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Abstract. The Journal of Alzheimer’s Disease (JAD), founded in 1998, played a pivotal role in broadening the field of research
on Alzheimer’s disease (AD) by publishing a diverse range of clinical, pathological, molecular, biochemical, epidemiological,
experimental, and review articles from its birth. This article recounts my own journey as an author who contributed articles to
JAD over the 20 years of the journal’s existence. In retrospect, it seems remarkable that a considerable body of work that orig-
inated from our group marks a trail that began with studies of vascular, stress, and mitochondrial factors in AD pathogenesis,
exploded into the concept of ‘Type 3 Diabetes’, and continued with the characterization of how environmental, exposure, and
lifestyle factors promote neurodegeneration and which therapeutic strategies could reverse the neurodegeneration cascade.
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HINDSIGHT-20/20

In 1998, the birth of the Journal of Alzheimer’s
Disease (JAD) as a hub for publishing reports
based on new concepts that did not necessarily fall
in line with tightly controlled mainstream theories
felt tantamount to granting 1st amendment rights
to biomedical scientists studying neurodegenera-
tion. JAD was founded before open-access journals
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entered the stage, and at a time when it was difficult to
publish data supporting alternative pathogenic mech-
anisms of Alzheimer’s disease (AD), i.e., concepts
that were unrelated to either the amyloid or tau
hypothesis. Without publications, there can be no
funding. Without funding, research cannot be pursued
and participation in the peer-review process of fund-
ing is virtually impossible. Thus, the peer-reviewed
free spirit publication concept linked to JAD from
its inception was critical for broadening research and
publicizing a range of viable concepts on the patho-
genesis and potential diagnostics and treatments of
AD. Sadly, the virtually closed shop strategy of the
then standard print journals, set the field behind and
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restricted the conceptual breadth of young scientists
interested in studying AD. The dominant hypothesis
then and now is that AD is caused by the aging brain’s
propensity to abnormally accumulate and aggregate
hyperphosphorylated tau (pTau) and amyloid-� (A�)
peptides. The logical extension of this concept is to
conclude that if the brain could be rid of those men-
acing molecules, AD would be cured. However, the
outcomes of clinical trials indicate otherwise. Despite
non-trivial flaws, the emergence of open-access sci-
entific journals provided an additional boost to the
diversification of AD research. Nonetheless, credit
for leadership in this domain should be given to JAD.
JAD took time to gain traction, in part due to the lack
of indexing in PubMed, but also the perception that
JAD was not on par with the more established jour-
nals. A great deal of credit for the eventual success
of JAD should be attributed to George Perry, Mark
Smith, and the associate editors. By encouraging sub-
mission of conceptually diverse manuscripts on AD
research, they expanded the content of JAD and suc-
ceeded in generating 12 regular monthly issues per
year. Giving the cover a make-over also helped with
JAD’s re-branding. Over the years, JAD’s table of
contents section repeatedly showed balance and com-
mitment to publishing both human and experimental
model data that covered various aspects of neurode-
generation.

VASCULOPATHY, OXIDATIVE STRESS,
AND MITOCHONDRIAL DYSFUNCTION
IN AD

One of our earliest publications in JAD showed that
cerebrovascular lesions ranging from small infarcts to
leukoaraiosis were responsible for pushing subclini-
cal AD pathology to clinically manifested dementia
with features that were indistinguishable from bone
fide AD [1]. Although that work was not well
accepted when presented at a national meeting, it was
nonetheless awarded the first Alzheimer Award, an
honor bestowed annually by editorial board members
for the best publication in JAD. Today, the concept
that cerebrovascular disease contributes to AD has
gained considerable traction. Perhaps its best valida-
tion stems from the recent decline in AD rates, which
has been attributed to effective curbing of cardiovas-
cular risk factors [2].

Although human studies, including postmortem,
can be enlightening, experiments are always needed
to demonstrate proof of principle and unravel dis-
ease mechanisms. To mechanistically extend the

concepts embodied in our 1998 human study, we
conducted experiments to examine contributions of
factors related to ischemic injury, including hypoxia,
oxidative stress, free radical injury, and impaired
mitochondrial function, which could mediate or
accelerate molecular pathological changes associ-
ated with AD neuropathology [3–5]. Certainly our
group was not alone in this quest, as demonstrated
by concurrent JAD publications from other investi-
gators examining the roles of oxidative injury and
mitochondrial dysfunction as pathogenic factors in
AD [6–13]. Despite encouraging data, the story
was obviously incomplete because so many people
experience significant hypoxic or ischemic insults
to the brain, yet very few ever develop AD. What
else is needed? Neuronal metabolic and molecular
abnormalities produced by short-term in vitro expo-
sures often are reversible. What factors and cellular
responses render neuronal injury following hypoxic-
ischemic insults irreversible and headed down the
path of AD-type neurodegeneration?

Since AD-specific biomarkers are few in number,
researchers mainly rank severity of AD based on
brain and cerebrospinal fluid (CSF) levels of A� and
pTau. However, the continued use of these indices as
diagnostic gold standards reinforces the misconcep-
tion that the principal pathogenic factors in AD are
almost exclusively linked to aberrant cellular process-
ing and accumulation of A� and pTau, and side-steps
the complexity of other factors. Perhaps one of the
best illustrations of why we must expand our thinking
beyond these two favorite molecules was provided by
one of our case reports published in JAD [14]. In brief,
a patient diagnosed with amyotrophic lateral sclerosis
was demonstrated to be cognitively intact throughout
her clinical course, based on formal neuropsycholog-
ical testing; the last evaluation was performed within
1 month of death. Postmortem examination of her
brain revealed extensive and diffuse A� accumula-
tions in senile plaques, blood vessels, and cells in
all cortical and medial temporal regions [14], with-
out accompanying pTau structural lesions or neuronal
inclusions. Although the case was highly unusual, it
provided sufficient evidence that abnormalities other
than A� accumulations were likely critical mediators
of AD pathogenesis.

EMERGENCE OF THE TYPE 3 DIABETES
CONCEPT

By far, the biggest impact JAD had in relation to
own research was the publication of a 6-manuscript
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series in 2005 and 2006, including: 1) a review article
on the expression and function of insulin and insulin-
like growth factor (IGF) signaling networks in the
brain [15]; 2) the first primary research article demon-
strating brain insulin resistance and insulin deficiency
in AD [16]; 3) a follow-up report showing AD Braak-
stage dependent declines in insulin and IGF signaling
molecule expression and function in the brain [17];
4) characterization of AD Braak stage-associated
increases in brain oxidative stress and mitochondrial
dysfunction, paralleling declines in insulin/IGF sig-
naling network functions [5]; 5) neuropathological
and molecular characterization of the intracerebral
streptozotocin (i.c. STZ) model and its relevance
to sporadic forms of human AD [18]; and 6) the
demonstration that AD-type neurobehavioral deficits
and neuropathology in the i.c. STZ model could be
prevented by treatment with peroxisome proliferator-
activated receptor (PPAR) agonist-insulin sensitizer
drugs [19]. That body of work drew worldwide media
attention—both positive and negative, but also helped
bring attention to JAD, which in those days, was
still not regarded as mainstream. Even during press
interviews, I received memorable cutting remarks by
reporters who doubted the story, but nonetheless felt
it should be aired. One can only imagine the vitriolic
reviewers’ comments received along with rejection
notes from several major journals before we decided
to submit this work for publication in JAD.

The review article was especially important
because it provided documentation that the major
distributions of insulin and IGF signaling networks
were localized in brain regions that are charac-
teristically targeted in AD and discussed potential
adverse consequences of impaired insulin signaling
in the brain [15]. The initial companion research
article provided the first description of impaired
insulin and IGF signaling in brains with advanced
AD [16]. Although that manuscript was published
in 2005, the research was conducted over the pre-
vious 3.5 years when molecular techniques were
still quite labor intensive and many critical reagents
were not commercially available. The study demon-
strated significant AD-associated abnormalities in the
expression of insulin and IGF receptors and ligands,
together with impaired ligand-receptor binding in the
brain. The surprising concept that emerged was that
the main abnormalities in the brain overlapped with
core abnormalities in both Type 1 and Type 2 diabetes
mellitus, prompting us to coin the term ‘Type 3 Dia-
betes’ to better conceptualize the underlying nature of
AD [16].

Even before the initial manuscript had been com-
pleted, we initiated a follow-up study to examine
when and how impairments in brain insulin and
IGF signaling emerged with respect to AD progres-
sion, i.e., severity (Braak stage) [17]. That study
demonstrated progressive declines in brain expres-
sion of insulin and IGF-1 ligands (growth factors)
and receptors, ligand interactions with receptors, and
downstream signaling through insulin receptor sub-
strate (IRS) and phosphoinositol-3-kinase (PI3K)-
Akt, together with increased activation of glycogen
synthase kinase-3� (GSK-3�) with AD progres-
sion. These findings suggested that Type 3 diabetes
begins early in the course of AD and progresses
with increasing severity of neurodegeneration. Since
insulin regulates glucose metabolism in the brain, AD
Braak-stage dependent declines in insulin signaling
through metabolic pathways (PI3K-Akt) corresponds
with the progressive reductions in brain glucose uti-
lization detected by PET imaging [20, 21].

Further studies linked AD-associated impairments
in insulin and IGF signaling to progressive increases
in oxidative and nitrosative stress and reductions
in mitochondrial function in the brain [5]. Since
insulin and IGF signaling through PI3K-Akt path-
ways support energy metabolism, ATP production,
cellular homeostasis, neuronal and glial survival,
neuronal plasticity, cholinergic function, myelin
maintenance, and neuronal cytoskeletal function, we
suggested the unifying and parsimonious hypothesis
that molecular and biochemical abnormalities asso-
ciated with impairments in insulin and IGF signaling
via declines in trophic factor availability and recep-
tor responsiveness, could account for virtually all
major neuropathologies in AD. It was not until 2012
that the human postmortem studies were repeated
by independent investigators who confirmed signif-
icant impairments in insulin signaling through IRS
and PI3K-Akt in AD brains [22, 23].

INSULIN SENSITIZERS AS
THERAPEUTIC MEASURES FOR AD

The human studies on Type 3 diabetes were actu-
ally inspired by the serendipitous observation that
rats treated with intracerebral streptozotocin (i.c.
STZ) developed cognitive impairment with AD-type
pathology [18]. Although the i.c. STZ model had
been described earlier and shown to be associated
with metabolic dysfunction in the brain [24–27],
the AD-type neuropathological lesions, including A�
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deposits had not been described previously. The i.c.
STZ experimental model was generated in conjunc-
tion with other projects concerning the role of brain
insulin signaling in relation to cognitive and motor
functions [28–31]. The hypothesis tested was whether
chemical- or toxin-induced brain insulin resistance
would cause cognitive impairment. Although the
neurobehavioral effects of i.c. STZ expected, the
histopathological findings were. Publishing the i.c.
STZ experimental data in JAD [18], shortly after the
human studies [16, 17], was extremely valuable for
demonstrating continuity of scientific thought and
connecting human pathology with proof-of-concept
experiments.

The toxic effects of STZ that cause Type 1 dia-
betes mellitus are mediated in part by killing insulin
producing cells in the pancreas [32]. However, at
lower doses, STZ causes insulin resistance and other
pathologies of Type 2 diabetes [33]. In the i.c. STZ
model, impairments in spatial learning and memory
were associated with loss of neurons, neuroinflam-
mation, increased oxidative stress, and accumulations
of phospho-tau and A� in cortical-limbic structures
that characteristically undergo neurodegeneration
in AD [34]. Molecular and biochemical studies
demonstrated that i.c. STZ-induced neurocognitive
deficits and neuropathological abnormalities were
associated with significantly reduced expression of
mRNA transcripts encoding insulin, IGF-1, and IGF-
2 polypeptides, insulin and IGF receptors, and insulin
receptor substrate (IRS) proteins [18], reduced bind-
ing to insulin and IGF receptors [18], and decreased
levels of immunoreactivity to the insulin and IGF-1
receptors, IRS protein, Akt, p70S6K, mTor, tyrosine
phosphorylated insulin and IGF receptors, and phos-
phorylated GSK-3� in the brain [34]. These findings
suggest that i.c. STZ kills insulin and IGF-1 receptor
expressing cells that utilize IRS to transmit signal-
ing downstream through Akt metabolic pathways.
The loss of insulin producing cells is characteristic of
Type 1 diabetes, whereas impaired receptor expres-
sion and binding mark states of insulin resistance,
as occurs in Type 2 diabetes. To convey the concept
that the molecular and biochemical neuropathologies
of human AD and experimental i.c. STZ are linked
to both insulin deficiency (due to loss of neurons
and insulin gene expression) and insulin resistance
(decreased receptor expression and receptor bind-
ing) and thus share features of Type 1 and Type
2 diabetes, we coined the term ‘Type 3 diabetes’.
Concomitant loss of IGF-1, IGF-2, IGF-1 recep-
tor, and IGF-2 receptor expressing cells and reduced

IGF-1/IGF-2 receptor binding could be explained by
STZ-mediated killing of cells that co-express insulin
and IGF-1 or IGF-2 or their receptors [15]. Of fur-
ther note is that in AD and the i.c. STZ model
of sporadic AD, insulin/IGF deficiency and resis-
tance mediated neurodegeneration is associated with
inflammation, oxidative, and endoplasmic reticulum
stress, microvascular disease, and metabolic dysfunc-
tion, all of which occur in diabetes mellitus.

The sixth article in the 2005-2006 Type 3 diabetes
manuscript series was pivotal for demonstrating that
cognitive impairment and neurodegeneration could
be ameliorated by early treatment of the i.c. STZ
model of sporadic AD with PPAR agonists [19]. The
most effective PPAR agonists had specificity for the
delta receptor subtype followed by PPAR gamma,
corresponding with their relative levels of expression
in the brain [5, 35–37]. PPAR agonists are insulin
sensitizers that have anti-oxidant/anti-inflammatory
properties [38] and have been used to treat Type 2
diabetes mellitus and other insulin resistance dis-
eases [38]. More recently, our group extended those
efforts by demonstrating that a novel, orally adminis-
tered hybrid PPAR-delta/gamma agonist (T3D-959)
was effective in remediating deficits spatial learn-
ing and memory and motor function, and prevented
neurodegeneration in the i.c. STZ model [36, 37].
Mechanistically, T3D-959 was shown to enhance
insulin and IGF-1 signaling through PI3K-Akt path-
ways, reduce inflammatory markers in the brain [34],
and reverse white matter myelin lipid abnormalities
associated with neurodegeneration [39]. T3D-959 is
currently being evaluated in Phase IIb clinical trials.
By publishing the Type 3 diabetes series in JAD, the
full arc of this early research on the roles of brain
insulin deficiency and insulin resistance as mediators
of AD-type neurodegeneration, from direct obser-
vations in human brains to experimental testing of
the underlying hypothesis, and finally implementa-
tion of therapeutic interventions in preclinical models
was associated with a single journal. Perhaps one of
the most rewarding follow-up trends was the sharp
increase the number of research articles related to
brain insulin resistance and metabolic derangements
that were subsequently published in JAD.

LINKS BETWEEN AD AND
NITROSAMINES/ENVIRONMENTAL
EXPOSURES

The brain pathology in the i.c. STZ model drove
the next question about how such a limited exposure
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to a single agent could cause disease that shares many
features in common with sporadic AD, and whether
humans were somehow exposed to STZ-related tox-
ins that increased the rates of sporadic AD over time.
The realization that the chemical structure of STZ
corresponds to a nitrosamine, yet again shifted the
laboratory’s focus to assess the potential role of other
nitrosamines in the pathogenesis of AD. Acknowl-
edging the public health importance yet controversial
nature of the concept that we might be poisoning our-
selves caused us to intentionally target JAD for our
publications in this field.

The nitrosamine-related studies were initiated by
conducting an epidemiological analysis to correlate
age-stratified, time-dependent shifts in AD, diabetes
mellitus, and other disease prevalence rates with
population exposures to processed and preserved
foods that contain nitrosamines or nitrates and nitrites
which can be converted to nitrosamines with heating
and digestion [40]. Data extracted from U.S. statisti-
cal databases showed that from 1980 to 2006, death
rates from AD, Parkinson’s disease, and diabetes mel-
litus increased across all age-groups among people 50
years and older, and that those trends paralleled the
increases in nitrosamine exposures [40]. Importantly,
the results did not support the hypothesis that increas-
ing rates of AD were consequences of increased
longevity since the proportions of diseased individ-
uals increased over time within each age group,
i.e., 51–60, 61–70, 71–80, and 81–90. Furthermore,
the relatively rapid time-dependent increases in AD,
Parkinson’s disease, and diabetes mortality rates were
more consistent with exposure, i.e., environmental,
lifestyle, or dietary than genetic effects [40]. In a
subsequent study, Parkinson’s disease dementia and
dementia with Lewy body disease were demonstrated
to have brain impairments in insulin, IGF-1, IGF-
2, and neurotrophin signaling, which experimentally
were produced by in vitro exposure to manganese
[41].

Since epidemiologic studies show associations
rather than causality, proof of concept experiments
were needed. Experiments were designed to demon-
strate neurodegenerative and neurotoxic effects of
low, sub-mutagenic exposures to nitrosamines, rather
than high doses which were already known to
be carcinogenic and therefore not relevant to the
over-arching question. Besides STZ, the adverse
effects of N-nitrosodiethylamine (NDEA), which
is widely present in processed/preserved foods,
tobacco-specific nitrosamine ketone (NNK), which
is present in tobacco, and more recently, arecoline

hydrobromide (AH), which is present in Areca
nut (Betel quid), have been studied in relation to
neurodegeneration with brain insulin/IGF resistance
and deficiency, oxidative stress, and inflammation.
NDEA treatment of cultured neurons caused AD-type
molecular and biochemical abnormalities, including
oxidative injury, DNA damage, A� and pTau accu-
mulations, mitochondrial dysfunction, and impaired
signaling through insulin and IGF pathways [42].
Parallel in vivo studies demonstrated that low-
dose NDEA caused diabetes, steatohepatitis with
liver insulin resistance, i.e., non-alcoholic fatty liver
disease, and neurodegeneration with brain insulin
resistance and AD-type molecular and biochemical
abnormalities [43]. The long-term adverse effects of
NDEA occurred after both intracerebral or intraperi-
toneal exposures. The latter finding was of particular
interest because it provided fresh hints about potential
environmental causes of sporadic AD. At the same
time, the results suggested that AD and other insulin
resistance diseases could be prevented via lifestyle
modifications. Due to press releases by JAD and con-
siderable interest from the news media, the public was
informed about avoidable harmful exposures. Since
publication of those articles, the list of supermarket
foods labeled as nitrate/nitrite-free has grown.

ROLES OF OBESITY, TYPE 2 DIABETES,
AND PERIPHERAL INSULIN
RESISTANCE IN AD: TOXIC LIPIDS AND
THE LIVER-BRAIN AXIS

Within two years of publishing the initial papers
on Type 3 diabetes, new data emerged linking obesity
and type 2 diabetes to cognitive decline and dementia
[44–48]. Although obesity had already been linked to
insulin resistance diseases, it was not known whether
the brain was just another organ rendered insulin
resistant by the same processes that cause peripheral
insulin resistance diseases, or if brain involvement
was consequential to peripheral insulin resistance. On
the surface, the association between obesity and cog-
nitive impairment seemed to contradict the Type 3
diabetes hypothesis. Therefore, it was imperative to
reproduce the responses in experimental models.

The approach was to evaluate the integrity of
brain insulin and IGF signaling networks in mouse
[49, 50] and rat [51, 52] models of obesity pro-
duced by chronic high fat diet feeding. The high
fat diet fed mice and rats developed visceral obesity
with Type 2 diabetes and steatohepatitis. However,
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brain insulin resistance and neurodegeneration were
detected only after significant steatohepatitis had
developed, suggesting a link between fatty liver dis-
ease and neurodegeneration. Review of the liver
pathology in the i.p. administered NDEA experi-
ments revealed a similar relationship between the
emergence of steatohepatitis and neurodegeneration.
The NDEA experiments were extended by eval-
uating the independent and interactive effects of
chronic high fat diet feeding and low-dose i.p. NDEA
exposures in Long Evans rats. Those investigations
demonstrated that while high fat diet feeding and i.p.
NDEA each caused deficits in spatial learning and
memory, brain insulin resistance, and neurodegener-
ation, dual exposures produced greater severities of
fatty liver disease, brain insulin resistance, cognitive
impairment, and neurodegeneration [51, 52].

The mechanism conceptualized to explain how
visceral obesity and fatty liver disease might nega-
tively impact the brain was that dysregulated lipid
metabolism causes toxic lipids to accumulate in vis-
ceral adipose tissue and liver. With cellular injury and
death due to endoplasmic reticulum and oxidative
stress, toxic lipids are released into the circulation,
and due to their lipid soluble properties, they can
cross the blood-brain barrier and cause neurotoxic
injury, inflammation, insulin resistance, and neurode-
generation [53]. Ceramides were postulated to be the
offending sub-class of lipids [54] because the toxic
effects of ceramides include inhibition of insulin sig-
naling through PI3K-Akt pathways and activation of
cellular stress mechanisms [53–62].

To address the hypothesis that toxic lipids gen-
erated in states of hepatic insulin resistance with
dysregulated energy metabolism are mediators of
brain insulin resistance and neurodegeneration, we
measured liver and serum ceramide levels in mice
and rats that were chronically fed with high fat diets,
and in rats treated by i.p. injection of NDEA. Those
studies detected significantly increased ceramide
levels in sera, livers, and brains in conjunction
with steatohepatitis and brain insulin resistance with
neurodegeneration [50, 54]. Furthermore, in vitro
exposures to synthetic ceramides caused molecular
and biochemical abnormalities similar to NDEA-
mediated in vivo pathology, and i.p. injected
fluorescent ceramides crossed the blood brain barrier
and were detected in brain [54, 62].

Altogether, the chronic high fat diet feeding and
nitrosamine exposure experiments support human
data relating obesity and Type 2 diabetes to cog-
nitive impairment and brain insulin resistance with

neurodegeneration. However, compared with the
effects of intracerebral delivery of STZ or other
nitrosamines, the neuropathological and neurode-
generative responses to visceral obesity, diabetes,
and steatohepatitis were modest to moderate. More-
over, most individuals diagnosed with AD do not
have clinically manifested peripheral insulin resis-
tance. Therefore, it is probable that brain insulin
resistance-mediated neurodegeneration can occur
via two mechanisms: 1) direct injury with pre-
dominant involvement of the brain as occurs in
most cases of AD; or 2) indirect injury mediated
by systemic insulin resistance diseases associated
with metabolic derangements leading to toxic lipid
(ceramide) release from injured cells, into the blood
stream and across the blood-brain barrier [53].

SMOKING IN THE PATHOGENESIS OF
NEURODEGENERATION—JUST
ANOTHER NITROSAMINE EXPOSURE

Chronic cigarette smoking has been linked to
increased rates of cognitive impairment [63–65] and
structural abnormalities in the brain including alter-
ations in cerebral white matter volume [65–67], and
atrophy of gray matter structures in the temporal
and parietal lobes [65, 67, 68] as demonstrated with
various neuroimaging methods [67, 69–77]. In addi-
tion, meta-analysis revealed significant correlations
between smoking and atrophy of gray matter in the
anterior cingulate, prefrontal cortex, and cerebellum
[78]. Epidemiological studies have provided support-
ive data in showing higher rates of cigarette smoking
in people with AD than normal aging [76, 79–85].

The above clinical and epidemiological data,
together with laboratory generated evidence that
nitrosamine exposures contribute to the pathogen-
esis of AD and other neurodegenerative diseases
that are linked to impaired insulin and IGF sig-
naling caused us to examine the potential roles
of tobacco smoke [86–88] and the tobacco-specific
nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK), as mediators of neurodegener-
ation. Studies involving NNK stemmed from the
realization that the toxic effects of tobacco consump-
tion (smoking, chewing, sniffing) were mediated
by tobacco-specific nitrosamines [89–92]. Smok-
ing and NNK exposures produced similar types
of neurodegeneration, impairments in insulin and
IGF signaling, increases in oxidative and nitrosative
stress, alterations in cerebral white matter myelin
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lipid composition with reductions in sulfatides and
certain phospholipids, and increases in ceramide con-
tent [86–88].

ENVIRONMENTAL AND LIFESTYLE
TOXIN EXPOSURES IN AD
PATHOGENESIS: MORE WORK IN
NEEDED

Our research has demonstrated that low-dose,
chronic exposures to various types of nitrosamines
disrupt brain and systemic insulin signaling
responses, promote oxidative injury, cellular stress,
and inflammation, but they differ with respect to their
dominant pathogenic effects. STZ mainly disrupts
insulin signaling and causes neuroinflammation.
NNK is a strong promoter of oxidative injury and
inhibits signaling through metabolic pathways.
NDEA has mixed adverse effects on insulin/IGF-1
signaling, cellular stress and radical injury. These
observations set the stage for identifying other
environmental and lifestyle exposures that produce
similar adverse effects in the brain. For example,
in a recent collaborative review article, evidence
was presented that high environmental exposures to
particulate matter 2.5 (PM2.5) in heavily polluted
air increase risk for obesity, insulin resistance,
AD-associated cognitive impairment, and dyslipi-
demic states in children, especially girls carrying the
apolipoprotein E �4 allele [93]. The importance of
that work was that it established a novel means of
inter-relating genes × environment × gender in the
path toward AD.
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other forms of neurodegeneration, are controllable or
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