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TECHNICAL NOTE

A new vector system for targeted integration 
and overexpression of genes in the crop 
pathogen Fusarium solani
Mikkel Rank Nielsen1*  , Anna Karolina Rilana Holzwarth1, Emmett Brew1, Natalia Chrapkova1, 
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Abstract 

Background:  Besides their ability to produce several interesting bioactive secondary metabolites, members of the 
Fusarium solani species complex comprise important pathogens of plants and humans. One of the major obstacles in 
understanding the biology of this species complex is the lack of efficient molecular tools for genetic manipulation.

Results:  To remove this obstacle we here report the development of a reliable system where the vectors are gen-
erated through yeast recombinational cloning and inserted into a specific site in F. solani through Agrobacterium 
tumefaciens-mediated transformation. As proof-of-concept, the enhanced yellow fluorescent protein (eYFP) was 
inserted in a non-coding genomic position of F. solani and subsequent analyses showed that the resulting transfor-
mants were fluorescent on all tested media. In addition, we cloned and overexpressed the Zn(II)2Cys6 transcriptional 
factor fsr6 controlling mycelial pigmentation. A transformant displayed deep red/purple pigmentation stemming 
from bostrycoidin and javanicin.

Conclusion:  By creating streamlined plasmid construction and fungal transformation systems, we are now able to 
express genes in the crop pathogen F. solani in a reliable and fast manner. As a case study, we targeted and activated 
the fusarubin (PKS3: fsr) gene cluster, which is the first case study of secondary metabolites being directly associated 
with the responsible gene cluster in F. solani via targeted activation. The system provides an approach that in the 
future can be used by the community to understand the biochemistry and genetics of the Fusarium solani species 
complex, and is obtainable from Addgene catalog #133094.
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Background
The Fusarium solani species complex (FSSC) is one of 
the most widespread fungal groups, which collectively 
is capable of causing disease in both plants and humans 
[1, 2]. More than 50 species within the FSSC have been 
described [1, 3, 4] and the number continuous to increase 
as new species are constantly identified [5], primarily 

based on molecular analyses. Members of the species 
complex are important plant pathogens of more than 100 
agricultural crops where they can cause vascular wilt or 
root rot [6]. Individual species are often associated with 
only one or a few hosts and consequently plant patho-
genic populations of  F.  solani  have been further subdi-
vided into formae speciales [7–9], although this view 
has been challenged recently [10]. The variation within 
the species complex is also reflected within sexual repli-
cation, where both heterothallic, homothallic and mito-
sporic species have been identified [3].
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Several bioactive secondary metabolites have been 
identified in FSSC, including cyclosporin, gibepyrone A, 
lucilactaene, sansalvamide and the pigments fusarubin, 
javanicin and bostrycoidin [11]. Analyses of the genome 
of the first sequenced FSSC strain (77-13-4; FGSC 9596) 
revealed the presence of 13 polyketide synthases (PKSs) 
and 13 non-ribosomal peptide synthetases (NRPSs) [2] 
and subsequent orthology studies have linked fusarubin, 
javanicin, bostrycoidin (PKS3; fsr), gibepyrone A (PKS8, 
Gpy1), lucilactaene (PKS10) to their responsible gene 
clusters [12–17].

In the past, one of the obstacles in genetic editing of F. 
solani is the sparse reports of successful transformation 
protocols [18–20]. We recently overcame this obstacle 
through optimization of a protocol for Agrobacterium 
tumefaciens-mediated transformation (ATMT), which 
was used to identify the gene cluster behind biosynthesis 
of sansalvamide [21]. A second possible bottleneck in the 
transformation process can be construction of the ATMT 
vectors, which usually rely on correct cloning of the vec-
tor backbone containing genes for bacterial replication 
and selection together with two homologues recombina-
tion sequences and the integration cassette containing a 
selection marker and the overexpression system. Assem-
bling these four fragments can be obtained through 
enzyme based methods, including Xi, In-Fusion, Gateway 
and USER Friendly cloning techniques [22]. The cloning 
process can be accelerated and made more cost-effective 
by in  vivo homologous recombinational cloning in Sac-
charomyces cerevisiae where amplified DNA fragments 
are cloned guided by overlapping sequences of down to 
15  bp [23, 24]. The combination of yeast based cloning 
and ATMT has developed for Aspergillus fumigatus in 
a time and labor reducing method [25]. The aim of the 
present study was to adapt this approach to F. solani to 
develop a system that allow easy generation of transfor-
mation vectors for overexpression of target genes from 
an active locus on the chromosome. As proof-of-concept, 
we chose the enhanced yellow fluorescent protein (eYFP) 
while the internal regulator of the PKS3 gene cluster was 
targeted to demonstrate the usefulness in genetic engi-
neering of biosynthetic gene clusters.

Methods
Strains, media and conditions
Fusarium solani mating population IV (77-13-4; FGSC 
9596, Fungal Genetics Stock Center) was used as model 
for the transformation. The strain was maintained on 
Czapek Dox (Cz) agar medium or potato dextrose agar 
(PDA) medium [26] during the experiments. Plasmid 
assembly was performed in Saccharomyces cerevisiae 

BY4743 (Euroscarf Y20000, [27]), which was maintained 
on yeast extract peptone dextrose (YPD) medium and 
selected on yeast synthetic dropout medium without ura-
cil (SC-U; Sigma-Aldrich, St. Louis, MO, USA; Y1501). 
Escherichia coli DH5α was used for yeast-plasmid recov-
ery and propagation. Transformed cells were grown and 
selected on solid (2% agar) or liquid Luria–Bertani (LB, 
Lennox) medium supplemented with 50 µg/mL kanamy-
cin at 37 °C. Agrobacterium tumefaciens AGL-1 was used 
for transformation of F. solani. The strain was grown on 
LB medium supplemented with 100 µg/mL rifampicin as 
well as 50 µg/mL kanamycin for selecting transformants 
carrying the assembled plasmid.

Construction of pSHUT4‑eYFP plasmid
Four PCR fragments were required to generate the plas-
mid for constitutive expression of the eYFP gene from 
an active position on the genome. This approach was 
inspired from F. graminearum, where the aurofusarin 
cluster specific transcription factor aurR1 was recently 
overexpressed in a locus close to the β-Tubulin gene 
[28]. All PCRs were performed using Phusion Hot Start 
II DNA Polymerase (Thermo Fisher Scientific), using the 
supplied reagents and manufacturer’s guidelines. Prior 
to the experiments, eYFP from the EarleyGate 104-vec-
tor [29] had been cloned into p-UGOTL-TEF1α-TF [30] 
to generate an expression cassette comprising the nptII 
fungal selection marker together with the constitutive 
translation elongation factor 1α (TEF-1α) promoter, 
eYFP and NOS terminator. This cassette was ampli-
fied using primers D094 + D095 (see Additional file  1 
for all primers in this study). For guiding the homolo-
gous integration in F. solani, were two fragments ampli-
fied from genomic DNA using primers D090 + D091 and 
D092 + D093. Specifically, were the two integration bor-
der sites amplified from a non-coding region between the 
genes NECHADRAFT_103550 (Conserved, hypothetical 
Fusarium protein) and NECHADRAFT_91300 (Puta-
tive ATP-binding ABC transporter), found just upstream 
from NECHADRAFT_66759 (β-Tubulin). Finally, a plas-
mid backbone was PCR amplified from in-house vector 
pSHUT3 [31] with primers C094 + C095. This vector is 
based on U-GOAL [32] and comprise the bacterial ele-
ments kanR, IncP, trfA to which the yeast auxotrophic 
selection marker URA3 from pYES2 (Invitrogen) and 
replication origin CEN6/ARSH4 from pRS315 (ATCC​
® 77144) [33] were added. Correct assembly of the plas-
mid was guided by adding 15  bp homology tails to all 
primers yielding a 10.460  bp plasmid dubbed pSHUT4-
eYFP (Fig. 1). The four PCR products were visualized by 
gel electrophoresis on 1% agarose gels and subsequently 
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cleaned by the QIAquick PCR purification kit (Qiagen). 
At least 200 fmol of each of the four purified PCR frag-
ments were transformed into S. cerevisiae by the lithium 
acetate/single-stranded carrier DNA/PEG method [34]. 
As controls, subsequent transformation reactions were 
set up where one of the four PCR fragments was omit-
ted from the transformation mix and substituted with 
water. Yeast transformants were selected on solid SC-U 
and grown for 2  days at 30  °C. Colonies were streaked 
on new SC-U plates from where the plasmids were iso-
lated from fresh yeast cells as previously described [35]. 
The isolated plasmids were electroporated into com-
petent E. coli DH5α cells using the BioRad Micropulser 
Electroporation Apparatus, following the manufactur-
er’s instructions, and selected cells on solid LB medium 
with kanamycin. Assembled plasmid constructs were 
propagated and isolated from E. coli cultures using the 
QIAprep Spin Miniprep Kit (Qiagen). Sequencing of con-
structs was performed at Eurofins genomics (Ebersberg, 
Germany).

Generation and transformation of F. solani macroconidia
Five agar plugs from a 5-day-old F. solani culture on 
Czapek Dox agar medium was added to 70  mL CMC 
medium [15  g/L carboxymethyl-cellulose sodium salt 
(C4888; Sigma-Aldrich) 1  g/L NH4NO3, 1  g/L KH2PO4, 
0.5  g/L MgSO4∙7H2O, 1  g/L Bacto yeast extract (Bec-
ton, Dickinson and Company, Sparks, MD, USA] [36] 
in a 250  mL baffled flask. The culture was incubated in 
the dark for 5 days at 20 °C with 100 rpm. The medium 
was filtered through a sterilized syringe lightly packed 

with glass wool before the flow through was centrifuged 
at 5000 g for 40 min at 5  °C. The supernatant was care-
fully discarded and the pellet resuspended in 10 mL cold 
sterile H2O. This step was repeated twice with centrifuga-
tion for 20 min, before the macroconidia were ready for 
transformation.

The F. solani macroconidia were transformed with 
pSHUT4-eYFP using A. tumefaciens AGL1 as previously 
described [21]. The transformation mixture containing 
A. tumefaciens and F. solani was spread onto induction 
medium plates containing a black filter paper (Frisen-
ette, Denmark, 140.090). Positive controls included plates 
with and without filters plated with either plasmid carry-
ing A. tumefaciens or macroconidia. After incubation at 
22 °C for 3 days, the filters were moved to V8 agar plates 
[37] containing 150 µg/mL G418 (Gibco) and 300 µg/mL 
cefoxitin sodium (Sigma-Aldrich). After 7 days, the filters 
were moved to new V8 agar plates containing 150 µg/mL 
G418 where colonies started to emerge after 1–5  days. 
Single colonies were transferred to potato dextrose agar 
(PDA) [26] plates containing 200 µg/mL G418. All incu-
bation steps were carried out in darkness.

Verification of transformants by PCR and sequencing
Colony PCR was routinely used to screen isolated 
mutants with primers hybridizing outside integration 
locus and inside the T-DNA cassette. A minute amount 
of 2–3 day old hyphal mycelium was picked with a ster-
ile toothpick and submerged in 300µL fungal lysis buffer 
[0.2 M NaCl, 0.1% Triton-X100, 0.2% SDS, 10 mM Tris–
HCl, 50 mM EDTA, pH 7.5] and vortexed vigorously for 
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Fig. 1  Illustration and an actual agarose of the four PCR fragments, which are subsequently assembled into pSHUT4-eYFP via yeast recombinational 
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1 min before spinning at 10,000×g for 3 min. 1µL super-
natant can be applied in standard PCR mix with the addi-
tion of 2 mg/mL bovine serum albumin (Sigma-Aldrich; 
A9418). Genomic DNA of selected F. solani transfor-
mants was isolated from 2  day old mycelium grown in 
YPG cultures at 25 °C shaking 150 rpm using the DNeasy 
plant mini kit (Qiagen) and a series of PCR reactions 
were used to verify that the cassette had been integrated 
correctly into the genome.

High-molecular weight genomic DNA was extracted 
from 50 mg freeze-dried mycelium grown in 100 mL YPG-
medium in 2 days at 25 °C. Extraction was preformed using 
DNeasy powersoil kit (QIAGEN), with following modifi-
cations: samples were homogenized for 1 min on a vortex 
adaptor instead of 10 min and all “vortex to mix” steps were 
excluded, and mixing was done by invert the tubes instead. 
The high molecular weight genomic DNA was prepared 
for sequencing using the 1D Native barcoding genomic 
DNA kit (EXP-NBD104 and SQK-LSK109) (Oxford Nano-
pore Technologies, Oxford, UK) and the sequencing was 
performed on a FLO-MINI106D (R9.4) flow-cell (Oxford 
Nanopore Technologies, Oxford, UK) with approximately 
40–300× coverage. Base-calling was preformed using 
Guppy v. 2.1.3 and demultiplexing and adaptor trim-
ming was preformed using Porechop v. 0.2.3. The adaptor 
trimmed reads was filtered using Filtlong, reads less than 
10.000  bp and with a mean quality score under 80 were 
excluded. Mapping of reads to the corresponding mutant 
reference genome was preformed using Minimap2.

Quantification of fluorescence in the OE::eYFP 
transformant
One of the verified transformants (OE::eYFP-6) was sub-
jected to functional analyses. The strain was grown on Cz 
agar together with the wild type and analyzed via micro-
scope. Pictures were taken at 10X magnification on an 
Olympus IX83 confocal quipped with a Yokogawa CSU-
W1 spinning disk and a Hamamatsu ORCA-Flash 4.0 
camera. EFI projections were made from Z-stacks with 
1.99 um Z-spacing (20- 48 frames) at 508  nm emission 
and 489  nm excitation wavelengths. Furthermore, The 
strain was grown together with the wild type at 25 °C in 
24 well polypropylene plates containing 1  mL of yeast 
mold (YM) medium, malt extract (ME) medium, potato 
dextrose (PD) medium, yeast extract sucrose (YES) 
medium, YPD medium, (Cz) medium, Cz with yeast 
extract (CzY), Cz with 1  M NaCl and Cz with NaNO3 
replaced with (NH4)2SO4 [26]. Growth and fluorescence 
of both strains in four replicates were measured daily 
using an Infinite m1000pro (Tecan, Männeforf, Swit-
zerland). Optical density (600 nm) was used to quantify 
growth and excitation/emission wavelength of 514/526 
was used to quantify eYFP.

Generation of a fsr6 overexpression F. solani transformant
Identification of the fsr6 gene was done by BLASTx 
comparisons of known Fusarium fusarubin (PKS3) 
cluster transcription factor sequences F. fujikuroi 
fsr6 (FFUJ_03989, [38]) and F. graminearum pglR 
(FGSG_09188, [39]) towards the F. solani genome. We 
identified a 1167 bp gene, positions 251,539–252,705 on 
chromosome 10 (Additional file 2), which was recognized 
as an open reading frame on the reverse strand by GEN-
SCAN [40] with the predicted function of a Zn(II)2Cys6 
fungal transcription factor. To overexpress the fusarubin 
gene cluster in F. solani we chose a strategy were eYFP 
was substituted by the internal regulator fsr6. Initially, 
eYFP was removed from the pSHUT4-eYFP vector using 
BamHI and XhoI digestion. The digest was run on a 1% 
agarose gel and the linearized pSHUT4 backbone was 
purified with the QIAquick Gel Extraction Kit (Qiagen). 
The fsr6 gene was amplified by PCR using the primers 
D100 + E001, which each contained 20  bp overlaps to 
the linearized pSHUT4 backbone. The fsr6 gene and the 
pSHUT4 backbone were assembled in S. cerevisiae yeast 
recombinational assembly as described above. The veri-
fied pSHUT4-fsr6 vector was transformed into F. solani 
macroconidia as described above. The transformation 
yielded a single transformant, which was verified by col-
ony PCR, short-read sequencing (Additional file  6) and 
whole genome sequencing as described above.

Determination of growth and pigment production 
in the OE::fsr6 transformant
The radial growth of the OE::fsr6 mutant was initially 
measured and compared to the parental F. solani wild 
type strain. The experiment was performed on solid Cz 
and YES medium in 90  mm petri dishes, which were 
inoculated with 1000 spores (resuspended in 0.2% agar) 
at the center of each plate using three replicates of each 
strain. The plates were incubated at 28  °C with daily 
growth measurements for 5  days where a cardinal axis 
was drawn from the inoculation point to facilitate the 
measurements in X and Y radii lengths. The colony area 
was estimated as Area = rX∙rY∙π.

To compare pigment production in the OE::fsr6 strain 
to the wild type F. solani strain, 5000 spores were added 
to 50 mL YES medium in 250 mL baffled flasks in trip-
licates. The flasks were incubated for 6  days at 28  °C 
and 100  rpm. The produced pigments in the broth was 
extracted using a mixture of chloroform and methanol 
as previously described [28]. The chloroform phase was 
evaporated to dryness on a rotary evaporator at 40 °C and 
resuspended in 1 mL DMSO. The extracts were analyzed 
on a Hitachi Elite LaChrom HPLC system equipped with 
a 150 × 4.6  mm Ascentis Xpress 2.7  mm phenyl-hexyl 
column (Sigma Aldrich, USA) and coupled to a high 
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resolution mass spectrometer (compact qTOF, Bruker, 
Germany) operating in positive ionization mode using 
the settings as previously described [41].

To verify the identity of bostrycoidin and javanicin, 
twenty 0.6  mm plugs from the OE::fsr6 transformant 
were used to inoculate 2 × 1 L YES medium. The culture 
was grown for 7  days at 25  °C and 105  rpm, before the 
medium was extracted as described above. The result-
ing extract was subjected to purification by a preparative 
HPLC (Waters HPLC pump 515; Waters Binary Gradient 
Module 2545; Waters System Fluidics Organizer) coupled 
to a quadrupole mass analyzer (Waters Acquity QDa), a 
UV/Vis detector (Waters UV/Visible detector 2489) and 
a fraction collector (Waters Sample Manager 2767). The 
sample was separated by a C6-phenyl column (Phenom-
enex Gemini 5  µm C6-Phenyl, 110 Å, 250 × 10  mm) by 
injecting 1  mL per run and applying a linear gradient 
of water (VWR, HiPerSolv CHROMANORM HPLC–
MS grade) and acetonitrile (VWR, HiPerSolv CHRO-
MANORM HPLC–MS grade), both supplemented 
with 0.1% formic acid (VWR, 99% HiPerSolv CHRO-
MANORM LC–MS grade). The gradient initiated at 10% 
acetonitrile, increased to 99% over 15  min, and held at 
99% for 5  min with a constant flow at 10  mL/min. The 
system was controlled by MassLynx V4.2 set to collect 
the masses M = 290.1  Da and M = 285.1  Da. Javanicin 
and bostrycoidin eluted after 9.3 and 10.0  min, respec-
tively. The collected fractions were lyophilized and resus-
pended in CDCl3 (euroiso-top, 0.03% tetramethylsilane 
(TMS)) and 1H nuclear magnetic spectroscopy (NMR) 
spectra were recorded on a Bruker AVIII-600 MHz spec-
trometer (Bruker, Karlsruhe, Germany) equipped with a 
triple resonance cryogenically cooled probe with z-gradi-
ents and controlled by TopSpin 3.5pl6. All spectra were 
recorded at 298.1 K and calibrated to internal TMS. The 
obtained spectra were compared to published data for 
javanicin and bostrycoidin [42, 43].

Results and discussion
Assembly of shuttle vector pSHUT4::eYFP by yeast 
mediated recombinational cloning
To generate pSHUT4-eYFP four PCRs were performed 
to amplify the backbone, expression cassette and the 
two integration border sites using primers carrying 

15  bp homology to the neighboring fragment (30  bp 
total homology between all fragment pairs). The result-
ing products were visualized by gel electrophoresis, 
which matched the expected sizes (Fig. 1). The four frag-
ments were transformed into S. cerevisiae and six result-
ing colonies were selected to verify that the plasmid had 
been correctly assembled. After propagation in E. coli, 
the plasmids were digested with PstI and BglII, which 
resulted in the anticipated band pattern. Three plasmids 
were validated further by PCR yielding identical and 
correct band lengths. The eYFP cassette was ultimately 
sequenced in one of the plasmids, which confirmed that 
the plasmid had been correctly assembled (Additional 
file 3).

Fungal transformation and validation
The verified pSHUT4:eYFP was transformed into F. 
solani by ATMT, which resulted in more than 30 fun-
gal colonies from 10 plates, equal to 25 fungal colonies 
per 107 conidia. Seven randomly picked colonies were 
streaked on selective PDA of which six showed uninhib-
ited growth. Subsequent diagnostic colony PCR showed 
furthermore that the T-DNA had correctly recombined 
into the integration site in all colonies tested (Primer 
positions marked in Fig.  2a). Two of the transformants 
displaying fluorescence (Fig.  2b), OE::eYFP-2 and -6, 
were selected for further validation using a PCR based 
strategy. The initial PCR confirmed that the transfor-
mants contain the nptII gene. The following PCR with 
primers D096 + D097 yielded only a product in the wild 
type, possibly because the theoretical size of 5983 bp in 
the transformants was too large for successful amplifi-
cation. This suggests that the T-DNA had been inserted 
into the correct locus, which was further verified when 
primers targeting the T-DNA were combined in PCRs 
with primers targeting the up- and downstream regions 
(Additional file 4). Following a short-read sequencing of 
the final two PCR products validating correct recombi-
nation, we performed whole genome sequencing of the 
mutant ultimately verifying correct integration (Fig. 2c).

Functional characterization of F. solani eYFP transformants
To determine that eYFP was functionally expressed by the 
TEF-1α promoter from the integration site, OE::eYFP-6 

(See figure on next page.)
Fig. 2  Construction and validation of eYFP overexpression mutant Fs OE::eYFP-6. a Integration of pSHUT4-eYFP T-DNA cassette into a non-coding 
position of the F. solani genome through homologous recombination between identical segments (blue). Primer positions are marked, and a full list 
of primers is found in Additional file 1. b DIC pictures and EFI projections comparing parental and mutant strain phenotypes. Scale bar = 100 µm. c 
Genome sequencing validation displays correct integration of the pSHUT4-eYFP T-DNA cassette via homologous recombination. d Growth and eYFP 
induction of F. solani wild type and OE::eYFP-6 during growth on nine different media. The left panel illustrates growth (optical density) over a 7 days 
period. The right panel illustrates fluorescence at excitation/emission wavelength of 514/526. All data points are the average of four biological 
replicates, expressed as a percentage of the maximum observed value
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was selected for further analyses in a time study together 
with the wild type. The results showed that fluorescence 
could be detected after 2 days on all media, except for PDA 
and Cz-NaCl, which was delayed by 1  day (Fig.  2d). The 
fluorescence signal continued throughout the experiment 
on all media, although a decrease followed by stagnation 
was observed on YES, YPG and Cz. This could indicate the 
cultures had reached a phase with reduced cellular activ-
ity caused by nutrient depletion. The observation that the 
promoter is active on all the media tested is valuable infor-
mation in future studies where the examined target genes 
require a specific growth medium or condition.

Targeted activation of the PKS3 gene cluster results 
in production of javanicin and bostrycoidin pigments
We identified an orthologue to the local transcription fac-
tor fsr6 controlling activation of the PKS3 biosynthetic 
gene cluster in F. fujikuroi (Fig.  3a). The gene was rap-
idly replaced in the Agrobacterium expression cassette 
of pSHUT4-eYFP yielding the plasmid pSHUT4-fsr6 (for 
plasmid validation, see Additional file  5) (Fig.  3b). The 
fungal transformation yielded a single mutant with a dis-
tinct deep red/purple phenotype, which is visibly different 
from the white color of the wild type when grown on PDA 
medium (Fig. 3c). In addition to the fsr6 gene, we applied 
the presented system to introduce and express several 
other genes in F. solani (not shown). In our experience, 
the system, on average, yields one transformant per plate. 
During the isolation process of the OE::fsr6 transfor-
mant, we observed a reduced growth rate. The transfor-
mant was therefore grown on Cz and YES agar medium 
together with the wild type. This experiment confirmed 
that the transformant grew significantly slower than wild 
type (Fig. 3d). This reduced growth rate could be due to 
the accumulation of pigments and thereby be responsi-
ble for the low transformation success. The transformant 
was subsequently screened by diagnostic PCR, which 
indicated that the expression cassette had been correctly 
inserted (Additional file 6). This was further validated by 
whole genome sequencing of Fs OE::fsr6 (Fig.  3e). Anal-
ysis on HPLC-HRMS of the secondary metabolites pro-
duced in liquid cultures of and wild type F. solani strain 
and the OE::fsr6 displayed two dominant peaks not vis-
ible in wild type extracts at 7.5 and 8.2 min with masses 
matching javanicin and bostrycoidin (Fig. 3f ). These com-
pounds were subsequently isolated by preparative HPLC 
and their identity confirmed by NMR (Additional files 7 
and 8). These two compounds are derived from the PKS3 
cluster and thereby confirming functional integration of 
the fsr6 overexpression cassette into F. solani.

Future potential of the vector system
The aim of our study was to develop a platform for reli-
able targeted transformation of F. solani, which can be 
used to increase our understanding on this important 
pathogenic fungus. One research area that can benefit 
from the platform is the secondary metabolite research 
in Fusarium. So far, the only secondary metabolite to 
be linked to a gene directly in F. solani is sansalvamide 
[21]. However, comparative analyses have revealed that 
F. solani contain numerous biosynthetic gene clus-
ters, including 13 polyketide synthases (PKSs) of which 
only three can be linked to a product based on orthol-
ogy [12–14, 16, 17, 44]. The pSHUT4-eYFP vector can 
be modified and used to overexpress local transcription 
factors of biosynthetic gene clusters, which has proven 
a highly successful approach to identify novel secondary 
metabolites [45]. This approach has already been adapted 
in other Fusarium species, which for example has led to 
discovery of fusarielins in F. graminearum [46], equise-
tin in F. heterosporum [47] and fujikurins in F. fujikuroi 
[48]. The simple workflow needed to overexpress a tar-
get gene (e.g. transcription factor) is illustrated in Fig. 2b. 
First, the eYFP has to be looped out by digesting the plas-
mid with XhoI and BamHI. The target gene can then be 
inserted into the linearized plasmid by yeast recombina-
tional cloning and transferred into an active position in 
the F. solani genome by ATMT.

Among the 13 PKSs in F. solani, we have identified 
putative transcription factors for seven gene clusters for 
which we have adopted this system. Other fungal species 
can however also be targeted in a similar approach, the 
only requirement is that guiding integration border sites 
should be replaced with a suiting region from the tar-
get organism. Potentially, the presented vector could be 
used to transform closely related members of the FSSC 
given the integration locus shares high sequence similar-
ity to the integration site in F. solani f. sp. pisi. A similar 
locus in the genome of F. neocosmosporiellum shares 86% 
nucleotide content with the integration border sites [49], 
however, whether pSHUT4 can successfully be applied in 
such a transformation experiment remains to be tested. 
It should be noted by researchers wishing to apply the 
system for genetic studies concerning signal transduc-
tion or virulence etc., we recommend carefully monitor-
ing potential change the expression of neighboring genes 
when introducing any expression cassette, as introduc-
tion of recombinant DNA may compromise the intrin-
sic regulation. The system is not restricted to ATMT as 
linearized or circular plasmids can be used for protoplast 
transformation in microorganisms where this is feasible.
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Conclusions
In this study we present the implementation of a novel 
vector system that allows for fungal transformation and 
strong gene expression in the crop-pathogen F. solani. 
As a case study, we performed targeted activation of the 

biosynthetic fsr gene cluster responsible for mycelial pig-
mentation. From cultivation experiments in this study, 
we were able to isolate and confirm the chemical struc-
tures of the red pigments javanicin and bostrycoidin. Tar-
geted overexpression of transcriptional regulators is thus 
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a feasible approach to activate biosynthetic gene clusters 
as a venue for isolating and describing novel secondary 
metabolites in the FSSC.
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