Methods
Simulation parameters
RNA-seq reads were simulated from the CAST inbred strain and from a reconstructed DO individual using the Flux Simulator

(version 1.2) and the parameters below.

Command line argument: flux-simulator —Isp Parameter_filename.txt
Single-end sequence parameters

REF_FILE_NAME path/to/Gene_annotations.gtf
GEN_DIR path/to/Genome.fa
LIB_FILE_NAME filename.lib

SEQ_FILE_NAME filename.bed
PRO_FILE_NAME filename.pro

RT_PRIMER PDT

READ_NUMBER 10000000 (or 30000000)
READ_LENGTH 100

FILTERING true
SIZE_DISTRIBUTION N(280,50)
FASTA true
TSS_MEAN NaN
POLYA_SCALE NaN
POLYA_SHAPE NaN
ERR_FILE 76

Paired-end sequence parameters

REF_FILE_NAME path/to/Gene_annotations.gtf
GEN_DIR path/to/Genome.fa
LIB_FILE_NAME filename.lib

SEQ_FILE_NAME filename.bed
PRO_FILE_NAME filename.pro

RT_PRIMER PDT

READ_NUMBER 60000000

READ_LENGTH 100

PAIRED_END YES
FILTERING true
SIZE_DISTRIBUTION N(280,50)
FASTA true
TSS_MEAN NaN
POLYA_SCALE NaN
POLYA_SHAPE NaN
ERR_FILE 76
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Table S1 Isoform-level summary of read alignment in the simulated CAST data

Aligned to CAST
Incorrect Unique Reads 1,378 1 4 11,721 2,725 15,829
_43 "g Incorrect Multireads 3 5,842 2 8,713 492 15,052
2 = Unmapped Reads 52 1,708,356 191,919 222,222 2,123,597
%n g Correct Multireads 145 4,378,338 10,739 4,389,299
Correct Unique Reads 5,075 3,450,918 3,456,146
Total 1,445 5,959 1,708,657 4,595,766 3,687,096 9,999,923

The simulated reads were aligned to the NCBIM37 and CAST transcriptomes. Reads that improve by alignment to CAST are
highlighted in green, with those that improve by two or more categories are highlighted in dark green. Reads that improve by
alignment to NCBIM37 are highlighted in red, with those that improve by two or more categories highlighted in dark red. Reads
on the diagonal align equivalently by both strategies.

28l S. C. Munger et al.



Table S2 List of genes from the CAST simulation that were affected by read misalignment or alignment failure from the
reference alignment strategy

Three lists of genes are included in the attached table. The first list shows genes for which simulated CAST reads align uniquely
but falsely in the NCBIM37 transcriptome. Alignment to the CAST transcriptome rescues these reads to their correct, unique
origin (second list). The third list shows genes from which reads fail to align at all in the NCBIM37 transcriptome but align to the
correct, unique position in the CAST transcriptome.

Table S2 is available for download as a MS Excel file at
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.165886/-/DC1
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Table S3 Comparison of gene-level abundance results from alignment of 30 million simulated CAST reads to NCBIM37 and
CAST transcriptomes

Number of genes with estimates x% from Ground Truth

Mismatches Genes above

Aligned to Allowed threshold <5% <10% > 10% > 50%
30M CAST Reads

NCBIM37 3 13,848 3,701 7,850 (57%) 5,998 (43%) 654
CAST 3 13,756 10,040 11,939 (87%) 1,794 (13%) 272
NCBIM37 0 13,788 1,535 3,127 (23%) 10,661 (77%) 2,082
CAST 0 13,738 9,322 11,325 (82%) 2,386 (18%) 259

Alignment of 30 million simulated CAST reads to the individualized CAST transcriptome (<3 mismatches) results in nearly three
times as many gene estimates (N= +6,339) that fall within 5% of ground truth value and fewer than a third as many gene
estimates (N=-4,204) that deviate more than 10% from the ground truth. Gene-level abundance results for perfect matching
reads (i.e. 0 mismatches) are also shown.

45l S. C. Munger et al.



Table S4 List of genes from the DO simulation that were affected by read misalignment or alignment failure from the
reference alignment strategy

Three lists of genes are included in the attached table. The first list shows genes for which simulated DO reads align uniquely
but falsely in the NCBIM37 transcriptome. Alignment to the DO transcriptome rescues these reads to their correct, unique
origin (second list). The third list shows genes from which reads fail to align at all in the NCBIM37 transcriptome but align to the
correct, unique position in the DO transcriptome.

Table S4 is available for download as a MS Excel file at
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.165886/-/DC1
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Table S5 Comparison of gene-level abundance results from alignment of 30 million simulated DO reads to NCBIM37 and
individualized DO transcriptomes

Number of genes with estimates x% from Ground Truth

Mismatches Genes above

Aligned to Allowed threshold <5% <10% > 10% > 50%
30M DO Reads

NCBIM37 3 13,260 7,371 10,995 (83%) 2,265 (17%) 355
DO IRG 3 13,209 9,829 11,696 (89%) 1,501 (11%) 262
NCBIM37 0 13,222 2,301 4,800 (36%) 8,422 (64%) 728
DO IRG 0 13,196 9,136 11,169 (85%) 2,012 (15%) 249

Gene estimates in the simulated DO sample are improved by read alignment to the individualized transcriptome (<3
mismatches), yielding 33% more gene estimates (N= +2,458) within 5% of the ground truth value and 34% fewer estimates (N= -
764) that deviate more than 10% from the ground truth. Gene-level abundance results for perfect matching reads (i.e. 0
mismatches) are also shown.
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>
w

e | . . m e | .
. 10M reads . 30M reads
8 ., | Min5unique 8 . | Min 5 unique
© o | M o |
£ . E
7 k7
W | U |
> ° > °
o (8]
c =
S S
= -
T o 7 T o
o o
L L
2 Qo
9 3 9 3
< <<
3 r=0.82 S r=0.85
| 1 I I 1 I I I 1 I I |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Allele Frequency (GT) Allele Frequency (GT)

(g)
o

= =
~ | 10M reads | 30M reads .
5 Min 10 unique =) Min 10 unique .
L x| D o |
© o w o
E E
D 7]
Weo Yo |
(=] - o
3 3
c c
o o
=3 = = =+ _|
O oc 7 T o
o P
w L
(3] )
R © 3
< <
= r=0.84 g r=0.88
| I I I T I I I I T | I
0.0 0.2 0.4 08 08 1.0 0.0 0.2 04 06 0.8 1.0
Allele Frequency (GT) Allele Frequency (GT)

Figure S1 Characterization of sequencing depth and unique read threshold on estimation of allele-specific expression.
Estimated allele frequency (y-axis) is plotted in panels A-D against the ground truth allele frequency (x-axis) for robustly
expressed genes (sum of allele counts > 100) in the simulated DO dataset. Allele frequency estimates are improved by
increasing the read depth from 10 million (panels A and C) to 30 million reads (panels B and D) and by increasing the gene
inclusion stringency to require ten (panels C and D) rather than five (panels A and B) reads with unique allele alignments.
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Table S6 Alignment statistics for real CAST and DO liver RNA-seq data

Liver Sample CAST/EiJ Male DO Male

Total Reads 11,795,344 15,637,635

Reads with valid alignments (<3MM)
Alignment to NCBIm37/Ensembl.v67 transcripts 8,832,341 (74.9%) 12,906,790 (82.5%)
Alignment to strain/sample-specific transcripts 9,085,246 (77.0%) 13,058,015 (83.5%)
Difference (Individualized - NCBIM37)  +252 905 (2.1%) +151,225 (1.0%)

Reads with perfect matches (0OMM)
Alignment to NCBIM37/Ensembl.v67 transcripts 4,201,180 (35.6%) 7,645,880 (48.9%)
Alignment to strain/sample-specific transcripts 5,183,409 (43.9%) 8,350,402 (53.4%)
Difference (Individualized - NCBIM37)  +982 229 (8.3%) +704,522 (4.5%)

Total valid alignments to the transcriptome

Alignment to NCBIM37/Ensembl.v67 transcripts 45,607,883 106.584 022"
Alignment to strain/sample-specific transcripts 46,131,288 103,687,674
Difference (Individualized - NCBIM37) +523,405 -2,896,348

Bowtie (version 0.12.8) parameters: -v 3 -a -m --best --strata

1 For comparison to the diploid transcriptome alignments in DO samples, the total number of alighments to NCBIM37 were
scaled by 2x.

Alignment of real data to individualized CAST- or DO-specific transcriptomes yields more reads with valid alignments (< 3

mismatches (MM)), and significantly more reads with perfect (0 MM) alignments. Reads align with greater specificity (i.e. fewer
alignments per mapped read) to individualized transcriptomes than to NCBIM37.
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Table S7 eQTL simulation summary showing the classification of eQTL calls that differ between alignment strategies

differentiated by gene biotype

Correct Calls Incorrect Calls
False False Positive False Positive

Gene Biotype True Local True Distant True No eQTL Negative Local Distant
Antisense 2 3 15 -2 -16 -2
IG_C_gene 0 0 1 0 -1 0
lincRNA 6 3 15 -7 -15 -2
misc_RNA 2 0 2 -2 -1 -1
Mt_rRNA 0 0 0 0 0 0
non_coding 0 0 0 0 0 0
polymorphic pseudogene 1 0 0 -1 0 0
processed_transcript 3 0 2 -3 -2 0
protein_coding 336 94 981 -353 -980 -78
pseudogene 23 3 32 -10 -7 -41
retrotransposed 3 -1 1 -2 1 -2
sense_intronic 0 0 1 0 -1 0
sense_overlapping 0 0 0 0 0 0
snoRNA 0 0 0 0 0 0
Total 376 102 1050 -380 -1022 -126

Choice of read alignment strategy affects ten percent of genes (n = 1,528/15,027 total) in our simulation study. Alignment to
individualized DO transcriptomes yields the correct eQTL assignment for all but one gene with a discordant call. Many gene
biotypes yield incorrect eQTL calls after alignment to GRCm38 but pseudogenes in particular appear to be sensitive to false

positive distant associations.

S. C. Munger et al.

93l



Table S8 Gene-level summary of eQTL simulation results

Columns 1-7 give information for the expressed gene, columns 8-10 show the SNP identifier and location for the marker with
the highest LOD score in the simulation, and columns 11-13 provide details of the simulated eQTL including LOD score, p-value,
and eQTL class (e.g., significant local or distant eQTL, no eQTL). Columns 14-19 show the eQTL mapping results after alignment
of the simulated reads to the GRCm38 reference transcriptome. Column 18 shows the eQTL assignment relative to the
simulated ground truth, and Column 19 lists whether the peak SNP associated with gene expression after alignment to GRCm38
matches the simulated peak SNP. Columns 20-25 show the same classes of eQTL data but after alignment of the simulated
reads to individualized DO transcriptomes.

TableS8 is available for download as a MS Excel file at
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.165886/-/DC1
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Table S9 List of eQTL from alignment to individualized DO transcriptomes
Columns 1-6 give information for the expressed gene, columns 7-9 show the SNP identifier and location for the marker with the
highest LOD score, and columns 10-13 provide details of the eQTL including LOD score, raw p-value, adjusted g-value, and

position relative to the controlled transcript (i.e. local or distal eQTL).

TableS9 is available for download as a tab-delimited text file at
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.165886/-/DC1
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Table S10 List of eQTL from alignment to NCBIM37

Columns 1-6 give information for the expressed gene, columns 7-9 show the SNP identifier and location for the marker with the
highest LOD score, and columns 10-13 provide details of the eQTL including LOD score, raw p-value, adjusted g-value, and
position relative to the controlled transcript (i.e. local or distal eQTL).

TableS10 is available for download as a tab-delimited text file at
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.165886/-/DC1

12 SI S. C. Munger et al.
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Figure S2  Comparison of Chromosome 10 founder coefficient plots for Rps12-ps2 expression derived from alignment to
NCBIM37 or individualized DO transcriptomes. Read alignment to individualized DO transcriptomes ameliorates spurious
alignments to pseudogenes. When DO reads are aligned to the NCBIM37 reference transcriptome (A), it appears that DO
animals that derive the Chr 10 region from CAST or PWK have higher expression of the pseudogene Rps12-ps2. When individual
genetic variation is accounted for in the alignment (B), the CAST- and PWK-derived reads align preferentially to the parent
protein coding gene Rps12, and the spurious Rps12-ps2 eQTL is eliminated.
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Figure S3 Comparison of gene-level expression in Founder strain samples and founder allele-level estimates in the DO samples
for genes with and without significant local eQTL after alignment to individualized genomes. Pearson correlations between
founder strain expression and founder allele estimates in the DO population are plotted as a histogram above. Founder allele
estimates for genes with significant local eQTL (n=8,981 genes, shown in pink) exhibit higher concordance to gene-level liver
expression in Founder strain samples compared to genes that do not have significant local eQTL (n=7,893 genes, shown in
blue).
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Table S11 Isoform abundance results in CAST simulation study

10 Million Simulated CAST reads

Number of isoforms with estimates x% from Ground Truth

Mismatches Isoforms above

Aligned to Allowed threshold < 5% <10% > 10% > 50%
NCBIM37 3 21,568 3,908 6,581 (30%) 14,987 (70%) 7,096
CAST 3 21,457 3,244 7,796 (36%) 13,661 (64%) 6,551
NCBIM37 0 21,363 1,393 2,883 (13%) 18,480 (87%) 9,488
CAST 0 21,222 1,998 5,089 (24%) 16,133 (76%) 6,540

30 Million Simulated CAST reads

Number of isoforms with estimates x% from Ground Truth

Mismatches Isoforms above

Aligned to Allowed threshold < 5% <10% >10% > 50%
NCBIM37 3 27,048 3,600 7,217 (27%) 19,831 (73%) 9,821
CAST 3 26,910 6,685 9,951 (37%) 16,959 (63%) 9,031
NCBIM37 0 26,909 1,765 3,454 (13%) 23,455 (87%) 12,748
CAST 0 26,695 6,792 9,578 (36%) 17,013 (64%) 8,821

Alignment of simulated CAST reads to the individualized CAST transcriptome (<3 mismatches) improves estimates of isoform
abundance compared to alignment to NCBIM37. Increasing the sequencing depth from 10 to 30 million single-end reads
significantly does not improve isoform resolution — more isoform estimates fall within five percent of the simulated ground
truth but the total number of isoforms expressed above threshold increases too, causing no relative improvement in the
accuracy of isoform abundance estimates. Isoform-level abundance results for perfect matching reads (i.e. 0 mismatches) are

also shown.

S. C. Munger et al.
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Table S12 Comparison of isoform abundance results in CAST simulation study from using paired-end or single-end
sequencing

30 Million Simulated CAST Reads
Number of isoforms with estimates x% from Ground Truth

Mismatches Isoforms above

PE/SE? Alignedto  Allowed threshold <5% <10% >10% >50%
Paired-End CAST 3 26,735 9,988 (37.4%) 11,977 (44.8%) 14,758 (55.2%) 7,497 (28.0%)
Single-End CAST 3 28,331 8,911 (31.5%) 10,895 (38.5%) 17,436 (61.5%) 10,266 (36.2%)

Paired-end sequencing yields modest improvements in isoform abundance estimation relative to single-end reads. For example,
45% of isoform estimates fall within ten percent of the simulated ground truth value in the analysis of paired-end reads,
compared to 39% for single-end reads.
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Figure S4
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Figure S4 (continued)
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Figure S4 (continued)
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Figure S4 Strain polymorphisms between NCBIM37 and CAST in Ft/1 and Ft/2 transcript sequences can bias alignment of CAST-
derived Ft/1 reads. (A) Multiple alignment of Ft/1-001 and Ft/2-001 transcript sequences from NCBIM37 and the individualized
CAST genomes. Variation in Ft/1/Ftl2 abundance estimates in CAST liver RNA-seq stems mainly from 3-4 SNPs (starred). (B)
Schematic showing how CAST polymorphisms in RNA-seq reads can cause misalignments in NCBIM37. CAST Ft/1 reads that
overlap any of these SNPs will align preferentially to Ft/2 if aligned to NCBIM37 (upper panel). Accounting for CAST strain
variation in Ft/1 reduces spurious alignments to the Ft/2 pseudogene (lower panel).
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Figure S5

a
Ft'1 -001 -l]lv -l- . s —l- g -l- l-lTn
=
Aligned to
NCBIM37
Coverage | |
Aligned to
CAST/EiJ
!
W
205! S. C. Munger et al.




Figure S5 (continued)
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Figure S5 Coverage of CAST reads to Ft/1 and Ft/2 transcript sequences derived from the NCBIM37 reference genome and
individualized CAST genome. Coverage plots show the distribution of CAST RNA-seq read alignments to Ft/1-001 (A) and Ft/2-
001 (B) from alignment to each of the NCBIM37 reference and individualized CAST transcriptomes. Read coverage density (log
transformed) is displayed at the top of each panel. For individual aligned reads, read color corresponds to orientation (red =
forward strand, blue = reverse strand) and posterior probability. Gray reads have low probability of being transcribed from the
aligned transcript location (as estimated by RSEM), while blue/red indicates reads that have been assigned high posterior
probabilities. The red arrows point to SNPs in the CAST reads that differ from NCBIM37. Accounting for these CAST SNPs in the
alignment diverts many reads from the Ft/2 pseudogene to the parent protein-coding gene Ft/1.
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