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Abstract

Lung cancer, with non-small cell lung cancer (NSCLC) being the major type, is the second most common malig-
nancy and the leading cause of cancer-related death globally. Immunotherapy, represented by immune check-
point inhibitors (ICIs), has been one of the greatest advances in recent years for the treatment of solid tumors
including NSCLC. However, not all NSCLC patients experience an effective response to immunotherapy with
the established selection criteria of programmed death ligand 1 (PD-L1) and tumor mutational burden (TMB).
Furthermore, a considerable proportion of patients experience unconventional responses, including pseudo-
progression or hyperprogressive disease (HPD), immune-related toxicities, and primary or acquired resistance
during the immunotherapy process. To better understand the immune response in NSCLC and provide refer-
ence for clinical decision-making, we herein review the rationale and recent advances in using immunotherapy
to treat NSCLC. Moreover, we discuss the current challenges and future strategies of this approach to improve
its efficacy and safety in treating NSCLC.
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Introduction

Lung cancer, with non-small cell lung cancer (NSCLC)
being the major type, is the second most common
malignancy and the leading cause of cancer-related
death worldwide. According to the latest Global Cancer
Statistics 2020, the estimated number of new lung

cancer cases in the world was 2.206 million in 2020,
accounting for 11.4% of all new malignancies; and the
estimated number of lung cancer deaths in the world
was 1.796 million in 2020, accounting for 18.0% of all
cancer deaths.1 At present, the treatment of NSCLC
mainly includes surgery, chemotherapy, radiotherapy,
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Figure 1. History of cancer immunotherapy.

molecular targeted therapy and immunotherapy,
depending on the specific stage and condition. Since the
majority of patients with lung cancer are diagnosed at an
advanced stage, they usually have missed the opportu-
nity of radical surgery treatment.2 For advanced NSCLC,
chemotherapy has long been the major treatment,
but it seems to have limited effect. Molecular targeted
therapy such as EGFR-TKI and ALK-TKI have become the
standard first-line therapy for patients with advanced
NSCLC with positive driver gene mutations, significantly
prolonging the survival period and improving the quality
of life of patients. However, the “bottleneck” of molecular
targeted therapy lies in that secondary mutations often
occur during treatment, resulting in drug resistance.3,4

After chemotherapy and molecular targeted therapy, the
treatment of advanced NSCLC has entered a new era
of immunotherapy represented by immune checkpoint
inhibitors (ICIs).5

Immunotherapy is a relatively new treatment
approach for cancers including NSCLC, which is
hoped to further improve the prognosis of NSCLC. This
review discusses our current knowledge of the immune
response in NSCLC, the latest and ongoing immune-
based therapies, and the future of immunotherapies in
NSCLC.

Tumor immunology and immunotherapy
in NSCLC
The wrestling between cancer and immunity

Under normal physiological conditions, the “surveillance
function” of human immune system enables it to iden-
tify and eliminate foreign components, including invad-
ing pathogenic microorganism, allografts, and tumor
cells. Though such function of recognizing and killing
tumors was first proposed as a hypothesis in as early
as 1909,6 it was not until 50 years later that Prehn
and Main demonstrated the presence of specific anti-
gens in tumor cells and adaptive immune response of
host in experimental animal model.7 In 1957, Burent

proposed the theory of “immune surveillance”, holding
that nascent transformed cells may arise in our bod-
ies and the immune system can recognize and eradicate
these transformed cells before they are clinically man-
ifested.8 In 2002, Schreiber et al. developed the concept
of “cancer immunoediting” that there are complex inter-
actions between tumor and immune system in the pro-
cess of tumor development, mainly consisting of three
phases: (1) elimination phase, in which the immune sys-
tem effectively recognizes and attacks early tumor; (2)
equilibrium phase, where the killing of tumor by immune
system and the growth of tumor are in a dynamic equi-
librium state; and (3) escape stage, in which tumor grows
and metastasizes by escaping from the recognition and
eradication of immune system through different mech-
anisms (Fig. 1).9

As our understanding of the relationship between
tumor and immunity deepens, we now know that for
immune system’s effective killing of cancer cells, a series
of stepwise events must be initiated and allowed to
proceed and expand iteratively. The “cancer-immunity
cycle” proposed by Chen and Mellman in 2013 reveals
the mechanism by which the immune system recognizes
and eradicates tumor cells. The cancer-immunity cycle
is divided into seven steps (Fig. 2).10,11 (1) Release of can-
cer cell antigen. Cancer cell antigens, created by cancer
cell deaths, genetic alterations and cancer differentiation
etc, lead to expression and binding of antigen peptides to
major histocompatibility class (MHC) molecules on the
surface of cancer cells, distinguishing them from their
normal counterparts. (2) Cancer antigen presentation.
Antigen presenting cells (APCs), mainly dendritic cells
(DCs), capture cancer-specific antigen peptide by bind-
ing antigen peptide to MHC molecules on the surface of
APCs, and subsequently present them to T cells. (3) Prim-
ing and activation. In lymph node, T cell receptor (TCR)
recognizing the antigen/MHC complex on the APC sur-
face, as well as the interaction between CD28 molecule
on the T cell surface and the B7.1 molecule on the APC
surface, prime and activate the T cells. (4) Trafficking
of T cells to tumor. The activated effector T cells traffic
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Figure 2. The “cancer-immunity cycle”. Figure adapted from Ref. 10. Copyright Elsevier, 2013.

to the tumor bed through blood circulation. (5) Infiltra-
tion of T cells into tumors. Effector T cells migrate from
the circulating blood to the tumor bed across the vascu-
lar endothelial barrier. (6) Recognition of cancer cells by
T cells. Cytotoxic T lymphocytes (CTLs) specifically rec-
ognize and bind to cancer cells through the interaction
between its TCR and antigen/MHC complex on the can-
cer cells. (7) Killing of cancer cells. CTLs kill their tar-
get cancer cells, lead to releasing additional cancer anti-
gens (step one) and subsequent another circulation of
the cycle. Through the mechanism of cancer-immunity
cycle above, the host immune system can effectively kill
cancer cells.

However, such cancer-immunity cycle does not
always perform perfectly in cancer patients. Tumors can
escape from the host immune system through changing
tumor cells themselves or the tumor microenvironment
(TME), thus maintaining the continuous proliferation
and invasion of tumor cells and eventually leading to the
occurrence and development of tumor, which is called
“immune escape”.12 The immune escape of tumor is

essentially achieved by disrupting certain steps in the
cancer-immunity cycle.

Rationale for immunotherapy against NSCLC

At each step of the cancer-immunity cycle, there are pos-
itive and negative regulators that keep the activation of
the immune system within the normal range.10 There-
fore, we can achieve the therapeutic purpose through
strengthening the positive regulation signals or sup-
pressing the negative regulation signals.

Directing at the negative immune checkpoints signal-
ing, ICIs are the most developed and widely-used strat-
egy against NSCLC.13 Immune checkpoint is a class of
immunosuppressive molecules, which are expressed on
immune cells and can regulate the degree of immune
activation. Cytotoxic T lymphocyte associated antigen-
4 (CTLA-4) and programmed cell death protein-1 (PD-
1) are the representatives of immune checkpoints in
NSCLC, which act as inhibitors in the activation of T
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cells.14 CTLA-4 is presented on T cells and its interac-
tion with B7 on APCs reduces IL-2 production and T cell
proliferation in lymphoid organs. Such reduction can be
blocked by CTLA-4 inhibitors.15 Besides, several recent
studies found that CTLA-4 inhibitors exhibit antitumor
function by selectively depleting regulatory T (Treg) cells
in the TME through an Fc-dependent mechanism.16–18

PD-1 is expressed on activated T cells, and its ligand
programmed cell death protein ligand-1 (PD-L1) can be
expressed on the surface of tumor cells and immune
cells. The binding of PD-1 and PD-L1 can inhibit activated
T cell proliferation, promote activated T cell apoptosis
and reduce cytokine secretion in the TME.15 Apart from
CTLA-4 and PD-1, novel immune checkpoint molecules
on T cells have been discovered, including TIGIT, LAG-3,
TIM-3, VISTA and CD244.19–23 These immune checkpoints
can inhibit T cell function by binding to their ligands on
tumor cells, APC cell or other cells. For instance, TIGIT
is an immune checkpoint mainly expressed on the sur-
face of T cells and natural killer (NK) cells and can inhibit
cell function by binding to its ligands CD55 and CD122;
LAG-3 is expressed on activated CD4+, CD8+ T cells and
NK cells, and can inhibit T cell function by binding to
its ligand FGL1. Blocking these immune checkpoints can
achieve reactivation of T cells and NK cells to enhance
the antitumor activity.

Adoptive cell therapy (ACT) and cancer vaccine
are other two promising immunotherapy strategies for
patients with NSCLC. ACT, including chimeric antigen
receptor (CAR) T-cell therapy, engineered T-cell receptor
(TCR) T-cell therapy, tumor-infiltrating lymphocyte (TIL)
therapy and so on, aimed at reprograming immune cells
to enhance tumor cells’ recognizing and killing.24,25 Can-
cer vaccines, including tumor antigen associated vac-
cines, neoantigen associated vaccines and cell vaccines,
are designed to amplify tumor-specific T cell responses
via active immunization.26,27

Recent advance of immunotherapy in NSCLC

In the past decade, ICIs treatment has achieved sig-
nificant progress in NSCLC.15,28,29 First, the use of ICIs
has expanded from the initially second-line therapy to
multiple clinical settings, including neoadjuvant, adju-
vant, first, second, and subsequent lines treatment. Sec-
ond, ICIs treatment has expanded from monotherapy
to combination therapy, including combination of differ-
ent types of ICIs (i.e. PD-1/PD-L1 inhibitors with CTLA-
4 inhibitors), as well as ICI treatment with chemother-
apy, radiology, and chemotherapy plus anti-VEGF anti-
body. Third, several novel ICIs targeting LAG-3, TIM-
3 and VISTA are undergoing clinical trials to eval-
uate their efficacy and safety in treatment of solid
tumors including NSCLC and exhibit great therapeu-
tic promise.30–33 Currently, three anti-PD-1 monoclonal
antibodies (mAbs; pembrolizumab, nivolumab, cemi-
plimab), two anti-PD-L1 mAbs (atezolizumab and dur-
valumab) and one anti-CTLA-4 mAb (ipilimumab) have

been approved by the US Food and Drug Administra-
tion (FDA) for treatment of NSCLC.34,35 Besides, the
China National Medical Products Administration (NMPA)
has approved four more mAbs that target PD-1 (cam-
relizumab, sintilimab, tiselizumab and toripalimab) for
treatment of NSCLC.36 More recently, novel anti-TIGIT
mAb tiragolumab is approved by FDA for treatment of
NSCLC (Table 1).

ICIs monotherapy as first-line treatment for
advanced NSCLC

Five phase III trials reported outcomes for first-line
ICIs monotherapy in advanced NSCLC. In KEYNOTE-024,
KEYNOTE-042, Impower 110, pembrolizumab and ate-
zolizumab showed significantly improved overall sur-
vival (OS) compared with chemotherapy in patients
with advanced NSCLC.37–42 On the other hand, Check-
Mate 026 trial reported that nivolumab failed to pro-
long progression-free survival (PFS) and OS when
compared with chemotherapy, indicating not all ICIs
monotherapies as first-line therapy can be helpful for
advanced NSCLC.43 More recently, EMPOWER-Lung 1
trial reported its efficacy and safety outcomes of cemi-
plimab monotherapy. Significant improvements in OS
(median: not evaluable versus 14.2 months) and PFS
(median: 8.2 months versus 5.7 months) were observed
in patients who received cemiplimab monontherapy
compared to those underwent chemotherapy. Moreover,
lower frequency of grade 3–4 immune-related adverse
events (irAEs) occurred in patients treated with cemi-
plimab than in those treated with chemotherapy (28%
versus 39%).44,45 Based on results of these trials, pem-
brolizumab, atezolizumab and cemiplimab monotherapy
have been approved for first-line therapy in advanced
NSCLC.

ICIs-based combination therapy as the first-line
treatment for advanced NSCLC

Multiple completed phase III trials have evaluated the
efficacy and safety of ICIs-based combination therapy
(including PD-1/PD-L1 inhibitors plus chemother-
apy, PD-1/PD-L1 inhibitors plus chemotherapy plus
anti-angiogenetic therapy, PD-1/PD-L1 inhibitors
plus CTLA-4 inhibitors, and PD-1/PD-L1 inhibitors
plus CTLA-4 inhibitors plus chemotherapy) as the
first-line treatment in advanced NSCLC. In these tri-
als, pembrolizumab-chemotherapy (KEYNOTE-021,
KEYNOTE-189 and KEYNOTE-407),46–49 atezolizumab-
chemotherapy (IMpower 130),50 atezolizumab-
bevacizumab-chemotherapy (IMpower 150),51 52

nivolumab-ipilimumab (CheckMate 227)53 and
nivolumab-ipilimumab-chemotherapy (CheckMate
9LA)54 showed significantly improved OS, PFS and objec-
tive response rate (ORR) compared with controls in
patients with advanced NSCLC; and subsequently are
approved for first-line treatment of advanced NSCLC.
Notably, FDA approved another ICI tiragolumab in 2021,
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Table 1. Currently approved immunotherapy in NSCLC.

Type Regimen FDA approval NMDA approval
PD-1 mAb Pembrolizumab First and second line treatment for

squamous/non-squamous advanced
NSCLC

First line treatment for advanced
squamous/non-squamous NSCLC

PD-1 mAb Nivolumab Second line treatment for
squamous/non-squamous advanced

NSCLC

Second line treatment for
squamous/non-squamous advanced

NSCLC
PD-1 mAb Cemiplimab First line treatment /
PD-L1 mAb Atezolizumab First and second line treatment for

squamous/non-squamous advanced
NSCLC

/

PD-L1 mAb Durvalumab Unresectable stage III NSCLC Unresectable stage III NSCLC
PD-1 mAb Camrelizumab / First line treatment for advanced

non-squamous NSCLC
PD-1 mAb Sintilimab / First line treatment for advanced

non-squamous NSCLC
PD-1 mAb Tiselizumab / First line treatment for squamous

advanced NSCLC
PD-1 mAb Toripalimab / First line treatment for advanced

NSCLC
CTLA4 mAb Ipilimumab First line treatment First line treatment
TIGIT mAb Tiragolumab First line treatment /

based on the results of phase II CITYSCAPE trial, demon-
strating that combination of TIGIT and PD-L1 inhibitors
may enhance antitumor activity by potentially ampli-
fying the immune response. In the CITYSCAPE trial,
comparable PFS improvement with tiragolumab plus
atezolizumab relative to atezolizumab monotherapy
was seen in PD-L1–high NSCLC patients (PFS hazard
ratio (HR) 0.23, 95% CI: 0.10–0.53).55

ICIs monotherapy as second-line treatment for
advanced NSCLC

ICIs monotherapy pembrolizumab, nivolumab and ate-
zolizumab have been approved by FDA/NMPA for the
second-line treatment in advanced NSCLC based on
improved survival and safety data from five phase III clin-
ical trials (KEYNOTE-010, OAK, CheckMate 078, Check-
Mate 017 and CheckMate 057).56–61

ICIs neoadjuvant therapy for early-stage
resectable NSCLC

Although ICIs have yet been approved for the neoadju-
vant treatment in NSCLC, reported efficacy data from
trials has been promising and ICIs will likely play an
important role in the treatment of early-stage resectable
NSCLC. In the setting of neoadjuvant monotherapy
with ICIs, series of trials have demonstrated that ICIs
(nivolumab, atezolizumab and sintilimab) have great
potentials with higher major pathologic response (MPR)
and pathological complete response (pCR) when com-
pared with chemotherapy.62–64 For ICIs-based neoadju-
vant combination therapy, two recently completed stud-
ies have reported efficacy outcomes in patients treated
with neoadjuvant chemoimmunotherapy. In the phase
II trial of toripalimab plus chemotherapy as neoadju-
vant treatment in resectable stage III NSCLC (NeoTPD01

Study) with 30 out of the total 33 enrolled patients under-
going resection, the MPR rate was 66.7% (20/30), the pCR
rate was 50% (15/30), and 96.7% (29/30) patients achieved
R0 resection.65 The phase III Checkmate-816 trial, which
aimed to evaluate nivolumab plus chemotherapy ver-
sus chemotherapy as neoadjuvant therapy for resectable
stage IB-IIIA NSCLC, published its latest results at the
2021 AACR congress. NIVO plus chemo significantly
improved pCR compared to chemo (24.0% versus 2.2%,
P < 0.0001), MPR (36.9% versus 8.9%), as well as ORR
(53.6% versus 37.4%). Furthermore, neoadjuvant treat-
ment did not cause death or delay in surgery.66

ICIs adjuvant therapy for early-stage resectable
NSCLC

Similar to neoadjuvant immunotherapy, safety and effi-
cacy of adjuvant immunotherapy in patients with early-
stage resectable NSCLC are being explored in multi-
ple phase II to III trials. Recently, the primary results
were released for the phase III IMpower010 trial, which
assessed the safety and efficacy of atezolizumab versus
best supportive care (BSC) after adjuvant chemotherapy
in resected stage IB-IIIA NSCLC. Atezolizumab showed
statistically significant disease-free survival (DFS) benefit
versus BSC (36 months: 60.0% versus 48.2%).67 Two main
trials of adjuvant therapy with anti-PD-1 agents, ANVIL
(nivolumab) and PEARLS (pembrolizumab), are underway
and efficacy outcomes have yet to be published.68

ICIs consolidation therapy for unresectable stage
III NSCLC

PACIFIC was a phase III trial in patients with unrectable
stage III NSCLC treated with consolidative durvalumab
or placebo after concurrent chemoradiotherapy. Median
PFS were 16.8 months in the duvalizumab group versus
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5.6 months in the placebo group (HR = 0.51; 95%CI: 0.41–
0.63).69 Based on this result, FDA and NMDA approved
duvalizumab as consolidation therapy in unresectable
stage III NSCLC. In 2021, PACIFIC reported its latest effi-
cacy outcomes. Estimated 4-year OS rates were 49.6%
for durvalumab versus 36.3% for placebo, and 4-year PFS
rates were 35.3% (duravlumab) versus 19.5% (placebo).70

Adoptive cell therapy (ACT) and cancer vaccine
for advanced NSCLC

So far, TCR-T has gone through four iterations. In
recent years, TCR-T therapy worldwide has mainly tar-
geted solid tumors including NSCLC. For instance, ADP-
A2M4CD8, a novel TCR-T therapy, which coexpress
the CD8 coreceptor with the engineered TCR targeting
MAGE-A4, is currently being investigated for the treat-
ment of solid tumors. In the ongoing phase 1 SUR-
PASS trial, which enrolled multiple solid tumors includ-
ing NSCLC, the majority of evaluable patients (13/15)
had evidence of disease control and there were RECIST
responses in several types of solid tumor.71 On the
other hand, scientists developed several cancer vac-
cines, L-BLP25, MAGE-A3, TG4010, NY-ESO-1, CIMAvax-
EGF and others in the past two decades.72–75 Among
them, CIMAvax-EGF, which is built on the induction
of a specific immune response, aiming to sequester
EGF, showed ideal efficiency in clinical trials. A phase
III trial enrolled stage IIIB/IV NSCLC patients and ran-
domly assigned to receive CIMAvax-EGF or placebo, and
found significantly increased median survival time in
patients in CIMAvax-EGF group, and CIMAvax-EGF was
well tolerated.76 More recently, another vaccine OSE2101,
which modifies epitopes restricted to HLA-A2+ from five
tumor-associated antigens, was demonstrated to have
better prognosis (median OS: 11.1 months vs 7.5 months,
HR 0.59) and fewer severe adverse events (38% vs 68%,
p < 0.001) compared with standard of care in advanced
NSCLC.77 Currently, multiple clinical trials assessing ACT
and cancer vaccine in NSCLC are still underway.

Challenges and perspectives of
immunotherapy in NSCLC
Screening of potential benefit population

Numerous clinical trials and studies have confirmed that
only a small fraction of NSCLC patients show objective
responses to immunotherapy and get long-term benefit
from immunotherapy; nevertheless, there are currently
no optimal predictors to identify patients who will likely
benefit from immunotherapy.

PD-L1, TMB and dMMR/MSI-H
At present, biomarkers including PD L1, tumor muta-
tional burden (TMB) and mismatch repair deficient
(dMMR)/microsatellite instability-high (MSI-H) have
shown some predictive value, and are approved by
the FDA and/or the NMPA as indicators for predicting

the efficacy of immunotherapy in NSCLC or other solid
tumors. Among these markers, PD-L1 is the most widely-
used in NSCLC. However, even for those advanced NSCLC
patients with relatively high PD-L1 expression (≥50%
of tumor cells or ≥ 10% of tumor-infiltrating immune
cells), NSCLC patients receiving first-line monotherapy
with PD-1/PD-L1 inhibitors (pembrolizumab and ate-
zolizumab) had ORR of about 38.3%–46.1%.37,39,41,42 For
TMB, the ORR in NSCLC patients with TMB high (TMB-
H, defined as TMB ≥ 10 mutations/Mb) treated with
nivolumab plus ipilimumab was only around 33%-48%,
according to the previous trials.78–80 Although recent
studies suggested that dMMR/MSI-H may be a predictor
for PD-1 inhibitors therapy regardless of the cancer
origin, the incidence of dMMR/MSI-H in NSCLC is very
low and their predictive value for NSCLC needs further
verification through more clinical trials and studies.81–83

To improve forecasting ability, scholars analyzed the
predictive utility of combination of PD-L1 expression
and TMB in NSCLC, and found that combined use of
PD-L1 expression and TMB is a promising biomarker to
evaluate patients’ survival after immunotherapy (1-year
PFS AUC 0.826; 3-year PFS AUC 0.948).84

Predictive model
Studies have shown that the small fraction of patients
who get improved clinical outcomes tend to have some
common features, including male, smoking history, and
good general physical condition, with performance sta-
tus (PS) score of 0–1.85 Thus, predictive models were
built based on these features to help screening poten-
tial target population. So far the best predictive model
for NSCLC immunotherapy is iSEND, which includes
gender, PS score, Neutrophil-to-lymphocyte ratio (NLR),
and Delta NLR as the variables to categorize patients
into different risk groups and significantly discriminates
each group’s clinical outcome.86,87 Although these data
are from small-scale clinical studies, predictive models
based on integrative analysis of real-world data should
be promising in screening potential benefit populations
in today’s environment of big data analysis and artificial
intelligence.

ctDNA
Detection of circulating tumor DNA (ctDNA) has not only
value in precise diagnosis of NSCLC (i.e. driver muta-
tions, TMB and MMR), but also probable potential in pre-
dicting the efficacy of immunotherapy in NSCLC.88–90 For
instance, Sarah et al. showed that in metastatic NSCLC
receiving ICIs, a ctDNA response (defined as a > 50%
decrease in mutant allele fraction from baseline) was
associated with superior PFS (HR = 0.29, P = 0.03), and
superior OS (HR = 0.17, P = 0.007); besides, the decline
in ctDNA levels preceded the imaging confirmation of
tumor shrinkage (24.5 days versus 72.5 days).91 Thus,
monitoring ctDNA levels in NSCLC patients receiving ICIs
enables early assessment of immunotherapy response
and might avoid the prolonged administration of inef-
fective treatments.
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Immune-related toxicity
Immunotherapy has significantly prolonged the patient
survival, but it also brings immune-related toxicity, or
irAEs. Notably, more and more studies have suggested
that development of irAEs predicts a better response
to immunotherapy in NSCLC.92–96 In 2018, scholars first
reported that the PFS and OS of patients with irAEs were
significantly better than those without adverse reac-
tions after treatment with nivolumab (P = 0.04 and 0.01,
respectively); the ORR of patients with irAEs was signifi-
cantly higher than that of patients without irAEs (52.3%
and 27.9%, respectively).93 Further studies found that
among the various types of irAEs, endocrine toxicity and
dermatological toxicity may be most closely related to
the efficacy of immunotherapy.92 However, the mecha-
nism remains not clear at present, though it is speculated
to be related to the important role of immune checkpoint
in maintaining the process of autoimmune balance.

Apart from the predictors mentioned above, CD8+ T-
cell tumor-infiltrating, genetic mutations (RYR1, MGAM
and STK11), copy number alteration and HLA class I
diversity are also being explored for treating NSCLC and
other solid tumors.84,97–99 Taken together, there cannot
be a single perfect predictor to screen potential tar-
get populations for immunotherapy in NSCLC; predic-
tive models are needed that take into account different
parameters affecting tumor-host interactions.

Objective evaluation of response to
immunotherapy

Different from chemotherapy, radiotherapy, or molecular
targeted therapy, ICIs do not exert direct cytotoxic effects
on tumor cells, but restore or enhance the immune
system’s antitumor response with immune cells as the
target. The complexity of the response patterns after
immunotherapy warrants special attention.

At present, four unconventional response patterns
for immunotherapy have been observed: pseudoprogres-
sion, delayed response, mixed response, and hyperpro-
gressive disease (HPD).100,101 Pseudoprogression is an ini-
tial increase in the tumor volume or number of tumor
lesions followed by a decrease.102 The reported inci-
dence of pseudoprogression is 2.6%–4.7% in NSCLC.102–105

In 2017, the RECIST Working Group officially proposed
a modified RECIST 1.1 for immune-based therapeu-
tics (termed iRECIST).106 The iRECIST criteria introduce
the concepts of immune unconfirmed progressive dis-
ease (iUPD) and immune confirmed progressive disease
(iCPD). A progressive disease (PD) previously assessed by
traditional RECIST 1.1 is temporarily evaluated as iUPD,
and continuation of treatment is determined based on
the tumor type, disease stage and clinical situation of the
patient; it can only be confirmed as iCPD by re-evaluation
at 4–8 weeks. This reassessment approach can identify
unconventional responses such as pseudoprogression
and delayed responses. Moreover, serological biomark-
ers, including ctDNA and NLR, might help distinguish
pseudoprogression from true progression.107–109

HPD is featured with drastic progression of disease
after immunotherapy, but there has been no standard
definition. Kato et al. first defined HPD with three crite-
ria: time to treatment failure (TTF) <2 months, > 50%
increase in tumor burden and > 2-fold increase in pro-
gression rate.110 Russo et al. later required three out
of five criteria for being diagnosed with HPD, includ-
ing TTF < 2 months, ≥ 50% increase in the sum of the
diameter of target lesions, appearance of at least two
new lesions in an affected organ, dissemination to a
new organ or clinical deterioration to PS ≥ 2.111 The
reported incidence of HPD ranged from 9.2% to 17.9% in
NSCLC due to application of different criteria.105,112,113

The prognosis of patients with HPD is extremely poor
with median OS of 1.7–3.4 months.105,114,115 Once HPD
is suspected, immunotherapy should be interrupted and
a detailed evaluation should be conducted immediately.
However, there are currently no reliable predictors for
HPD after immunotherapy. Thus, the recognition of HPD
warrants further studies.

Management of immune-related toxicity

The immune-related toxicity induced by ICIs not only
limits the use of these beneficial drugs, but also threat-
ens the patient’s health. The irAEs can occur in all tis-
sues and organs throughout the body, including skin,
endocrine system, lung, liver, gastrointestinal system,
musculoskeletal system, nervous system, cardiovascu-
lar system, eyes, hematologic system, and others.116–119

Although the overall incidence of irAEs is low in NSCLC,
some of them can be severe and even life-threatening,
requiring early accurate recognition and adequate man-
agement.

Searching for predictive biomarkers of irAEs, which is
crucial for early diagnosis and timely treatment, repre-
sents an aspect of active investigation in immunother-
apy. Scientists have explored clinical parameters (gen-
der, preexisting autoimmune disease, etc.) as well
as laboratory biomarkers (absolute lymphocyte count,
NLR, etc.) that are associated with increased risk of
irAEs.120,121 However, many studies present conflicting
findings. Recently, some novel biomarkers have been
shown promise for clinical application. First, CD8 T cells
clonal expansion in the peripheral blood could predict
the development of irAEs. Subudhi et al. found that in
prostate cancer patients treated with ICIs, expansion
of ≥ 55 CD8 T cell clones preceded the development of
grade 2–3 irAEs.122 Additionally, detection of autoanti-
body in the serum is another potential predictor for the
occurrence of irAEs. In a study of 92 patients with NSCLC
receiving the anti-PD1 mAb nivolumab,123 detection of
more than one of autoantibodies (including ANA, ENAs
and ASMA) within 30 days of starting therapy was corre-
lated with the risk of irAEs (P = 0.002). Furthermore, sev-
eral studies indicated that the baseline gut microbiome
might predict immune-related colitis in patients treated
with ICIs.124,125 Further validation studies are needed
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for these specific biomarkers in larger-scale cohorts of
NSCLC patients receiving immunotherapy.

Exploring approaches to limit irAEs is another area of
active investigation in immunotherapy. Changing dose
and schedule is the most acceptable and easy to imple-
ment. For example, using lower and/or less frequent
dosing of ipilimumab could maintain therapeutic ben-
efit but reduce irAEs in the Checkmate 227 trial for
NSCLC.78 Besides, early intervention is another feasi-
ble approach to prevent some fatal irAEs. For exam-
ple, in a retrospective study of patients who developed
immune-related colitis, patients receiving immunosup-
pression early (≤10 days) required fewer hospitalizations
(P = 0.03), experienced steroid taper failure less fre-
quently (P = 0.03), had a shorter course of steroid treat-
ment (P = 0.09) and a shorter duration of symptoms
(P < 0.01) compared with patients receiving immuno-
suppressive therapy > 10 days after onset of colitis.126

In addition to these two approaches, others including
prophylactic use of drugs (such as vedolizumab), repur-
posed drugs (such as tofacitinib), alternative checkpoints
and tumor-targeted ICIs, are also being explored to limit
irAEs.127

Dealing with immune resistance

With the gradual widespread clinical application of ICIs
in NSCLC, immune resistance is observed in subsets
of patients. Some do not respond to the inhibitors at
all; for the initial responders, a substantial proportion
ultimately relapse with lethal drug-resistant diseases,
months or years after administration of the ICIs.

Due to the complex resistance mechanisms of
immunotherapy, there is still no standardized solu-
tion to this problem. Currently, combination therapy
to reverse or slow down immune resistance is the
most effective measure, including combination of dif-
ferent types of ICIs (i.e. PD-1 inhibitor plus CTLA-4
inhibitor) or combination of ICIs with other types of
therapy (i.e. chemotherapy, radiotherapy, molecular tar-
geted therapy, anti-angiogenesis therapy). For example,
combination of CTLA-4 inhibitor ipilimumab with PD-1
inhibitors nivolumab is promising as first-line treatment
in advanced NSCLC.78,128 Due to different mechanisms
of action, the combination of PD-1 and CTLA-4 inhibitor
can play a synergistic effect, which can not only induce
the production of a large number of T cells by antagoniz-
ing CTLA-4 at the early stage of immune response, but
also restore the killing function of T cells to tumor cells
by blocking the binding of PD-1 and PD-L1, and reduc-
ing T cell depletion. Exploring new therapy strategies is
another important way to conquer immune resistance.
T cells genetically equipped with TCRs have shown great
potential in treating solid tumors including NSCLC. Ther-
apeutic vaccines against cancer have also been explored.
However, challenges including weak immunogenicity,
systematic toxicity, and off-target effects remain as bar-
riers to their clinical translation.129

Conclusions

The extraordinary clinical outcomes through the appli-
cation of ICI regimens make us believe that immunother-
apy will constitute a more and more widely-used treat-
ment strategy for NSCLC in the near future. The next
step is to better screen potential benefit population,
objectively evaluate response to immunotherapy, man-
age immune-related toxicity and deal with immune
resistance. The exploration of new biomarkers or mod-
els to predict the efficacy, awareness of unconventional
response patterns for immunotherapy, and the devel-
opment of new immunotherapy including ACT ther-
apy and cancer vaccine will improve the application
of immunotherapy in clinical practice; and the ongoing
trials and studies about new treatment strategies with
existing and novel drugs promise to improve the preci-
sion, efficacy and safety of immunotherapy in NSCLC.
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