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Peroxisome proliferator–activated receptor (PPAR)-α is a ligand-activated transcription
factor distributed in various tissues and cells. It regulates lipid metabolism and plays vital
roles in the pathology of the cardiovascular system. However, its roles in the
gastrointestinal tract (GIT) are relatively less known. In this review, after summarizing
the expression profile of PPAR-α in the GIT, we analyzed its functions in the GIT, including
physiological control of the lipid metabolism and pathologic mediation in the progress of
inflammation. The mechanism of this regulation could be achieved via interactions with gut
microbes and further impact the maintenance of body circadian rhythms and the secretion
of nitric oxide. These are also targets of PPAR-α and are well-described in this review. In
addition, we also highlighted the potential use of PPAR-α in treating GIT diseases and the
inadequacy of clinical trials in this field.

Keywords: peroxisome proliferator–activated receptor (PPAR)-α, gastrointestinal diseases, metabolism,
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HIGHLIGHTS

In this review, after briefly introducing the characteristics of the PPAR family in the liver and
cardiovascular system, we highlighted the specialties of PPAR-α and summarized its role in the
gastrointestinal tract. It is responsible for the regulation of nutrient uptake and mediation of the
inflammatory process. Moreover, studies also reported its participation in the maintenance of
gastrointestinal circadian rhythms or circadian clock and satiety. These may provide novel and
therapeutic targets for the treatment of gastrointestinal and systemic diseases.

INTRODUCTION

Since the discovery and cloning by Issemann et al. in 1990, peroxisome proliferator–activated
receptors (PPARs) have received increasing attention for their multiple functions (Issemann and
Green, 1990). Three subtype proteins found within the family are known as PPAR-α, PPAR-γ, and
PPAR-β/δ, regulating the lipid metabolism and inflammation state (Dreyer et al., 1992; Bordet et al.,
2006). They share common functions in metabolism and inflammatory regulation but are distinct
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from one another in both the distribution patterns and target
molecules (Braissant et al., 1995). The common structure of
the ligand-binding domain (LBD) in the shape of the letter Y
laid the basis for the similarity and differences among this
protein family (Mandard et al., 2004). The first arm
containing hydrophilic amino acid residues is responsible for
ligand binding and exists in all three subtypes, while the
remaining two parts consisting of far fewer amino acid
hydrophilic residues account for the specialties among them.
PPAR-α is a transcription factor belonging to the nuclear
receptor superfamily and could be activated by fibrates,
eicosanoids, and fatty acids (Forman et al., 1997). However,
contrary to steroid hormone receptors acting as homodimers,
transcriptional regulation by PPARs requires heterodimerization
with the retinoid X receptor (RXR; NR2B) in the same receptor
superfamily (Mandard et al., 2004).

PPARs are ligand-activated transcription factors originally
known to be activated by hepatocarcinogens and lead to
peroxisome proliferation (Desvergne and Wahli, 1999).
They are detected in a wide range of tissues, including
endothelial and muscular cells and macrophages (Mφs)
and monocytes. This endows them with a wide range of
roles, including immune functions all over the body and
regulations of a specific organ (Mandard et al., 2004). The
well-recognized roles in alleviating heart dysfunction and
hypertension in the cardiovascular system have been well-
characterized (Goikoetxea et al., 2004; Usuda and Kanda,
2014), and their abilities to regulate fatty acid transportation
and oxidation in the liver have been well-illustrated, further
unveiling its association with various kinds of liver injuries
(Botta et al., 2018; Kong et al., 2021). These could lead to
some systematic diseases including diabetes and result in
pathological dysfunctions in multiple organs (R. Moschen
et al., 2012). In the meantime, studies have verified their roles
in peripheral and neural inflammation (Piomelli, 2013).
However, although much effort has been put into
investigating its roles in the cardiovascular system,
investigations on its roles in the gastrointestinal tract were
relatively less. Recent analysis has certificated the distribution
and activation of PPAR-α in the GIT with a higher level in the
more differentiated cells near the lumen compared to those
residing in the crypts (Mansén et al., 1996). Furthermore,
studies also confirm the expression of PPAR-α in enterocytes
along the small intestine with the highest levels in the
duodenum and the jejunum. A higher level of PPAR-α is
also found in villus tips than in crypts (Bünger et al., 2007).
This expression pattern is similar to that of several other
genes involved in dietary fat absorption, including
microsomal triglyceride transfer protein (Mttp),
diacylglycerol acyltransferase 1 (Dgat1), fatty acid
translocase (Cd36), and fatty acid transport protein 4
(Fatp4), and lay the foundation for their wide interactions
(Suzuki et al., 2009).

In this review, the roles of PPAR-α in the development of
inflammation and regulation of metabolism are depicted and
show its broad regulatory effects in the GIT and the whole body.
Meanwhile, as agonists and antagonists are commonly used as

drugs for the cardiovascular system (CVS), we evaluated the
possibilities of their use in treating GIT diseases.

A PIVOTAL REGULATOR OF METABOLISM

As mentioned earlier, PPAR-α is involved in regulating the
expression of various genes in lipid metabolism. However,
despite the well-depicted regulation of genes associated with
lipid metabolism in the liver, the regulation of genes by
PPAR-α in the intestine is relatively less described (Steineger
et al., 1994). In fact, in addition to the similarity in expression
modes, Affymetrix arrays and quantitative RT-PCR analysis have
demonstrated a PPAR-α–dependent upregulation of eight genes
concerning transporters and phase I/II metabolism during fasting
(the details of these genes are shown in Table 1) (van den Bosch
et al., 2007). Several other studies also corroborated the increase
of PPAR-α in mice and the downregulation of genes related to
lipid metabolism (Escher et al., 2001; Shimakura et al., 2006).

Intestinal fatty acid–binding proteins (IFABPs) are important
for regulating the uptake and transportation of the long-chain
fatty acids (LCFAs) and significant biomarkers of gastrointestinal
diseases (Holehouse et al., 1998; Kokesova et al., 2019). Detected
more in proximal than in distal small intestine (Poirier et al.,
1996), the IFABP expression in the rat jejunum showed
significant enhancement during the postnatal development,
concomitant with the increased mRNA level of PPAR in situ.
Electrophoretic mobility shift assays revealed the existence of the
PPAR-α-9-cis-retinoic acid receptor (RXRα), a heterodimer
whose binding activities could be enhanced by an additional
PPAR-α agonist WY-14643 (Mochizuki et al., 2001). Although
this is inconsistent with some previous findings that the levels of
PPAR-α and IFABPs show contrary variations under some
treatment (Poirier et al., 1997), the regulation of metabolism
by PPAR-α via gene transcription might be undeniable as more
investigations utilizing different types of the PPAR-α agonist
witnessed a concomitant increase of the IFABP level with PPAR-
α (Mallordy et al., 1995).

Meanwhile, studies comparing the expression mode of
genes between obesity-resistant A/J and obesity-prone
C57BL/6J mice show a prominent upregulation of genes
regulating lipid metabolism. However, this increase is
restricted in the small intestine with no significant change
in other organs such as the liver and white adipose tissue.
Experiments in mouse Caco-2/TC7 cells and in human
jejunal biopsies show that PPAR-α activation using WY-
14643 increases the expression of ATP-binding cassette
transporter A1 (ABCA1) (Knight et al., 2003). However,
when WY-1463 was replaced by fibrates, the levels of both
ABCA1 and protein-1c gene (SREBP-1c) increased. This is
concomitant with the increase in the expression of genes
modifying cholesterol trafficking and the decreased capacity
of cholesterol esterification. Meanwhile, other findings show
that the usage of fenofibrate, a selective PPAR-α agonist, and
elafibranor (GFT505), a selective PPAR-α/δ agonist, did not
remain the same in different experiments (Colin et al., 2013).
Similar experiments further verified that this modulation
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TABLE 1 | Metabolic genes regulated by PPAR-α.

Abbreviation Full name Localization Reference

Cypt4a10 Cytochrome P450, family 4, subfamily a, polypeptide 10 Microsome Wu et al. (2020)
Abca1 ATP-binding cassette, sub-family A (ABC1), member 1 Nucleoplasm and vesicles Sasaki et al. (2019)
Smct1 (Slc5a8) Solute carrier family 5 (iodide transporter), member 8 Apical Sivaprakasam et al. (2017)
Sert (Slc6a4) Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 Basolateral Mastinu et al. (2012)
Dtd (Slc26a2) Solute carrier family 26 (sulfate transporter), member 2 Apical Haila et al. (2001)
Slc25a36 Solute carrier family 25, member 36 Mitochondria Lee et al. (2018)
Chst4 Carbohydrate (chondroitin 6/keratan) sulfotransferase 4 Intracellular membrane Yu et al. (2018)
Mgst1 Microsomal glutathione S-transferase 1 Intracellular membrane Cui et al. (2010)

TABLE 2 | Genes regulating fat metabolism by PPAR-α.

Abbreviation Full name Functions Reference

FATP Fatty acid transport protein Transport fatty acids Ochiai et al. (2019)
FAT/CD36 Fatty acid translocase Fatty acid translocase Haidari et al. (2021)
NPC1L1 NPC1-like intracellular cholesterol

transporter 1
Membrane transportation Long et al. (2021)

Acox1 Acyl-CoA oxidase 1 Rate-limiting enzyme of the peroxisomal beta-oxidation pathway acyl-CoA oxidase 1 Vluggens et al.
(2010)

Fabp1 Fatty acid–binding protein 1 Transport long-chain fatty acids through cell membranes and mediate intracellular
transport as a chaperone

Valizadeh et al.
(2021)

mAspAT Mitochondrial aspartate
aminotransferase

Mitochondrial aspartate aminotransferase Ochiai et al. (2019)

FIGURE 1 |Model diagram of PPAR-α-regulating gene expression and multiple physiological processes in the gut. (A)Multiple types of fatty acid transporters are
found on the surface of gastrointestinal epithelial cells, and most of their synthesis requires the activation of PPAR-α. (B) Other proteins maintaining the homeostasis of
GIT are also regulated by PPAR-α, such as ZO-1 for gut permeability. (C) PPAR-α also regulates the expression of CHOP, which is responsible for regulating the
endoplasmic reticulum stress (ERS).
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could also be applied to the expression of genes regulating
lipid metabolism (Kondo et al., 2006). For example,
intraperitoneal (IP) administration of pirinixic acid (Wy-
14643), a selective and highly potent PPAR-α agonist,

stimulates fatty acid oxidation (FAO) and ketogenesis in
the intestine This is concomitant with a significant
increase in the expression of cytochrome P450 1A1(CPT
1A1) in the jejunum and duodenum and of HMG-CoAS2

FIGURE 2 | Diagram of the PPAR-α–mediated inflammatory process and the regulation of circadian rhythms or circadian clock and satiety in the gut. (A) In many
gastrointestinal diseases, PPAR-α is activated and initiates the expression of multiple anti-inflammation mediators, including ICAM-1 in vascular epithelial cells and IL-22
in NKp46+ ILC3 cells. These effects help reverse the imbalance of the T-cell number and maintain the homeostasis of the GIT. (B) Apart from its role in regulating the
inflammatory process, PPAR-α could also affect the circadian rhythms or circadian clock (via the regulation of the c-Jun expression) and satiety (by controlling the
secretion of NO, as mentioned in the main body of the review, and Figure 3 and Table 3 are referred for detailed information) in the body. Studies have demonstrated its
close relation with NO and dopamine, while the detailed mechanism remains to be elucidated.

FIGURE 3 | Pattern diagram of PPAR-α involved in TLRs and NOD2 on gastrointestinal circadian rhythms or circadian clock. Studies have found that
gastrointestinal circadian rhythms or circadian clock is affected by the gut flora, which is mainly sensed via TLRs and NOD2. This stimulation is further detected by the
c-Jun N-terminal kinase (JNK) and binds to the enhancer heptamer motif, resulting in the activation of PPAR-α and, in turn, activating the transcription of Bmal and Clock,
which exert a direct impact on the regulation of gastrointestinal circadian rhythms or circadian clock.
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in the jejunum (Stavinoha et al., 2004; Sérée et al., 2004).
However, in this experiment neither CPT 1A nor HMG-
CoAS2 expression was increased in the liver, suggesting a
pivotal role the intestine plays in this regulation (Karimian
Azari et al., 2013). Other genes in this type of regulation
include fatty acid translocase (FAT)/cluster of differentiation
36 (CD36), fatty acid transport protein (FATP), NPC1L1,
Acox1, Fabp1 (Hutch et al., 2020), and mitochondrial
aspartate aminotransferase (mAspAT) (refer to Table 2 for
more detailed information) (Uchida et al., 2011; Roberts,
1989; Valasek et al., 2007). Contrarily, Pan et al. found a
PPAR-α independent way of OEA to increase the secretion of
triacylglycerols, ApoB, and MTP in differentiated Caco-2
cells and primary enterocytes (Pan et al., 2018).
Consistently, Mariana et al. also found no pertinence
between the component of nutrient transporters and the
level of PPAR-α (Losacco et al., 2018). Also, in many
experiments, the level alteration in the intestine differs
from that in the liver and the range of targeted genes
varied with different kinds of agonists, indicating a
complex mechanism waiting for investigation (Motojima
et al., 1998). The use of PPAR-α agonists, both natural and
synthetic, is an effective and widely accepted method to
examine its functions (as shown in Table 2) (Lefebvre
et al., 2006). Further analysis of these molecules, including
oleoylethanolamide (OEA), palmitoylethanolamine (PEA),
and WY-14643, provides the foundation for the
understanding of the broad variety of PPAR-α functions.

All these findings show novel roles of PPAR-α in the intestine
compared to those in the liver and are worth more investigations
for full elucidation (Refer to Figure 1 for visual understanding).

Oleoylethanolamide, a Widely Accepted
Endogenous Peroxisome
Proliferator–Activated Receptor-α Agonist
Used in Investigations
Oleoylethanolamide (OEA) is a kind of endogenous PPAR-α
agonist with high affinity and plays an important role in the
treatment of obesity and atherosclerosis. It is a structural
analog of the endocannabinoid anandamide, an endogenous
free fatty acid known for its role in regulating lipid

metabolism (Rodríguez de Fonseca et al., 2001). It could
be derived from digestion products by intestinal microbes
and could be secreted endogenously by enterocytes (Obici
et al., 2002). Meanwhile, it is also synthesized by astrocytes
and neurons and could serve as a significant neurotransmitter
regulating satiety (Cani et al., 2004). Most of these functions
are mediated by PPAR-α, making it a potential target toward
diabetes and giving it increasing significance considering the
relationship with cardiovascular and neuron dysfunctions
mentioned earlier (Koethe et al., 2009). It is also reported
to bear a higher affinity compared with the other two agonists
(Lo Verme et al., 2005; Brown et al., 2017). Moreover, the use
of OEA supplements has been approved by the FDA for the
treatment of obesity and shows prospective effects (Brown
et al., 2018a). This is contrary to some previous studies
revealing the side effects of OEA, indicating the
requirement for more detailed studies (Nielsen et al., 2004;
Brown et al., 2018b). These regulations in general help with
the maintenance of a proper level of PPAR-α in the intestine
and the homeostasis under its regulation.

Apart from the roles in regulating metabolite-associated gene
expressions, OEA is also found to lower body weight and relieve
hyperlipidemia in obese rats via the regulation of NO synthesis
(Fu et al., 2003). Further analysis showed that it could also
regulate satiety through a paracrine PPAR-α–mediated
mechanism involving the recruitment of afferent sensory fibers
(DiPatrizio and Piomelli, 2015). OEA produced by small-
intestinal enterocytes during dietary fat digestion activates
PPAR-α to trigger an afferent signal that causes satiety
(Igarashi et al., 2017). Using a rat model of Roux-en-Y gastric
bypass (RYGB), Hankir et al. found that marked reductions in fat
appetite are due to enhanced gut lipid sensing through PPAR-α,
which is in turn transmitted to the central nervous system (CNS)
by sensory vagal afferents, culminating in increased dorsal striatal
D1R signaling (Hankir et al., 2017). However, using multiple
dopamine D2/D3 receptor agonists and celiac superior
mesenteric ganglionectomy (CGX) or subdiaphragmatic vagal
deafferentation (SDA), Shahana et al. showed that IP OEA’s
anorectic effect may be secondary to impaired locomotion
rather than physiological satiety and that vagal afferents do
not mediate exogenous OEA’s anorectic effects. They also
suggested a role for spinal afferents in addition to an

TABLE 3 | Representative agonists of PPAR-α.

Classification Name Source Usage Limitations References

Natural and multi-
functional acids

Oleoylethanolamide Oleic acid-derived Diabetes Mechanisms not fully
clear

Laleh et al. (2019)

Palmitoylethanolamine Naturally occurring lipid that
falls under the fatty acid
amide group

Neuroinflammation Multi-functions and
lack of clinical data

Skaper et al.
(2015)

Mimetic acid WY-14643 A versatile fatty acid mimetic Cancer and inflammation Not so typical as a
PPAR agonist

Pollinger and
Merk (2017)

Novel PPARα-
selective agonists

9-hydroxy-10(E),12(E)-
octadecadienoic acid

Koji extract Decreases plasma triglyceride and
glucose levels and body weight gain

Selectivity unclear Yoshizaki et al.
(2014)

Novel PPARα/γ dual
agonists

LDT477 Treatment of metabolic and
inflammatory diseases

In vivo effects remain
unknown

Maltarollo et al.
(2018)
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alternative, non-neuronal signaling route (Fedele et al., 2018).
Taken together, these findings raised the possibilities for the
treatment of eating disorders by OEA and other PPAR-α–related
products (Bünger et al., 2007).

IMPORTANT REGULATORS OF
INFLAMMATION

Intestinal bowel diseases (IBD), including mainly Crohn’s disease
and ulcerative colitis, are relapsing and chronic GIT disorders
becoming increasingly prevalent all over the world (Windsor and
Kaplan, 2019). Despite the poor understanding of its
pathogenesis, tissue examinations of various patients show
different levels of mucosa injuries concomitant with the
courses of diseases (Ahmad et al., 2017). These findings
suggest the dysregulation of epithelial cell functions resulting
from stimulations both directly from the lumen contents and
cytokines secreted by lymphocytes and Mφ. As is known that
metabolites could serve as mediators of IBD, it is reasonable to
understand the underlying indirect role PPAR family proteins
plays in the process of IBD (Roediger and Nance, 1986).
Meanwhile, transcriptomic and proteomic profiling of human
colon biopsy specimens showed the downregulation of PPAR
signaling pathways in IBD (Jin et al., 2019). Studies also found
disruption of the protective roles of PPAR-α agonists in PPAR-α-
KO mice, indicating the pivotal functions it may have in the
course of GIT diseases (Capasso et al., 2014). Also, the level of
PPAR-α is decreased in a resection model of short bowel
syndrome and is consistent with its level alteration in high
malignant human tissue mucosa (Wang et al., 2007). Using
human HCA7 cells, Jackson et al. further convinced the
activation of PPRE-tk-luc, a PPRE-driven reporter gene, by
PPAR-α using the transfection method (Jackson et al., 2003).
In the dextran sodium sulfate (DSS)–induced mouse ulcerative
colitis model, Manoharan et al. found that PPAR-α regulates the
expression of IL-22 and antimicrobial peptides RegIIIb, RegIIIg,
and calprotectin (Manoharan et al., 2016). IL-22 is an important
member of the IL-10 cytokine family and has bidirectional
functions for both anti-inflammation and pro-inflammation
(Wei et al., 2020). However, the detailed mechanism by which
PPAR-α activated NKp46+ ILC3 cells, the major producers of IL-
22 under homeostatic conditions in the gut, still remains to be
elucidated. Studies also corroborated that PPAR-α played
defensive roles in the progression of IBD and CAC mainly via
the stimulation of antimicrobial peptides RegIIIb and RegIIIg
(Zheng et al., 2008; Killig et al., 2014) In interleukin 10 knockout
(IL-10−/−) colitis mice, treatment with fenofibrate repressed
interferon-gamma and IL-17 expression in isolated T cells.
Considering the activation of PPAR-α by fenofibrate, this
protection could be attributed to PPAR-α and put into clinical
uses (Lee et al., 2007). Increased levels of Th17 and Th1 cells in
this model may also account for injuries in the GIT as the
secretion of IL-17 by Th17 is a core step in the progression of
GIT disorders (Yang et al., 2017). An increasing number of other
pro-inflammatory factors including IL-1b, IL-6, and TNF-α could
be possible reasons for this enhancement in Th17 and Th1 cells.

Concomitant with this, DNBS-treated PPAR-α–knockout
(PPAR-αKO) mice experienced severer colon injuries
accompanied with upregulation of ICAM-1 (Cuzzocrea et al.,
2004). The levels of TNF-α and interleukin-1β (IL-1β) were also
increased, resulting in antibody-mediated membrane
dysfunctions (Stack et al., 1997). The decreased level of
ICAM-1 and other adhesion molecules including VCAM-1
and P-selectin reduces the infiltration of neutrophils and ROS
formation and thus aggravates the intestinal inflammation
(Cuzzocrea et al., 2001). Apart from the anti-inflammatory
roles of PPAR-α on DNBS-induced colitis, the functions of
PPAR-α could also be enhanced by glucocorticoids (GCs).
Other studies also show a less degree of colitis in WT mice
compared to that in PPAR-αKO mice with an inhibition of p65
phosphorylation, which is an important regulator of the NF-κB
pathway (Riccardi et al., 2009). Similarly, in human enterocytes
(Caco-2), Shinsuke et al. also found the involvement of NF-κB
after OEA injection (Otagiri et al., 2020). Also, in the splanchnic
artery occlusion (SAO) shock model, administration of PEA
5 min before reperfusion significantly reduced the
inflammatory parameters, including IL-1β and TNF-α. These
effects were at least partly dependent on PPAR-α as the decrease
of inflammatory markers was less significant in PPAR-α−/− mice
than that in WT ones (Di Paola et al., 2012). In conclusion, all
these studies provide novel insights into the roles of PPAR-α in
mediating GIT inflammation and provide a potential target for
pharmaceutical synthesis.

As an analogy of OEA, palmitoylethanolamide, a well-
recognized PPAR-α agonist, could also exert an
antiproliferative effect and downregulate VEGF signaling in
Caco-2 through selective and PPAR-α-dependent inhibition of
the Akt/mTOR pathway (Sarnelli et al., 2016). Several studies
have corroborated the effect of palmitoylethanolamide in
attenuating the GIT injuries using different models of both
humans and mice (Borrelli et al., 2015). Mustafa et al.
demonstrated its roles in modulating intestinal permeability in
a PPAR-α–dependent method using the antagonist GW6471
(Karwad et al., 2017). In the intestine, PEA treatment also
improves all macroscopic signs of UC and decreases the
expression of the pro-inflammatory biomarkers, including
PGE2, IL-1β, and TNFα. Further analysis shows that this
effect is mediated mainly by selective targeting of the S100B/
TLR4 axis on ECG and downstream inhibition of NF-lB-
dependent inflammation (Esposito et al., 2014). Using mice
with chronic intestinal inflammation induced by croton oil,
Raffaele et al. found significantly decreased levels of PEA in
inflammatory mice which could probably contribute to the
exaggerated transition (Capasso et al., 2001). However, Cluny
et al. showed no difference in gut mobility between PPAR-αKO
and WT mice, indicating a PPAR-α–independent pathway in
remaining elucidation (Cluny et al., 2009).

Apart from the roles as a significant mediator in IBD, PPAR-α
can also regulate the progress of GIT cancer. Studies have found
gastric gavage of the PPAR-α ligand bezafibrate inhibited the
DSS-induced colitis by and lowered trefoil factor-2 content in
colonic mucosa (Tanaka et al., 2001). It also inhibits the
formation of aberrant crypt foci (ACF), which is recognized as
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a precursor lesion in colorectal cancer (Shivapurkar et al., 1997).
Further investigations show increased expressions of
cyclooxygenase-2 (COX-2), an important mediator in the
development of colonic carcinoma in the human colorectal
epithelial cell line HT-29 (Prescott and White, 1996; Ma et al.,
2018). This could be explained by previous findings that show
COX-2–mediated regulation is one of the important downstream
pathways induced by TFF2 and enhanced the COX-2 expression
via PPAR ligands in some human colorectal epithelial cells (Ikawa
et al., 2001; Meade et al., 1999).

MEDIATION BETWEEN METABOLISM AND
INFLAMMATION

Acknowledged as the “second brain” in the human body, gut
microbiota play essential roles in the gastrointestinal tract
that is regarded as the largest digestive as well as immune
organ (Ridaura and Belkaid, 2015). Based on our
aforementioned analysis, PPAR-α exerts a significant
influence on the components of gastrointestinal microbes
and the host physical health condition via the regulation
of gene transcription (Rooks and Garrett, 2016; Ashrafian
et al., 2019; Hasan et al., 2019). Lactobacillus species are
significant protectors of the GIT, and the reduction of their
number is an important characterization in many GIT
diseases (Tan et al., 2020). This regulation is partly
mediated via the PPAR-α as sub-chronic OEA
administration to mice fed with a normal chow pellet diet
changes the fecal microbiota profile and shifts the Firmicutes:
Bacteroidetes ratio in favor of Bacteroidetes (in particular
Bacteroides genus). It also decreases the number of Firmicutes
(Lactobacillus) and reduces the intestinal cytokine expression
by immune cells isolated from Peyer’s patches. (Di Paola
et al., 2018; Cai et al., 2020; Kersten et al., 1999), Meanwhile,
the introduction of probiotic Lactobacillus plantarum into
simian immunodeficiency virus (SIV)–inflamed intestinal
lumen resulted in a higher level of PPAR-α concomitant
with a recovered expression of PPAR-α–targeted genes
(Crakes et al., 2019). Studies also found that mice fed with
high-fat chow and supplemented with the probiotic bacteria
Lactobacillus paracasei ssp. paracasei F19 (F19) exhibit
significantly less body fat. This is also accompanied by a
higher level of angiopoietin-like 4 (ANGPTL4), a circulating
lipoprotein lipase (LPL) inhibitor regulated by PPAR-α and
shows the protective roles of it (Aronsson et al., 2010). These
findings corroborated the roles of PPAR-α with Lactobacillus
and provided novel prospects for future studies. Apart from
the roles in modulating GIT functions, the effect of this
interaction could also alter the physiological and
pathological conditions of other organs via metabolites
transporting in blood as experiments found that exposure
to high-fat diets and food deprivation enhances PPAR-α-
dependent signaling in the liver and intestine. Lactobacillus
plantarum FRT10 could also alleviate the high-fat diet-
induced obesity in mice via regulating the PPAR-α signal
pathway (Duparc et al., 2017).

Apart from the roles in regulating metabolism and
inflammation, respectively, interactions between PPAR-α and
gut microbiota also help with the maintenance of the circadian
rhythms. This could be confirmed by its disruption under
microbiota depletion and result in activation of the c-Jun
expression, leading to the dysregulation of a serious set of
genes related to inflammation (Mukherji et al., 2013).

Nitric oxide (NO) is one of the major biomarkers of GIT
inflammation mainly synthesized by the inducible nitric oxide
synthase (iNOS) enzyme in serum and affected tissues. It can
exacerbate GIT inflammation and is elevated in times of
colitis (Kamalian et al., 2020). Meanwhile, it also has close
interplays with microbial components and liver metabolism
(Yaguchi and Yaguchi, 2019). Studies using leukotriene B4,
a PPAR-α agonist, have found naturally occurring PPAR
agonists can inhibit the iNOS enzyme pathway. They further
proposed the possibility of this modulation by the stress
protein heme oxygenase 1, although the exact mechanisms
wait for more investigations (Colville-Nash et al., 1998).
Concomitantly, Fu et al. provided evidence for this correlation
in OEA which was also recognized as a potential regulation of
satiety (Fu et al., 2003; Sihag and Jones, 2018) (Refer to Figure 2
for vivid understanding).

Circadian Rhythm Regulation in the
Gastrointestinal Tract and its Interplays
With Peroxisome Proliferator–Activated
Receptor-α
Studies have found that circadian rhythms or circadian clock
regulation is achieved via the expression of key genes and
downstream pathways, as shown in Table 4. These genes take
control of a broad range of physiological activities and share close
interactions. One typical role of PPAR-α in this process lies in its
activation of the clock gene via RORα and subsequent influence
on the expression of E4BP4. However, as far as we are concerned,
the current analysis focused on the roles of PPAR-α in the CVS,
and more investigations focusing on its roles in GIT are
recommended. Refer to Figure 3 for photographic illustration.

PHARMACOLOGICAL PERSPECTIVE OF
PEROXISOME
PROLIFERATOR–ACTIVATED
RECEPTOR-Α

Numerous investigations have been put into the analysis of
PPAR-α due to its wide distribution and multiple functions in
a variety of tissues and cells (Berger and Moller, 2002). Long-
chain fatty acids and their derivatives proved to be the main
sources of natural PPAR-α agonists, while synthetic ones also play
important roles in these studies (Kliewer et al., 1997). Although
some agonists of PPAR-α have been used for treating different
diseases, many of them are still in the experimental stage (Feng
et al., 2016). Most clinical trials focused on their usage in
metabolic diseases, especially those symptoms in the liver,

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8640397

Guo et al. PPAR-α as a Pivotal Regulator of the GIT

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


while others concerning the gastrointestinal tract are relatively
less (Petrosino et al., 2010). Also, considering the difference of
distribution in humans and mice, more clinical trials are required
in order to fully elucidate the mechanisms. Moreover, many
exogenous nutrients and endogenous metabolites serve as
ligands for PPAR-α while their functions and related dosage
vary a lot. This increases the difficulty in developing clinical uses
and requires further elucidation (O’Sullivan, 2016). However, we
considered it worth the time and effort due to its potential usage
in treating GIT diseases and decreasing the number of IBD
patients all over the world.

CONCLUSION

PPAR-α has been recognized as an important regulator in the
cardiovascular system and lipid metabolism. In addition, it also
exerts substantial impacts on the GIT functions both
physiologically and pathologically. Other than the well-known
abilities to regulate lipid metabolism, PPAR-αmediates the process
of inflammation via the regulation of cytokine secretion and
activation of inflammatory pathways. Furthermore, the target
genes of PPAR-α include those controlling gut circadian
rhythms and the synthesis of NO, which could form an
integrated regulatory network of GI functions. Meanwhile,
many endogenous and exogenous food metabolites serve as

agonists of PPAR-α, and their use in the treatment of GIT
diseases is expected to shed light for a bright future.
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GLOSSARY

ABCA1 ATP-binding cassette transporter A1ATP-binding cassette, sub-
family A, member 1

ABCA1 ATP-binding cassette transporter A1ATP-binding cassette, sub-
family A, member 1

ACF aberrant crypt foci

ANGPTL4, a circulating lipoprotein lipase angiopoietin-like 4

Cd36 fatty acid translocase

CD36 cluster of differentiation 36

CGX celiac superior mesenteric ganglionectomy

Chst4 carbohydrate (chondroitin 6/keratan) sulfotransferase 4

CNS central nervous system

COX-2 cyclooxygenase-2

CPT 1A1 cytochrome P450 1A1

CVS cardiovascular system

Cypt4a10 cytochrome P450, family 4, subfamily a, polypeptide 10

Dgat1 diacylglycerol acyltransferase 1

DSS dextran sodium sulfate

Dtd Slc26a2 solute carrier family 26 (sulfate transporter), member 2

ERS endoplasmic reticulum stress

F19 paracasei ssp paracasei F19

FAT fatty acid translocase

FATP fatty acid transport protein

Fatp4 fatty acid transport protein 4

GCs glucocorticoids

GFT505 elafibranor

GIT gastrointestinal tract

IBD intestinal bowel diseases

IFABPs intestinal fatty acid–binding proteins

IL-1b interleukin-1b

iNOS inducible nitric oxide synthase

IP intraperitoneal

LBD ligand-binding domain

LCFAs long-chain fatty acids

mAspAT mitochondrial aspartate aminotransferase

Mgst1 microsomal glutathione S-transferase 1

Mttp microsomal triglyceride transfer protein

Mφ macrophages

NO nitric oxide

OEA oleoylethanolamide

PEA palmitoylethanolamine

PPAR peroxisome proliferator–activated receptor

PPAR-αKO PPAR-α-knockout mice

RXR; NR2B retinoid X receptor

RYGB Roux-en-Y gastric bypass

SAO splanchnic artery occlusion

SDA subdiaphragmatic vagal deafferentation

Sert Slc6a4 solute carrier family 6 (neurotransmitter transporter,
serotonin), member 4

SIV simian immunodeficiency virus

Slc25a36 solute carrier family 25, member 36

Smct1 Slc5a8 solute carrier family 5 (iodide transporter), member 8

TNF-a tumor necrosis factor-alpha

Wy-14643 pirinixic acid

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 86403913

Guo et al. PPAR-α as a Pivotal Regulator of the GIT

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Peroxisome Proliferator–Activated Receptor-α: A Pivotal Regulator of the Gastrointestinal Tract
	Highlights
	Introduction
	A Pivotal Regulator of Metabolism
	Oleoylethanolamide, a Widely Accepted Endogenous Peroxisome Proliferator–Activated Receptor-α Agonist Used in Investigations

	Important Regulators of Inflammation
	Mediation Between Metabolism and Inflammation
	Circadian Rhythm Regulation in the Gastrointestinal Tract and its Interplays With Peroxisome Proliferator–Activated Receptor-α

	Pharmacological Perspective of Peroxisome Proliferator–Activated Receptor-α
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References
	Glossary


