ORIGINAL RESEARCH

WILEY Ecology and Evolution

Molecular basis underlying the successful invasion of hexaploid cytotypes of Solidago canadensis L.: Insights from integrated gene and miRNA expression profiling

Chanchan Xu | Yimeng Ge | Jianbo Wang 🕩

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China

Correspondence

Jianbo Wang, College of Life Sciences, Wuhan University, Wuhan, China. Email: jbwang@whu.edu.cn

Funding information National Natural Science Foundation of China, Grant/Award Number: 31570539 and 31370258

Abstract

Dissecting complex connections between cytogenetic traits (ploidy levels) and plant invasiveness has emerged as a popular research subject in the field of invasion biology. Although recent work suggests that polyploids are more likely to be invasive than their corresponding diploids, the molecular basis underlying the successful invasion of polyploids remains largely unexplored. To this end, we adopted an RNA-seq and sRNA-seq approach to describe how polyploids mediate invasiveness differences in two contrasting cytotypes of Solidago canadensis L., a widespread wild hexaploid invader with localized cultivated diploid populations. Our analysis of the leaf transcriptome revealed 116,801 unigenes, of which 12,897 unigenes displayed significant differences in expression levels. A substantial number of these differentially expressed unigenes (DEUs) were significantly associated with the biosynthesis of secondary metabolites, carbohydrate metabolism, lipid metabolism, and environmental adaptation pathways. Gene Ontology term enrichment-based categorization of DEU-functions was consistent with this observation, as terms related to single-organism, cellular, and metabolic processes including catalytic, binding, transporter, and enzyme regulator activity were over-represented. Concomitantly, 186 miRNAs belonging to 44 miRNA families were identified in the same leaf tissues, with 59 miR-NAs being differentially expressed. Furthermore, we discovered 83 miRNA-target interacting pairs that were oppositely regulated, and a meticulous study of these targets depicted that several unigenes encoding transcription factors, DNA methyltransferase, and leucine-rich repeat receptor-like kinases involved in the stress response were greatly influenced. Collectively, these transcriptional and epigenetic data provide new insights into miRNA-mediated gene expression regulatory mechanisms that may operate in hexaploid cytotypes to favor successful invasion.

KEYWORDS

invasiveness, miRNA, ploidy, polyploid, Solidago canadensis L., transcriptome

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1 | INTRODUCTION

Amid growing evidence of biological invasion impacts on global biodiversity, ecosystem functioning, species conservation, and even social and economic activities (Dyer et al., 2017; Rejmánek, 2015), there is mounting interest in searching the determining elements underlying the successful invasion of alien species. A key element associated with successful invasion of alien species is their capacity for rapid adaptation to environmental challenges following introduction (Huang et al., 2017). Identifying critical traits that benefit this rapid environmental adaptation is therefore a talking point for conservation concern as it can create greater opportunities to predict the invasion risk related to diverse alien species. A steady stream of ecological research in recent years has identified a variety of shared ecological traits related to invasiveness among invasive alien species, such as increased growth and fecundity, wide ecological tolerance, high fitness, and strong clonal propagation (Richardson & Pyšek, 2008). As ecological traits have not generated an explicit recognition pattern in plant invasiveness, some invasion biologists have switched from ecological traits to genetic or genomic traits in comprehending patterns of plant invasiveness (Hodgins, Lai, Nurkowski, Huang, & Rieseberg, 2013; Prentis & Pavasovic, 2013; Rius & Darling, 2014). For instance, Rius and Darling (2014) showed that genetic admixture may act as a genuine driver to play central roles in the successful invasion of genetically admixed individuals. Likewise, another related study performed on invasive alien plants showed a statistical connection between ploidy level and invasiveness, concluding that polyploid plants were more likely to be invasive than diploids and that ploidy level (and chromosome number) was positively related to plant invasiveness (Pandit, Pocock, & Kunin, 2011; Pandit, White, & Pocock, 2014).

Polyploids, recognized as organisms that possess more than two complete sets of chromosomes in their somatic cells, have often been suggested to represent a powerful driver in the speciation, evolution, and adaptation of plants, with far-reaching ecological and evolutionary consequences. On the other hand, polyploids often appear to be over-represented in invasive plants (Thébault, Gillet, Müller-Schärer, & Buttler, 2011) and have cumulatively been acknowledged as a latent advantageous attribute of plant invaders (Pandit et al., 2011; te Beest et al., 2012). Furthermore, the influences of polyploids can act as a cascade process that directly or indirectly mediates virtually all aspects of plant genetics, morphology, physiology, life history, and ecology (Levin, 1983). Therefore, many evolutionary biologists believe that polyploids provide introduced plants with new features that permit them to invade largely varied environments or expand their geographical range. However, this hypothesis has not yet been proved efficiently. Ecological studies have conventionally focused on comparing clearly relevant diploid and polyploid in their native and introduced ranges (Hahn, Buckley, & Müller-Schärer, 2012), but few studies have elucidated the molecular basis underlying the invasiveness difference in alien plants with different ploidy levels (cytotypes). Therefore, the genetic and epigenetic impact imposed by ploidy alteration remains elusive.

_Ecology and Evolution

WILEY

Studies on natural and synthetic polyploids have repeatedly revealed that rapid and dynamic changes at the genetic, gene expression, and epigenetic levels occur after polyploid formation (Chen, 2007; Jackson & Chen, 2010; Sun, Wu, et al., 2017). Likewise, evidence is also mounting that epigenetic modifications can change gene expression and reconstruct gene expression networks thus resulting in pronounced phenotypic alterations (Hao, Lucero, Sanderson, Zacharias, & Holbrook, 2013; Song & Chen, 2015) and allowing polyploids to occupy new habitats, grow vigorously and improve adaptation in novel environments (Madlung, 2013). As an extensive type of epigenetic modifications in nonmodel organisms. miRNA has attracted considerable concern due to its regulatory mechanisms for gene expression. Additionally, miRNA is highly conserved in evolution but becomes activated in polyploidization (Axtell, 2008; Ha et al., 2009). More importantly, alterations in miRNA expression can mediate their target-gene expression at the post-transcriptional level, and this effect is viewed as one of the main reasons for phenotypic changes of polyploids (Chen, 2007; Ha et al., 2009). Accordingly, elucidating the divergences in gene and miRNA expression between different ploidy levels (cytotypes) of alien plants and how they influence phenotypic differentiation is crucial to explain how polyploids might have contributed to successful invasion.

Herein, we evaluate the effect of polyploids on gene and miRNA expression while also considering the potential roles of miRNA-mediated gene expression regulation in driving differences in invasiveness between diploid and hexaploid cytotypes of Solidago canadensis L. Specifically, the objectives of our current work are as follows: (a) to characterize the initial expression profiling of genes and miRNAs in two identified ploidy levels, that is, diploid and hexaploid cytotypes of S. canadensis at a genome-wide scale; (b) to determine key candidate genes and miRNA regulators that may contribute to the successful invasion of hexaploid cytotypes based on gene and miRNA expression divergences, as well as over-represented functional categories of these candidates; and (c) finally to explore the strong evidence for the potential genetic roles of epigenetic and transcriptional alterations in the successful invasion of hexaploid cytotypes. To this end, we adopted an RNA-seq and sRNA-seq approach to investigate the divergences of gene and miRNA expression between diploid and hexaploid cytotypes of S. canadensis. Furthermore, we constructed a co-expression network of differentially expressed genes and miRNAs to shed light on the regulatory action of miRNAs. Taken together, our work provides new insights into miRNA-mediated gene expression regulatory mechanisms that may be useful to explain the successful invasion of hexaploid cytotypes.

2 | MATERIALS AND METHODS

2.1 | Study species

Solidago canadensis (Asteraceae), a perennial weed native to North America (Werner, Bradbury, & Gross, 1980) where it exists in a WILEY_Ecology and Evolution

diploid, tetraploid, or hexaploid cytotype (Melville & Morton, 1982), has invaded a wide geographical range globally, including New Zealand, Australia, Europe, and Asia (Abhilasha, Quintana, Vivanco, & Joshi, 2008; Szymura, Szymura, Wolski, & Swierszcz, 2018). Introduced into eastern China in the 1930s as an ornamental plant. S. canadensis began to escape cultivation and spread in the 1980s. Currently, it has become highly abundant and has noticeably affected the diversity and richness of native plant species (Wang, Jiang, Zhou, & Wu, 2018). However, it is worthwhile noting that, only hexaploid cytotypes of *S. canadensis* have long been convincingly reported to occur widely in the introduced range in China and become invasive thus far (Wang, 2016). Their corresponding diploid cytotypes (also called "Huang Ying" in China) were cultivated mainly in Yunnan Province in southwestern China as an important cut-flower plant. An earlier experiment carried out with common gardens showed that the growth of hexaploid cytotypes of S. canadensis was more vigorous than their related diploids, offering clear advantages for the successful invasion of hexaploid cytotypes (Li, 2011). Additionally, the roots, stems, and leaves of hexaploid cytotypes were morphologically and anatomically distinct from their diploids (Wang, 2007). Overall, the contrasting invasive propensities and geographical and phenotypic differentiation between hexaploid cytotypes and their related diploids make S. canadensis an excellent study system to answer such questions as how polyploids both affect gene and miRNA expression and alter molecular pathways that may be responsible for the successful invasion of hexaploid cytotypes and whether miRNA plays key roles in reprogramming the transcriptional expression.

2.2 | Population sampling and chromosome counting

Invasive populations of *S. canadensis* largely cluster around the Yangtze River Delta, which occupies its main distribution range in China (Figure 1, Figure A1 in Appendix), and cultivated populations were narrowly cultivated in Yunnan Province in southwestern China. Therefore, we sampled invasive populations (separated from each other by at least 3 km) in 42 locations throughout Jiangsu, Zhejiang, Anhui, Hubei, and Shanghai and one cultivated population from Yunnan Province (Table 1; Figure 1). Finally, 449 sampled individuals representing 43 populations were collected and subsequently transplanted into pots with commercial soil and grown for 3 months in the greenhouse of Wuhan University under natural photoperiod conditions. Chromosome counting was performed according to the modified carbol fuchsin squash method (The detailed methods are presented in Supporting Information Appendix S1).

2.3 | Sample preparation, cDNA and small RNA library construction and sequencing

Based on chromosome survey on the above 43 populations, diploid (population code: CG) and hexaploid cytotypes (HS 3) were selected as the experimental materials for comparison to investigate gene and miRNA expression profiling in this work (Figure 2a,b). Leaves were collected from three independent comparable potted-seedlings creating three biological replicates for diploid (D) and hexaploid cytotypes (H). The top three to four fully expanded leaves were gently removed in the morning, covered by aluminum foil, frozen in liquid nitrogen immediately, and subsequently stored at -80°C until total RNA extraction. The cDNA and small RNA library were constructed following the methods provided by Beijing Genomics Institute (BGI, Shenzhen, China) (Supporting Information Appendix S1).

2.4 | De novo assembly and unigene annotation

Raw reads were filtered by removing those reads that contained adaptors, unknown nucleotides (more than 5%), and low-quality bases (more than 20% of the bases with a quality score less than 15). De novo assembly of all processed reads was performed by Trinity (version: v2.0.6, Grabherr et al., 2011), with parameters set as follows: -min_contig_length 200; -CPU 8; -min_kmer_cov_4; min_glue_4; -bfly_opts'- V5; -edge-thr=0.1; and -stderr'. Then, the constructed transcripts from the Inchworm, Chrysalis, and Butterfly modules of Trinity were further clustered into nonredundant unigenes by using TGICL (version: v2.0.6, Pertea et al., 2003) to eliminate the redundant Trinity-generated transcripts, with parameters set as follows: -I40-c10-v25-O'-repeat_stringency 0.95-minmatch 35-minscore35'. To construct a uniform transcriptome reference, all assembled unigenes from six samples of two cytotypes of S. canadensis were pooled together and further clustered to generate "All-Unigene" for subsequent assembly evaluation, unigene annotation, and expression analysis. The "All-Unigene" sequences were aligned by BLASTx to a series of protein databases to gain unigene annotation. See Supporting Information Appendix S1 for more unigene annotation details.

2.5 | Unigene quantification and differentially expressed unigene (DEU) analysis

The Bowtie2 program (version: v2.2.5, Langmead & Salzberg, 2012) was used to map clean reads from each sample to assemble "All-Unigene" with the following parameters: -q; -phred 64; -sensitive; -dpad 0; -gbar 99999999; -mp 1,1; -np 1; -score-minL,0, -0.1-I1-X 1000; -no-mixed; -no-discordant; -p 1-k 200, and RSEM (version: v1.2.12, Li & Dewey, 2011) was applied to calculate the read counts mapped to each unigene with the default parameter. Then, fragments per kilobase of transcript per million fragments mapped (FPKM) was applied to normalize the expression value. Differential gene expression analysis was performed using the DESeq2 R package as described by Love, Huber, and Anders (2014) for comparisons between diploid and hexaploid cytotypes with three biological replicates. An absolute value of log_2 fold-change ≥ 2 and an adjusted p-value <0.001 was set as the threshold to identify DEUs. Following this, identified DEUs were subjected to GO and KEGG analyses. The regulated unigenes were assigned GO terms by the Blast2-GO

WILEY

program (version: v2.5.0, Conesa et al., 2005), and their enrichment was performed for testing over-represented GO categories using the GOseq R package with a corrected *p*-value (FDR analog) setting of \leq 0.05. DEUs were further assigned KO (KEGG Orthology) numbers using the KEGG database, and their enrichment was performed as mentioned for GO.

2.6 | Transcription factor (TF)-encoding gene prediction

To identify putative TF candidate genes, getorf (version: EMBOSS: 6.5.7.0, Rice, Longden, & Bleasby, 2000) was used to find and extract open reading frames (ORFs) from all assembled unigene sequences with the minimum size parameter set as 150, and then the sequences of ORFs were searched against the plant transcription factor database (PInTFDB; version: 3.0) using hmmsearch (version: 3.0, Mistry, Finn, Eddy, Bateman, & Punta, 2013) with the default parameters.

2.7 | miRNA identification and differentially expressed miRNA (DEM) analysis

Raw reads were filtered by removing low-quality contaminated reads as well as adaptor sequences, and then generated clean reads in the range of 18-30 nt were chosen for mapping to the S. canadensis mRNA transcriptome by SOAP with default settings. Subsequently, sequences with a perfect match were compared to Rfam 11.0 and NCBI GenBank databases to eliminate noncoding RNAs, including rRNA, scRNA, snRNA, snoRNA, tRNA, and repeats. Given that sequences from S. canadensis were not included in miRBase, the remaining unique reads were searched against currently annotated plant miRNAs (Viridiplantae) available in the miRBase 22.0 database using the BLASTn program to identify the known miRNAs. Transcripts per million was used to normalize the read count of each identified miRNA based on the following formula: Normalized expression = Actual miRNA count $\times 10^{6}$ /Total count of clean reads. After normalization, differential expression analysis of miRNA was performed using DEGseq as described by Wang, Feng, Wang, Wang, and Zhang (2010). An absolute value of log_{2} fold-change ≥ 1 and a *q*-value < 0.001 was set as the threshold to identify DEMs.

2.8 | Prediction of miRNA targets

To predict the potential genes targeted by miRNAs, the Targetfinder (version: 1.5, Fahlgren & Carrington, 2010) in combination with psRobot (version: 1.2, Wu, Ma, Chen, Wang, & Wang, 2012) software was applied to predict as many miRNA targets as possible from the assembled *S. canadensis* unigene set (116,801 "All-Unigene") with default parameters. Additionally, the expression level of predicted miRNA targets was taken from the inventory of assembled "All-Unigene." GO terms were also evaluated using a similar method.

2.9 | Visualization of miRNA-target interaction network

To unravel complex links between candidate miRNAs and unigenes, we proposed a strategy that integrated expression data of DEMs and DEUs to visualize the miRNA-target interaction network and further discover key miRNAs. Here, we defined coherent miRNA targets as those presenting opposite expression patterns compared with those of the miRNAs, showing that the expression of unigenes was negatively correlated with that of miRNAs (Ye, Wang, & Wang, 2016). To construct the miRNA-target interaction network, three separate steps were performed. First, DEMs and DEUs were screened following the method mentioned above. Second, predicted targets of up-regulated miRNAs (down-regulated miRNAs) overlapped with identified down-regulated unigenes (up-regulated unigenes) to obtain coherent miRNA targets. Finally, acquired coherent miRNA targets and DEMs were subjected to visualization of the miRNA-target interaction network by Cytoscape.

2.10 \mid Candidate unigene and miRNA validation via qRT-PCR

Eighteen promising candidate unigenes and six miRNAs observed to be differentially expressed were chosen for qRT-PCR to validate the reliability of RNA-seq and sRNA-seq results with the following selection criteria: (a) up- or down-regulated unigenes discussed in this paper (i.e., *Expansin*, *ARGOS*); and (b) miRNA-target interaction pairs that were negatively correlated in expression levels. qRT-PCR was implemented in triplicate on an ABI Step One Plus Real-Time PCR System (Applied Biosystems) with unigene- and miRNA-specific sense and anti-sense primer (Table A1 in Appendix, Supporting Information Appendix S1). A homolog of *GAPDH* (Unigene25510_AII) was co-amplified to normalize the expression values of unigenes and miRNAs in each sample using the double-standard curve method.

3 | RESULTS

3.1 | Gene expression profiling in diploid and hexaploid cytotypes of *S. canadensis*

The inspection of chromosome numbers revealed that two cytotypes were ascertained among the 449 individuals of *S. canadensis* examined. For the cultivated population, all individuals were observed to be diploid cytotypes with a chromosome number of 2n = 2x = 18 (Figure 2c). For the invasive populations, all individuals were observed to be hexaploid cytotypes with a chromosome number of 2n = 6x = 54 (Table 1; Figure 2d). However, tetraploid cytotypes with a chromosome number of 2n = 4x = 36 or mixed-cytotypes reported by Li (2011) were not found in the current work.

To explore key candidate genes behind the invasiveness differences in diploid and hexaploid cytotypes, we generated the first transcriptomic profile of *S. canadensis*. A total of 334.79 million (M) raw reads were produced and subjected to Seq-QC collating, which

FIGURE 1 Map of China sampling sites for 43 populations of *S. canadensis* described in Table 1. The circles indicate sampling locations. The blue and yellow circles show the diploid and hexaploid populations used in gene and miRNA expression analyses, respectively

resulted in 289.45 M (86%) clean reads with Q20 values ranging from 98.88% to 98.94%. Then, clean reads from six libraries were de novo assembled separately into unigenes by Trinity. These assembled unigenes were pooled together and further clustered into a reference transcriptome (116,801 "All-Unigene") with an average length of 1,056 bp, a N50 value of 1,610 bp, and a GC content of 39.20% (Table A2 in Appendix). These numbers are comparable to those generated in other polyploid studies (e.g., Vigna et al., 2016; Zhou et al., 2015) and imply a high-quality assembly. Furthermore, we also found that the length distribution of the assembled "All-Unigene" ranged from 224 to 23,608 bp with a total length of 123,376,557 bp, of which 32,942 (28.20%) unigenes ranged from 300 to 500 bp, 32,696 (27.99%) unigenes ranged from 500 to 1,000 bp, 33,468 (28.65%) unigenes ranged from 1,000 to 2,000 bp, and 17,695 (15.15%) unigenes had lengths longer than 2,000 bp (Figure A2 in Appendix).

Out of the 116,801 "All-Unigene" acquired above, expression of 12,428 unigenes was found only in diploid cytotypes, and expression

of 19,520 unigenes was observed only in hexaploid cytotypes. These seem to represent a suite of ploidy-dependent unigenes, which means a specific role of these ploidy-dependent unigenes in contrasting invasiveness differences. Subsequently, to identify notably changed unigenes, we applied the aforementioned filter criterion and noticed that 12,897 unigenes displayed at least a four-fold change in expression levels, with the majority of them (6,768 out of 12,897) down-regulated in hexaploid cytotypes (Supporting Information Table S1). After that, these DEUs were further subjected to investigation of the specific regulated pathways in which they were involved. However, it must be underlined here that our work has revealed novel unigenes whose functions are unknown, which will be the long-running theme of future research. Furthermore, qRT-PCR analysis performed for eighteen DEUs confirmed the mRNA changes detected by RNA-seq (Figure A3 in Appendix).

Further, the identified 2,644 putative TF-encoding genes in this work were assigned to 58 TF families, of which MYB members (337)

-WILEY

TABLE 1 Geographical coordinates and sample size of 43 populations of S. canadensis in China

No.CodeLeativeLative (N)Longitude (N)StatusNameNameName1M114Minhang District, Shanghal CityN3109/M346E1212915.51Invasive10.542M143Minhang District, Shanghal CityN3109/M346E12121053.35Invasive10.543M143Songiang District, Shanghal CityN3109/302E12111939.97Invasive10.544S14Songiang District, Shanghal CityN3109/302E121127.33Invasive10.547Q14Pudong District, Shanghal CityN31491470E121922.04Invasive3.547Q140Pudong District, Shanghal City, Jangsu ProvinceN3478374.47E1209/22.04Invasive3.548XPNinpu District, Lianyungang City, Jangsu ProvinceN3319174.20E1207/23.07Invasive3.549VD1Yandu District, Vancheng City, Jangsu ProvinceN319214.24E1207/23.07Invasive3.5410DFDafeng District, Mancheng City, Jangsu ProvinceN319214.24E1207/33.07Invasive3.5411TC1Taicang City, Jangsu ProvinceN319214.24E1207/33.07Invasive3.5412VD1Mandu District, Wanci City, Jangsu ProvinceN319214.24E1207/93.07Invasive3.5413WD1Binhu District, Wanci City, Jangsu ProvinceN319214.24E1207/93.07Invasive10.54 <td< th=""><th></th><th>Population</th><th></th><th colspan="2">Geographical coordinates</th><th></th><th>No.of</th><th>Chromosome</th></td<>		Population		Geographical coordinates			No.of	Chromosome
1Min1Minage Dirick Sharsplat (M)N31094/MS12192.81MakassMoM2Minage Dirick Sharsplat (M)N3190209E21193301InvaseAA4S110Songian Dirick Sharsplat (M)N31902700E21193301InvaseAA5MaxassManage Dirick Sharsplat (M)N31904700E1213301InvaseAA6Manage Dirick Sharsplat (M)N31945470E1213200InvaseAA7MaxassManage Dirick Sharsplat (M)N31945470E1213200InvaseAA7MaxassManage Dirick Sharsplat (M)N31941470E12042040InvaseAA7MaxassManage Dirick Manage Dirick (M)N31941470E12042040InvaseAA7MaxassManage Dirick (M)N31941470E12042047InvaseAAA7MaxassManage Dirick (M)N31941470E12043270InvaseAAA7MaxassManage Dirick (M)N31941470E12043270InvaseAAA7MaxassManage Dirick (M)N31941470E12043270InvaseAAA7MaxassManage Dirick (M)N3194170E12043270InvaseAAA7MaxassManage Dirick (M)N3194170E12043270InvaseAAA7MaxassManage Dirick (M)N3194170E12043270Inva	No.	code	Location	Latitude (N)	Longitude (E)	Status	samples	number
2 MH 2 Minhang District, Shanghal City N3109'95498 E121'20'53.3* Invasive 10 54 3 MM 3 Minhang District, Shanghal City N3109'07.0* E121'13'02.0* Invasive 10 54 5 SJ 2 Songjiang District, Shanghal City N3106'01.7* E121'12'12.43" Invasive 10 54 6 PD Rodong District, Shanghal City N3115'14.57" E121'38'25.04" Invasive 8 54 7 GY Shany District, Shanghal City, Jiangu Province N34'93'24.04" E120'104'54.8" Invasive 8 54 10 VD 2 Vandu District, Yancheng City, Jiangu Province N33'13'14'14.02" E120'104'3.5" Invasive 8 54 11 DF Dafeng District, Yancheng City, Jiangu Province N31'13'10.40" E120'104'5.45" Invasive 10 54 12 TC 2 Taicang City, Jiangu Province N31'13'14'1.2" E120'10'1.5.64" Invasive 10 54 13 R14 Bihnu District, Wandi City, Jiangu Province<	1	MH 1	Minhang District, Shanghai City	N31°08′41.40″	E121°23'19.51"	Invasive	10	54
3MH34Minnap District, Shanghal CityN3113'02.00°F1211'1339'Invasive10544S10Songjang District, Shanghal CityN310'05'70.02°F1211'132'143'Invasive10546POPudong District, Shanghal CityN311'5'14.57°F121'38'25.04'Invasive8547QiraQirangun County, Linyungang City, Jiangsu ProvinceN34'23'34.44'F191'10'6.86'Invasive8548XPYangu District, Yancheng City, Jiangsu ProvinceN34'98'24.10'E119'11'0'6.86'Invasive85410VD1Yandu District, Yancheng City, Jiangsu ProvinceN33'18'14.48'F120'06'24.04''Invasive85411DFCDafeng District, Mancheng City, Jiangsu ProvinceN31'92'16.24''E120'06'3.35''Invasive105412TC1Talcang City, Jiangsu ProvinceN31'92'16.24''E120'06'3.35''Invasive105413F14Binhu District, Wanch City, Jiangsu ProvinceN31'92'16.44''E120'06'3.35''Invasive105414KSCKumshan City, Jiangsu ProvinceN31'92'16.44''E120'27'16.14''Invasive105415BHABinhu District, Wanci City, Jiangsu ProvinceN31'92'16.24''E120'27'16.14''Invasive105415BHABinhu District, Manging City, Jiangsu ProvinceN31'92'16.24''E120'27'16.14''Invasive105416GHZBinhu District, Manging City, J	2	MH 2	Minhang District, Shanghai City	N31°09′54.98″	E121°20'53.35"	Invasive	10	54
41 S11 Sengiang District, Shanghal City N31'03'3722' E121'13'397' Invasive 10 54 5 512 Songiang District, Shanghal City N31'15'14'24' E121'12'12'3' Invasive 10 54 7 0'1 Pudong District, Shanghal City N31'15'14'15'15' E121'12'15'30' Invasive 8 54 7 0'1 Quanyun County, Linyungang City, Jiangsu Province N34'8'2'4'0' E11'9'11'0'6.8'' Invasive 8 54 9 VD1 Yandu District, Linnyungang City, Jiangsu Province N33'8'14'4.8' E120'0'0'4'8.4'' Invasive 8 54 10 D472 Yandu District, Yancheng City, Jiangsu Province N31'9'15.20'' E120'0'4'3.4''' Invasive 8 54 11 TC1 Talcang City, Jiangsu Province N31'9'51.4''' E120'0'4'3.5'' Invasive 10 54 12 TC1 Bihau District, Wuai City, Jiangsu Province N31'9'51.4'' E120'1'3'6.4'' Invasive 10 54 13 W14 Bihau District, Na	3	MH 3	Minhang District, Shanghai City	N31°13′02.09″	E121°18'33.51"	Invasive	10	54
5912Songjiang District, Shanghal CityN31'00'01.76'E121'32'1.54''Invasive10546PDPudong District, Shanghal CityN31'15'14.57'E121'33'25.64''Invasive8547GYSupport District, Lianyugang City, Jiangsu ProvinceN34'38'24.40''E119'11'0.8.64''Invasive8547VD1Yandu District, Vancheng City, Jiangsu ProvinceN34'38'24.40''E119'11'0.8.64''Invasive85410VD2Yandu District, Yancheng City, Jiangsu ProvinceN33'18'14.62'E120'02'43.64''Invasive85411DFDafeng District, Yancheng City, Jiangsu ProvinceN31'02'16.26''E120'02'43.65''Invasive85412TC1Taicang City, Jiangsu ProvinceN31'02'16.26''E120'02'43.65''Invasive105413TC1Taicang City, Jiangsu ProvinceN31'32'01.04''E120'02'43.65''Invasive105414KSKanshan City, Jiangsu ProvinceN31'32'01.04''E120'02'3.15''Invasive105415BH1Binhu District, Wua City, Jiangsu ProvinceN31'32'01.44''E120'02'3.15''Invasive105416WJWujin District, Nanjing City, Jiangsu ProvinceN31'32'01.44''E120'02'S.15''Invasive105417Binhu District, Nanjing City, Jiangsu ProvinceN32'05'A2E118'52'.10''Invasive105418WJXuanuw District, Nanjing City, Jiangsu Pro	4	SJ 1	Songjiang District, Shanghai City	N31°05′37.02″	E121°11'39.99"	Invasive	10	54
6PDPudong District, Shanghai CityN31'15'14.57"E121'38'2.5.04"Invasive10547G'Granyun Courty, Lianyungang City, JiangsuN34'33'44.79E119'11'0.6.64"Invasive8548XPXinpu District, Lianyungang City, Jiangsu ProvinceN34'38'24.10"E119'11'0.6.64"Invasive85410YD1Yandu District, Yancheng City, Jiangsu ProvinceN33'18'15.46E120'06'2.6.04"Invasive85411DFDafeng District, Yancheng City, Jiangsu ProvinceN31'13'14.62"E120'06'3.5.5"Invasive105412TC1Talcang City, Jiangsu ProvinceN31'13'14.52"E121'07'18.5.5"Invasive105413TC2Talcang City, Jiangsu ProvinceN31'13'14.52"E120'06'33.5"Invasive105414KSKunshan City, Jiangsu ProvinceN31'13'16"E120'06'33.5"Invasive105415BH1Binhu District, Wuci City, Jiangsu ProvinceN31'13'2.44"E120'03'3.5"Invasive105416WJWjIID Istrict, Changhnou City, Jiangsu ProvinceN31'29'2.70"E120'27'0.11"Invasive105417BH3Binhu District, Manjing City, Jiangsu ProvinceN32'20'5.70"Invasive105418VJWuiD Ustrict, Changhnou City, Jiangsu ProvinceN32'20'5.70"Invasive105418VJVuiD Ustrict, Manjing City, Jiangsu ProvinceN32'20'5.70"Invasive<	5	SJ 2	Songjiang District, Shanghai City	N31°06'01.76"	E121°12'17.63"	Invasive	10	54
7. 8.4 9.4 N34*23'34.47 E119*14'15.33' Invasive 8 54 8 XInpu District, Lianyungang City, Jiangsu Province N34'83'2410 E10*10'0.6.86' Invasive 8 54 9 VD 1 Yandu District, Yancheng City, Jiangsu Province N33'81'14.48'' E120'06'24.04'' Invasive 8 54 10 VD 2 Yandu District, Yancheng City, Jiangsu Province N33'81'14.48'' E120'06'45.48'' Invasive 8 54 11 DF Diagen District, Yancheng City, Jiangsu Province N33'91'44.02'' E121'00'78.56'' Invasive 10 54 13 TC 2 Talcang City, Jiangsu Province N31'92'14.34'' E121'00'78.56'' Invasive 10 54 14 KS 4 Kunshan City, Jiangsu Province N31'92'14.34'' E120'92'2.39'' Invasive 10 54 15 BH 10 Binhu District, Wuxi City, Jiangsu Province N31'92'14.24'' E120'92'1.11'' Invasive 10 54 16 Q4 20 Muxinu District, Nanjing City, Jiangsu Province N32'92'54.23'' E120'92'1.11'' Invasive 10 <t< td=""><td>6</td><td>PD</td><td>Pudong District, Shanghai City</td><td>N31°15′14.57″</td><td>E121°38'25.04"</td><td>Invasive</td><td>10</td><td>54</td></t<>	6	PD	Pudong District, Shanghai City	N31°15′14.57″	E121°38'25.04"	Invasive	10	54
8XPXinpu District, Lianyungang City, Jiangsu ProvinceN34*38'24.10"F119*11'04.86"Invasive8549VD1Yandu District, Yancheng City, Jiangsu ProvinceN33*18'14.48"F120'06'2.04.40"Invasive85410VD2Yandu District, Yancheng City, Jiangsu ProvinceN33*18'15.30"F120'06'2.23.67"Invasive85411FCDafeng District, Yancheng City, Jiangsu ProvinceN31*21'6.26"F121'07'4.35"Invasive105413TC2Taicang City, Jiangsu ProvinceN31*32'10.67"F121'00'3.56"Invasive105414KSKunshan City, Jiangsu ProvinceN31*32'10.67"F120'07'2.23"Invasive105415BH1Binhu District, Wuxi City, Jiangsu ProvinceN31*32'10.67"F120'07'2.39"Invasive105416BH2Binhu District, Wuxi City, Jiangsu ProvinceN31*32'0.10"F120'07'2.39"Invasive105417BH3Binhu District, Wuxi City, Jiangsu ProvinceN31*2'07.02"F118*5'1.70"Invasive105418WJVujin District, Nanjing City, Jiangsu ProvinceN32*0'2.05F118*5'1.70"Invasive105418WJVujun District, Nanjing City, Jiangsu ProvinceN32*0'2.05F118*5'1.38"Invasive105419QXQival District, Nanjing City, Jiangsu ProvinceN32*0'2.05F118*5'1.38"Invasive105410XLXuanvu District, Nanj	7	GY	Guanyun County, Lianyungang City, Jiangsu Province	N34°23'34.49"	E119°14'15.33"	Invasive	8	54
9YD 1Yandu District, Yancheng City, Jiangsu ProvinceN33'18'14.48"E120'06'26.04"Invasive85410VD 2Yandu District, Yancheng City, Jiangsu ProvinceN33'18'14.08"E120'02'23.07"Invasive105411DFDiafeng District, Yancheng City, Jiangsu ProvinceN31'20'14.02"E121'02'43.05"Invasive105413TC 2Taicang City, Jiangsu ProvinceN31'20'51.43"E121'02'33.75"Invasive105414KSKunshan City, Jiangsu ProvinceN31'20'51.43"E120'22'3.04"Invasive105416BH 1Binhu District, Wuxi City, Jiangsu ProvinceN31'20'51.43"E120'22'10.14"Invasive105416BH 2Binhu District, Wuxi City, Jiangsu ProvinceN31'20'27.02"E120'22'10.14"Invasive105417PL 3Binhu District, Muxi City, Jiangsu ProvinceN31'20'27.02"E120'20'21.01"Invasive105418WUWujin District, Ananjing City, Jiangsu ProvinceN32'05'20.22"E118'52'17.00"Invasive105419QXQixia District, Nanjing City, Jiangsu ProvinceN32'05'21.83"H118'50'13.38"Invasive105412XW 1Xuanwu District, Manjing City, Jiangsu ProvinceN32'0'2'20.85"E120'14'2.15"Invasive105412KSNasiveN32'0'4'20.65"E128'5'1.33"Invasive105413JGJianggan District, Manjing City,	8	XP	Xinpu District, Lianyungang City, Jiangsu Province	N34°38'24.10"	E119°11'06.86"	Invasive	8	54
10YD 2Yandu District, Yancheng City, Jiangsu ProvinceN33°18'15.30"E120°06'45.48"Invasive85411DFDafeng District, Yancheng City, Jiangsu ProvinceN33°10'44.02"E120°22'3.67"Invasive105413TC 1Taicang City, Jiangsu ProvinceN31°32'16.26"E121°01'33.64"Invasive105414KSKurshan City, Jiangsu ProvinceN31°32'10.06"E121°01'35.64"Invasive105415BH 1Binhu District, Wuxi City, Jiangsu ProvinceN31°32'10.06"E120°09'22.39"Invasive105416BH 2Binhu District, Wuxi City, Jiangsu ProvinceN31°32'01.06"E120°09'33.64"Invasive105417BH 3Binhu District, Wuxi City, Jiangsu ProvinceN31°32'07.07"Invasive105418WJWujin District, Changzhou City, Jiangsu ProvinceN31°32'07.07"Invasive105419QXQxia District, Nanjing City, Jiangsu ProvinceN32°05'21.80"E118°52'17.00"Invasive105421XW 2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'21.80"E118°53'0'13.84"Invasive105422PKPakou District, Hangzhou City, Zhejjang ProvinceN32°01'23.55"Il20°14'23.54"Invasive105423JGJiangan District, Hangzhou City, Zhejjang ProvinceN30°01'33.35"Invasive105424XS1Xiaoshan District, Hangzhou City, Zhejjang Province <td>9</td> <td>YD 1</td> <td>Yandu District, Yancheng City, Jiangsu Province</td> <td>N33°18′14.48″</td> <td>E120°06'26.04"</td> <td>Invasive</td> <td>8</td> <td>54</td>	9	YD 1	Yandu District, Yancheng City, Jiangsu Province	N33°18′14.48″	E120°06'26.04"	Invasive	8	54
11DFDafeng District, Yancheng City, Jiangsu ProvinceN33°10'44.02"E120°22'3.67"Invasive85412TC1Taicang City, Jiangsu ProvinceN31°22'16.24"E121°07'48.35"Invasive105413TC2Taicang City, Jiangsu ProvinceN31°23'C14.34"E121°01'33.76"Invasive105414KSKunshan City, Jiangsu ProvinceN31°23'C14.34"E120°07'22.39"Invasive105416BH2Binhu District, Wuxi City, Jiangsu ProvinceN31°29'51.43"E120°07'22.39"Invasive105417BH3Binhu District, Wuxi City, Jiangsu ProvinceN31°29'51.43"E120°03'3.15"Invasive105418WUQuina District, Nanjing City, Jiangsu ProvinceN32°06'50.22"E110°52'1.00"Invasive105419QXQuina District, Nanjing City, Jiangsu ProvinceN32°06'50.22"E110°50'1.318"Invasive105420XV1Xuanwu District, Nanjing City, Jiangsu ProvinceN32°04'20.65"E110°50'1.318"Invasive105421XV2Xuanwu District, Nanjing City, Jiangsu ProvinceN30°17'29.55"E120°14'22.75"Invasive105423JGCJianggan District, Hangzhou City, Zhejjang ProvinceN30°14'30.20"E120°13.03"Invasive105424XS1Xiaoshan District, Hangzhou City, Zhejjang ProvinceN30°14'30.20"E120°14'2.75"Invasive105425XS2Xiaos	10	YD 2	Yandu District, Yancheng City, Jiangsu Province	N33°18′15.30″	E120°06'45.48"	Invasive	8	54
12 TC 1 Taicang City, Jiangsu Province N31*32'16.26" E121*07'48.35" Invasive 10 54 13 TC 2 Taicang City, Jiangsu Province N31*32'45.43" E121*06'33.75" Invasive 10 54 14 KS Kunshan City, Jiangsu Province N31*32'01.06" E120*09'22.39" Invasive 10 54 15 BH1 Binhu District, Wuxi City, Jiangsu Province N31*32'01.06" E120*02'2.39" Invasive 10 54 16 BH2 Binhu District, Wuxi City, Jiangsu Province N31*22'51.43" E120*02'10.01" Invasive 10 54 18 WJ Wujin District, Nanjing City, Jiangsu Province N32*06'50.22" E118*52'17.00" Invasive 10 54 19 QX Qixia District, Nanjing City, Jiangsu Province N32*06'50.22" E118*53'07.09" Invasive 10 54 12 XW1 Xuanwu District, Nanjing City, Jiangsu Province N32*06'51.80" E118*53'07.09" Invasive 10 54 12 S4 XW1	11	DF	Dafeng District, Yancheng City, Jiangsu Province	N33°10′44.02″	E120°22'23.67"	Invasive	8	54
13TC2Taicang City, Jiangsu ProvinceN31°26'51.43"E121°06'33.75"Invasive105414KSKunshan City, Jiangsu ProvinceN31°32'01.06"E120°07'23.39"Invasive105415BH1Binhu District, Wuxi City, Jiangsu ProvinceN31°32'01.06"E120°27'20.39"Invasive105416BH2Binhu District, Wuxi City, Jiangsu ProvinceN31°27'01.04"E120°27'01.11"Invasive105417BH3Binhu District, Changzhou City, Jiangsu ProvinceN31°2'6.74"E120°03'3.15"Invasive105419QXQXia District, Nanjing City, Jiangsu ProvinceN32°0'5'4.63"E118°5'1'0.00"Invasive105420XW1Xuanwu District, Nanjing City, Jiangsu ProvinceN32°0'2'1.01"Invasive105421XW2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°0'2'1.03"E118°5'1'3.08"Invasive105423JGJanggan District, Hangzhou City, Zhejiang ProvinceN30°1'2'2.55"E120°14'2.75"Invasive105424XS1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'2'2.55"E120°14'22.75"Invasive105425XS2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'2'8.5"E120°14'2.75"Invasive105426XS1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'2'8.5"E120°16'2.38"Invasive105426XS1Kaosh	12	TC 1	Taicang City, Jiangsu Province	N31°32′16.26″	E121°07'48.35"	Invasive	10	54
14KSKunshan City, Jiangsu ProvinceN31°13'49.32"E121°01'35.64"Invasive105415BH 1Binhu District, Wusi City, Jiangsu ProvinceN31°32'01.04"E120°09'22.39"Invasive105416BH 2Binhu District, Wusi City, Jiangsu ProvinceN31°22'01.04"E120°24'50.49"Invasive105417BH 3Binhu District, Wusi City, Jiangsu ProvinceN31°29'27.02"E120°03'33.15"Invasive105418WJWujin District, Changzhou City, Jiangsu ProvinceN32°0'50.24"E118°50'0.09"Invasive105419QXQxia District, Nanjing City, Jiangsu ProvinceN32°0'52.180"E118°50'1.38"Invasive105421XW2Xuanvu District, Nanjing City, Jiangsu ProvinceN32°0'21.80"E118°50'1.38"Invasive105422PKPukou District, Nanjing City, Jiangsu ProvinceN32°0'24'20.65"E118°50'1.38"Invasive105423JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°1'29.55"E120°14'22.75"Invasive105424XS1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'133.3"E120°16'23.98"Invasive105425XS2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'133.3"E120°16'23.98"Invasive105426XS3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°0'19.56"E120°16'1.15"Invasive1054	13	TC 2	Taicang City, Jiangsu Province	N31°26′51.43″	E121°06'33.75"	Invasive	10	54
15BH 1Binhu District, Wuxi City, Jiangsu ProvinceN31°32'01.06"F120°09'22.39"Invasive105416BH 2Binhu District, Wuxi City, Jiangsu ProvinceN31°29'51.43"F120°24'50.49"Invasive105417BH 3Binhu District, Wuxi City, Jiangsu ProvinceN31°29'27.02"F120°27'01.11"Invasive105418WJWujin District, Changzhou City, Jiangsu ProvinceN31°29'27.02"F118°52'17.00"Invasive105410Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'62.23"F118°53'07.09"Invasive105411Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'21.80"F118°53'07.09"Invasive105412XW 2Vauanwu District, Nanjing City, Jiangsu ProvinceN32°04'20.65"F118°5/3.35"Invasive105412PKPukou District, Hangzhou City, Zhejiang ProvinceN30°17'29.55"F120°14'22.75"Invasive105413JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°1'33.02"F120°14'22.75"Invasive105414X51Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'33.02"F120°14'22.75"Invasive105415S52X52Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°1'63.02"F120°14'22.75"Invasive125415S51Binjiang District, Hangzhou City, Zhejiang ProvinceN30°0'26.83"F120°15'3.17"Invasive12<	14	KS	Kunshan City, Jiangsu Province	N31°13′49.32″	E121°01'35.66"	Invasive	10	54
16BH 2Binhu District, Wuxi City, Jiangsu ProvinceN31*29'51.43"E120*24'50.49"Invasive105417BH 3Binhu District, Wuxi City, Jiangsu ProvinceN31*29'27.02"E120*27'01.11"Invasive105418WJWujin District, Changzhou City, Jiangsu ProvinceN31*31'26.74"E120*03'33.15"Invasive105419QXQixia District, Nanjing City, Jiangsu ProvinceN32*06'50.22"E118*52'17.00"Invasive105420XW 1Xuanwu District, Nanjing City, Jiangsu ProvinceN32*06'50.23"E118*53'07.09"Invasive105421XW 2Xuanwu District, Nanjing City, Jiangsu ProvinceN32*06'20.80"E118*56'13.38"Invasive105422PKPukuo District, Hangzhou City, Zhejiang ProvinceN30*01'29.55"E120*0'4'22.75"Invasive105423JGJianggan District, Hangzhou City, Zhejiang ProvinceN30*01'29.55"E120*0'4'23.78"Invasive105424XS 1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30*01'30.02"E120*1/25.59"Invasive105425XS 2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30*01'30.20"E120*0'4'20.74"Invasive95426XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30*01'30.20"E120*0'4'20.74"Invasive105427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30*01'33.37"E120*04'20.74" <td>15</td> <td>BH 1</td> <td>Binhu District, Wuxi City, Jiangsu Province</td> <td>N31°32'01.06"</td> <td>E120°09'22.39"</td> <td>Invasive</td> <td>10</td> <td>54</td>	15	BH 1	Binhu District, Wuxi City, Jiangsu Province	N31°32'01.06"	E120°09'22.39"	Invasive	10	54
17BH 3Binhu District, Wuxi City, Jiangsu ProvinceN31°2'2'2.02"E120°2'701.11"Invasive105418WJWujin District, Changzhou City, Jiangsu ProvinceN31°3'26.74"E120°03'33.15"Invasive105419QXQixia District, Nanjing City, Jiangsu ProvinceN32°06'50.22"E118°52'17.00"Invasive105420XW1Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'46.33"E118°50'13.38"Invasive105421XW2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'21.80"E118°50'13.38"Invasive105422PKPukou District, Hanging City, Jiangsu ProvinceN32°05'21.80"E118°50'13.38"Invasive105423JGJianggan District, Hangzhou City, Zhejjang ProvinceN30°17'29.55"E120°14'22.75"Invasive105424XS1Xiaoshan District, Hangzhou City, Zhejjang ProvinceN30°1'3.30"E120°17'0.50"Invasive115425XS2Xiaoshan District, Hangzhou City, Zhejjang ProvinceN30°1'1.33.7"E120°16'23.98"Invasive95426XS3Xiaoshan District, Hangzhou City, Zhejjang ProvinceN30°1'1.86"E120°0'1.70"Invasive115427BJ 1Binjiang District, Hangzhou City, Zhejjang ProvinceN30°1'1.86"E120°0'1.70"Invasive125428BJ 2Binjiang District, Hangzhou City, Zhejjang ProvinceN30°0'2.68.3"E120°0'2.0.7"Invasive </td <td>16</td> <td>BH 2</td> <td>Binhu District, Wuxi City, Jiangsu Province</td> <td>N31°29′51.43″</td> <td>E120°24'50.49"</td> <td>Invasive</td> <td>10</td> <td>54</td>	16	BH 2	Binhu District, Wuxi City, Jiangsu Province	N31°29′51.43″	E120°24'50.49"	Invasive	10	54
18WJWujin District, Changzhou City, Jiangsu ProvinceN31°31′26.74"E120°03′33.15"Invasive105419QXQixia District, Nanjing City, Jiangsu ProvinceN32°06′50.22"E118°52′17.00"Invasive105420XW 1Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05′54.33"E118°53′07.09"Invasive105421XW 2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05′21.80"E118°50′13.38"Invasive105422PKPukou District, Nanjing City, Jiangsu ProvinceN32°05′21.80"E118°36′43.51"Invasive105423JGJianggan District, Hang/hou City, Zhejiang ProvinceN30°17′29.55"E120°14′22.75"Invasive105424XS 1Xiaoshan District, Hang/hou City, Zhejiang ProvinceN30°11′33.37"E120°16′23.98"Invasive105425XS 2Xiaoshan District, Hang/hou City, Zhejiang ProvinceN30°16′30.02"E120°16′23.98"Invasive95426XS 3Xiaoshan District, Hang/hou City, Zhejiang ProvinceN30°16′30.02"E120°16′23.93"Invasive95427BJ 1Binjiang District, Hang/hou City, Zhejiang ProvinceN30°0′28.33"E120°0′8′07.07"Invasive105428BJ 2Binjiang District, Hang/hou City, Zhejiang ProvinceN30°4′28.35"E120°4′4′21.24"Invasive105429XHXihu District, Jiaxing City, Zhejiang ProvinceN30°4′30.45"E120°4′4′21.24"<	17	BH 3	Binhu District, Wuxi City, Jiangsu Province	N31°29′27.02″	E120°27'01.11"	Invasive	10	54
19QXQixia District, Nanjing City, Jiangsu ProvinceN32°06'50.22"E118°52'17.00"Invasive105420XW 1Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'46.33"E118°53'07.09"Invasive105421XW 2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'21.80"E118°50'13.38"Invasive105422PKPukou District, Nanjing City, Jiangsu ProvinceN32°04'20.65"E118°36'43.51"Invasive105423JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°17'29.55"E120°14'22.75"Invasive125424XS 1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°17'39.58"E120°14'23.98"Invasive105425XS 2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°16'30.02"E120°17'05.09"Invasive95426XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°16'30.02"E120°15'41.75"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°0'18.85"E120°08'13.93"Invasive105428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°4'26.83"E120°08'07.79"Invasive105429XHXihu District, Jiaxing City, Zhejiang ProvinceN30°4'26.83"E120°04'20.74"Invasive105430NH 1Nahu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'51.83" <td>18</td> <td>WJ</td> <td>Wujin District, Changzhou City, Jiangsu Province</td> <td>N31°31′26.74″</td> <td>E120°03'33.15"</td> <td>Invasive</td> <td>10</td> <td>54</td>	18	WJ	Wujin District, Changzhou City, Jiangsu Province	N31°31′26.74″	E120°03'33.15"	Invasive	10	54
20XW 1Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'46.33"E118°53'07.09"Invasive105421XW 2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05'21.80"E118°50'13.38"Invasive105422PKPukou District, Nanjing City, Jiangsu ProvinceN32°04'20.65"E118°36'43.51"Invasive105423JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°17'29.55"E120°14'22.75"Invasive105424XS 1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°17'33.37"E120°16'23.98"Invasive105425XS 2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°17'95.5"E120°17'05.09"Invasive95426XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°01'18.65"E120°05'13.93"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°01'18.65"E120°06'07.79"Invasive125428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°04'20.74"Invasive105429XHXihu District, Jiaxing City, Zhejiang ProvinceN30°05'26.35"E120°44'21.24"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°26'47.84"E120°24'32.54"Invasive105431NH2Nahu District, Muhu City, Anhui ProvinceN30°26'47.84"E120°24'35.83"<	19	QX	Qixia District, Nanjing City, Jiangsu Province	N32°06'50.22"	E118°52'17.00"	Invasive	10	54
21XW 2Xuanwu District, Nanjing City, Jiangsu ProvinceN32°05′21.80"E118°50′13.38"Invasive105422PKPukou District, Nanjing City, Jiangsu ProvinceN32°04′20.65"E118°36′43.51"Invasive125423JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°17′29.55"E120°14′22.75"Invasive105424XS 1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°11′33.37"E120°16′23.98"Invasive105425XS 2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°11′33.37"E120°16′23.98"Invasive95426XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°07′19.58"E120°17′05.09"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07′19.58"E120°08′13.93"Invasive95428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07′19.58"E120°08′13.93"Invasive105429XHXihu District, Jiaxing City, Zhejiang ProvinceN30°07′26.83"E120°04′20.74"Invasive135430NH 1Nahu District, Jiaxing City, Zhejiang ProvinceN30°43′32.96"E120°44′21.24"Invasive135431NH2Nahu District, Jiaxing City, Zhejiang ProvinceN30°43′32.96"E120°44′21.24"Invasive105433JH 1Jinghu District, Wuhu City, Anhui ProvinceN30°26′47.84"E120°23′3.5.1"<	20	XW 1	Xuanwu District, Nanjing City, Jiangsu Province	N32°05′46.33″	E118°53'07.09"	Invasive	10	54
22PKPukou District, Nanjing City, Jiangsu ProvinceN32°04'20.65"E118°36'43.51"Invasive105423JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°17'29.55"E120°14'22.75"Invasive125424XS1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°17'29.55"E120°16'23.98"Invasive105425XS2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°16'30.02"E120°17'05.09"Invasive95426XS3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°16'23.98"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°16'21.75"Invasive95428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07'26.83"E120°08'07.79"Invasive105429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°08'28.35"E120°41'21.24"Invasive105430NH 1Nahuh District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°41'21.24"Invasive105431NH 2Nahuh District, Wahu City, Anhui ProvinceN30°26'47.84"E120°23'56.41"Invasive105433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°21'31.17"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°21'03.31"E118°1'19.19"Invasive	21	XW 2	Xuanwu District, Nanjing City, Jiangsu Province	N32°05'21.80"	E118°50'13.38"	Invasive	10	54
23JGJianggan District, Hangzhou City, Zhejiang ProvinceN30°17'29.55"E120°14'22.75"Invasive125424XS1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°11'33.37"E120°16'23.98"Invasive105425XS2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°16'30.02"E120°17'05.09"Invasive115426XS3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°10'18.65"E120°15'41.75"Invasive95427BJ1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07'09.58"E120°08'07.79"Invasive95428BJ2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07'26.83"E120°04'20.74"Invasive105429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°8'28.35"E120°04'20.74"Invasive105430NH1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°4'34'32.96"E120°44'51.84"105431NH2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105433JH1Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'52.54"Invasive125434JH2Jinghu District, Wuhu City, Anhui ProvinceN31°12'16.36"E118°13'19.19"Invasive125435S51Sanshan District, Wuhu City, Anhui ProvinceN31°12'16.60"E118°16'31.88"Invasive12	22	РК	Pukou District, Nanjing City, Jiangsu Province	N32°04'20.65"	E118°36'43.51"	Invasive	10	54
24XS 1Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°11'33.37"E120°16'23.98"Invasive105425XS 2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°16'30.02"E120°17'05.09"Invasive115426XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°15'41.75"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°08'13.93"Invasive95428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°08'07.79"Invasive125429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°08'28.35"E120°04'20.74"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'21.24"Invasive135431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°26'47.84"E120°24'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°24'53.83"Invasive105433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'32.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°21'31.17"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°21'31.71"Invasive12	23	JG	Jianggan District, Hangzhou City, Zhejiang Province	N30°17′29.55″	E120°14'22.75"	Invasive	12	54
25XS 2Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°16'30.02"E120°17'05.09"Invasive115426XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°15'41.75"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°08'13.93"Invasive95428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°08'07.79"Invasive125429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°08'28.35"E120°04'20.74"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'21.24"Invasive105431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°21'35.87"E118°22'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'13.17"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°13'19.19"Invasive125434S5 1Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125435S5 1Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive12 <td< td=""><td>24</td><td>XS 1</td><td>Xiaoshan District, Hangzhou City, Zhejiang Province</td><td>N30°11'33.37"</td><td>E120°16'23.98"</td><td>Invasive</td><td>10</td><td>54</td></td<>	24	XS 1	Xiaoshan District, Hangzhou City, Zhejiang Province	N30°11'33.37"	E120°16'23.98"	Invasive	10	54
26XS 3Xiaoshan District, Hangzhou City, Zhejiang ProvinceN30°07'19.58"E120°15'41.75"Invasive95427BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°10'18.65"E120°08'13.93"Invasive95428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°08'07.79"Invasive125429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°04'20.74"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'21.24"Invasive135431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive125433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°12'13.87"E118°13'19.19"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125436SS 2Sanshan District, Tongling City, AnhuiN30°55'23.64"E117°5'106.76"Invasive1254<	25	XS 2	Xiaoshan District, Hangzhou City, Zhejiang Province	N30°16'30.02"	E120°17'05.09"	Invasive	11	54
27BJ 1Binjiang District, Hangzhou City, Zhejiang ProvinceN30°10'18.65"E120°08'13.93"Invasive95428BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°08'07.79"Invasive125429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°08'28.35"E120°04'20.74"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'21.24"Invasive135431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'13.17"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°13'19.19"Invasive125436SS 2Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°13'18.88"Invasive125437LMLion Mountain District, Tongling City, AnhuiN30°55'23.64"E117°51'06.76"Invasive1254	26	XS 3	Xiaoshan District, Hangzhou City, Zhejiang Province	N30°07'19.58"	E120°15'41.75"	Invasive	9	54
28BJ 2Binjiang District, Hangzhou City, Zhejiang ProvinceN30°09'26.83"E120°08'07.79"Invasive125429XHXihu District, Hangzhou City, Zhejiang ProvinceN30°08'28.35"E120°04'20.74"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'21.24"Invasive135431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'13.17"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°13'15.10"E118°13'19.19"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125436SS 2Sanshan District, Tongling City, AnhuiN30°55'23.64"E117°51'06.76"Invasive125437LMLion Mountain District, Tongling City, AnhuiN30°55'23.64"E117°51'06.76"Invasive1254	27	BJ 1	Binjiang District, Hangzhou City, Zhejiang Province	N30°10'18.65"	E120°08'13.93"	Invasive	9	54
29XHXihu District, Hangzhou City, Zhejiang ProvinceN30°08'28.35"E120°04'20.74"Invasive105430NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'21.24"Invasive135431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°21'03.3"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°11'15.10"E118°13'19.19"Invasive125436SS 2Sanshan District, Tongling City, AnhuiN30°55'23.64"E117°51'06.76"Invasive125437LMLion Mountain District, Tongling City, AnhuiN30°55'23.64"E117°51'06.76"Invasive1254	28	BJ 2	Binjiang District, Hangzhou City, Zhejiang Province	N30°09'26.83"	E120°08'07.79"	Invasive	12	54
30NH 1Nanhu District, Jiaxing City, Zhejiang ProvinceN30°45'04.50"E120°44'21.24"Invasive135431NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°21'0.33"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°13'15.10"E118°13'19.19"Invasive125436SS 2Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°13'19.19"Invasive125437LMLion Mountain District, Tongling City, Anhui ProvinceN30°55'23.64"E117°51'06.76"Invasive1254	29	ХН	Xihu District, Hangzhou City, Zhejiang Province	N30°08'28.35"	E120°04'20.74"	Invasive	10	54
31NH 2Nanhu District, Jiaxing City, Zhejiang ProvinceN30°43'32.96"E120°44'53.83"Invasive105432HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°13'15.10"E118°13'19.19"Invasive125436SS 2Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°13'19.19"Invasive125437LMLion Mountain District, Tongling City, Anhui ProvinceN30°55'23.64"E117°51'06.76"Invasive125438OC 4OC 4OC 4OC 4OC 4OC 4OC 4OC 4OC 4	30	NH 1	Nanhu District, Jiaxing City, Zhejiang Province	N30°45'04.50"	E120°44'21.24"	Invasive	13	54
32HNHaining City, Zhejiang ProvinceN30°26'47.84"E120°23'35.61"Invasive95433JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°13'15.10"E118°13'19.19"Invasive125436SS 2Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125437LMLion Mountain District, Tongling City, Anhui ProvinceN30°55'23.64"E117°51'06.76"Invasive1254	31	NH 2	Nanhu District, Jiaxing City, Zhejiang Province	N30°43'32.96″	E120°44'53.83"	Invasive	10	54
33JH 1Jinghu District, Wuhu City, Anhui ProvinceN31°21'35.87"E118°22'52.54"Invasive125434JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°13'15.10"E118°13'19.19"Invasive125436SS 2Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125437LMLion Mountain District, Tongling City, Anhui ProvinceN30°55'23.64"E117°51'06.76"Invasive1254	32	HN	Haining City, Zhejiang Province	N30°26′47.84″	E120°23'35.61"	Invasive	9	54
34JH 2Jinghu District, Wuhu City, Anhui ProvinceN31°22'10.33"E118°22'13.17"Invasive125435SS 1Sanshan District, Wuhu City, Anhui ProvinceN31°13'15.10"E118°13'19.19"Invasive125436SS 2Sanshan District, Wuhu City, Anhui ProvinceN31°12'54.60"E118°16'31.88"Invasive125437LMLion Mountain District, Tongling City, Anhui ProvinceN30°55'23.64"E117°51'06.76"Invasive1254	33	JH 1	Jinghu District, Wuhu City, Anhui Province	N31°21′35.87″	E118°22'52.54"	Invasive	12	54
35 SS 1 Sanshan District, Wuhu City, Anhui Province N31°13'15.10" E118°13'19.19" Invasive 12 54 36 SS 2 Sanshan District, Wuhu City, Anhui Province N31°12'54.60" E118°16'31.88" Invasive 12 54 37 LM Lion Mountain District, Tongling City, Anhui Province N30°55'23.64" E117°51'06.76" Invasive 12 54	34	JH 2	Jinghu District, Wuhu City, Anhui Province	N31°22'10.33"	E118°22'13.17"	Invasive	12	54
36 SS 2 Sanshan District, Wuhu City, Anhui Province N31°12′54.60″ E118°16′31.88″ Invasive 12 54 37 LM Lion Mountain District, Tongling City, Anhui Province N30°55′23.64″ E117°51′06.76″ Invasive 12 54 90 Cold Cold <td< td=""><td>35</td><td>SS 1</td><td>Sanshan District, Wuhu City, Anhui Province</td><td>N31°13′15.10″</td><td>E118°13'19.19"</td><td>Invasive</td><td>12</td><td>54</td></td<>	35	SS 1	Sanshan District, Wuhu City, Anhui Province	N31°13′15.10″	E118°13'19.19"	Invasive	12	54
37 LM Lion Mountain District, Tongling City, Anhui N30°55'23.64" E117°51'06.76" Invasive 12 54 Province Provi	36	SS 2	Sanshan District, Wuhu City, Anhui Province	N31°12′54.60″	E118°16'31.88"	Invasive	12	54
	37	LM	Lion Mountain District, Tongling City, Anhui Province	N30°55′23.64″	E117°51'06.76"	Invasive	12	54
38 GC1 Guichi District, Chizhou City, Anhui Province N30°36'19.83" E11/°30'10.12" Invasive 12 54	38	GC 1	Guichi District, Chizhou City, Anhui Province	N30°36′19.83″	E117°30'10.12"	Invasive	12	54
39 GC 2 Guichi District, Chizhou City, Anhui Province N30°37'35.69" E117°29'16.50" Invasive 12 54	39	GC 2	Guichi District, Chizhou City, Anhui Province	N30°37'35.69"	E117°29'16.50"	Invasive	12	54
40 HS 1 Hongshan District, Wuhan City, Hubei Province N30°32′53.42″ E114°31′17.84″ Invasive 7 54	40	HS 1	Hongshan District, Wuhan City, Hubei Province	N30°32′53.42″	E114°31'17.84"	Invasive	7	54
41 HS 2 Hongshan District, Wuhan City, Hubei Province N30°32'36.65" E114°24'53.26" Invasive 9 54	41	HS 2	Hongshan District, Wuhan City, Hubei Province	N30°32'36.65"	E114°24'53.26"	Invasive	9	54
42 HS 3 ^a Hongshan District, Wuhan City, Hubei Province N30°32′22.40″ E114°25′01.12″ Invasive 14 54	42	HS 3 ^a	Hongshan District, Wuhan City, Hubei Province	N30°32'22.40"	E114°25'01.12"	Invasive	14	54
43 CG ^a Chenggong District, Kunming City, Yunnan Province N24°55′05.42″ E102°47′51.01″ Cultivated 20 18	43	CG ^a	Chenggong District, Kunming City, Yunnan Province	N24°55'05.42"	E102°47′51.01″	Cultivated	20	18

^aPopulation used in the analyses of gene and miRNA expression.

FIGURE 2 Morphological and cytological divergences between diploid (sampled from CG population, 2n = 2x = 18) and hexaploid cytotypes (HS 3 population, 2n = 6x = 54) of *S. canadensis*. Plant morphology of diploid and hexaploid cytotypes in vegetative stage (a) and reproductive stage (b). Chromosome numbers of diploid (c) and hexaploid cytotypes (d). Population names follow Table 1

were over-represented, followed by MYB-related (270), AP2-EREBP (211), bHLH (134), and WRKY family members (120). In addition, we discovered 381 TF-encoding genes that were differentially expressed, with the majority being up-regulated in hexaploid cytotypes. Notably, among these differentially expressed TF-encoding genes, almost all the members of the bHLH group were found to be up-regulated (12/15 genes) in hexaploid cytotypes. In addition, MYB (32/53), MYB-related (31/47), ARF (10/16) and Trihelix (9/12) members exhibited a similar trend. However, the majority of TF-encoding genes belonging to the WRKY (18/26) and NAC (13/17) families were down-regulated in hexaploid cytotypes (Figure 3). These TF genes had differential expression patterns, implying a variety of regulatory modes.

3.2 | Functional and pathway analysis of ploidyresponsive unigenes in *S. canadensis*

To better understand the functionality of unigenes differentially expressed in response to ploidy, we mapped the above-mentioned DEUs to the GO and KEGG databases to perform functional analyses and found that a total of 4,545 (35.24%) unigenes from the 12,897 DEUs were successfully classified into three major functional categories: biological process (3,171), molecular function (3,536), and cellular component (2,764). Then, the three major categories were further assigned to 50 terms (Figure A4a in Appendix), including 21 terms in the biological process, 14 terms in the molecular function, and 15 terms in the cellular component categories. The most abundant GO term related to biological process was "metabolic process" represented by 2,374 DEUs, followed by "cellular process," "single-organism process," "localization," "biological regulation," and "response to stimulus" represented by 2,243, 1,741, 568, 501, and 462 DEUs, respectively. In the molecular function category, the two main representative distributions were "catalytic activity" (2,501) and "binding" (1,904). Other GO terms, such as "transporter activity," "enzyme regulator activity," "structural molecule activity," "antioxidant activity," "receptor activity" and "channel regulator activity," associated with the biosynthesis of secondary metabolites were

_Ecology and Evolution

WILFY

also enriched. With respect to the cellular component category, a large proportion of DEUs were clustered in "cell" (1,824), "cell part" (1,808), "membrane" (1,516), and "organelle" (1,264).

In addition, we also found that 8,666 DEUs were assigned to 133 unique KEGG pathways, with 5,705 representing metabolism pathways, 2,006 pathways in genetic information processing, 469 pathways in cellular process, 418 pathways in environmental information processing, and 415 pathways in organismal systems (Figure A5 in Appendix). Notably, there were only two pathways that were significantly over-represented under "organismal systems," that is, "circadian rhythm-plant" and "plant-pathogen interaction." The most represented pathway in DEUs was "metabolic pathways," followed by "biosynthesis of secondary metabolites," "plant-pathogen interaction," "RNA transport," and "spliceosome." Subsequently, the hypergeometric distribution was calculated to identify significantly enriched pathways in which DEUs were involved. A total of eight pathways associated with metabolism were significantly enriched, with a Q value ≤0.05 (Table A3 in Appendix). It was conspicuous that unigenes related to "metabolic pathways (Pathway ID: ko01100)" were significantly enriched among the DEUs, implying that they may operate in the metabolic adaptation mechanism of hexaploid cytotypes. Additionally, unigenes for carbohydrate metabolism of "pentose and glucuronate interconversions (Pathway ID: ko00040)" were enriched. Moreover, unigenes for lipid metabolism of "fatty acid degradation (Pathway ID: ko00071)" were enriched. Additionally, DEUs involved in the metabolism of terpenoids and polyketides, particularly "carotenoid biosynthesis (Pathway ID: ko00906)," and "sesquiterpenoid and triterpenoid biosynthesis (Pathway ID: ko00909)" were enriched. Finally, "biosynthesis of secondary metabolites (Pathway ID: ko01110)," "isoflavonoid biosynthesis (Pathway ID: ko00943)," and "flavone and flavonol biosynthesis (Pathway ID: ko00944)" were enriched, signifying considerable modulation of unigenes responsible for the regulation of plant secondary metabolites.

3.3 | miRNA expression profiling in diploid and hexaploid cytotypes of *S. canadensis*

A total of 179.9 M 50-base pair (bp) single-end raw reads were produced and subjected to Seq-QC collating, which resulted in 166.6 M (92.6%) clean reads with lengths ranging from 18 to 30 nt (Table A4 in Appendix). The sRNA length distribution in six libraries showed that the majority of reads were distributed between 20 and 24 nt in length, which corresponds to the size from Dicer-like digestion products. In addition, the most abundant sequence in all six libraries was 24 nt sRNA (average 37.24% vs. 42.31% in D vs. H), followed by 21 nt sRNA (average 20.06% vs. 23.11% in D vs. H), followed by 21 nt sRNA (average 10.06% vs. 23.11% in D vs. H) (Figure A6 in Appendix), which was in agreement with the typical size distribution of sRNAs reported in other plant species, such as Arabidopsis (Rajagopalan, Vaucheret, Trejo, & Bartel, 2006), *Oryza sativa* (Morin et al., 2008), and *Citrus trifoliata* (Song et al., 2010).

We identified 186 miRNAs belonging to 44 miRNA families in two cytotypes of *S. canadensis* and found that the identified families included a changing count of miRNA members (Supporting Information Table S2). Among the detected miRNAs, the miR166 family possessed the largest number of members, with 26 members that were discriminated by the divergences in nucleotide sequences, followed by miR171, miR167, miR168, miR396, miR156, miR169, miR159, miR319, miR164, miR393, and miR160 families, with 14, 12, 11, 11, 10, 10, 8, 8, 6, 6, and 5 members, respectively. miR398, miR399, and miR858 included four members, and miR390, miR395, and miR403 included three members. Of the remaining 26 miRNA families, 12 families, such as miR157, miR161, and miR162 families, comprised two members, and 14 miRNA families were represented only by a single member each.

A further analysis showed that 59 miRNAs were differentially expressed, of which 38 miRNAs were up-regulated and 21 miR-NAs were down-regulated in hexaploid cytotypes relative to their diploids. Among the DEMs, sca-miR395c, sca-miR8155, and scamiR6173 were markedly down-regulated with log_ofold-change values of -3.23 (q = 1.53e-42), -3.15 (q = 1.40e-04) and -2.45 (q = 6.35e-11), respectively, and sca-miR166p, sca-miR528, and scamiR396a were markedly up-regulated with log₂fold-change values of 5.16 (q = 7.39e-12), 5.13 (q = 9.36e-07), and 5.04 (q = 5.30e-11), respectively. Notably, for the miR160 and miR169 family, scamiR160e, sca-miR169b, sca-miR169e, sca-miR169f, sca-miR169g, and sca-miR169h were up-regulated specifically in hexaploid cytotypes, while sca-miR160b and sca-miR169d were up-regulated specifically in diploid cytotypes. These observations suggested that different members from the same miRNA family had different regulatory modes, probably associated with the cooperative and redundant regulation activity of miRNAs. qRT-PCR analysis performed for six DEMs confirmed the miRNA changes detected by sRNA-seq (Figure A7 in Appendix). In addition, correlation between gRT-PCR results and sequencing results were also calculated. We acquired a significant Pearson "r" close to 0.85 (p < 0.001) (Figure A8 in Appendix), which strongly suggested that our transcriptome and sRNA sequencing data were credible.

3.4 | Unigenes involved in growth-related pathways are targeted by DEMs

Our analysis revealed 1,801 unigenes from 116,801 assembled *S. canadensis* "All-Unigene" were predicted as targets of 184 miR-NAs, of which 884 putative targets were predicted to be cleaved by 58 DEMs. Moreover, a meticulous inspection of the DEMs and their corresponding targets indicated that (a) miR5139a had the highest target abundance (179), and (b) the genes such as CL10163.Contig1_All, CL13112.Contig1_All, and Unigene2861_ All had the highest miRNA abundance (4). To understand in depth the group of unigenes targeted by DEMs, GO functional analysis of the predicted targets was carried out. Under the biological process category of GO classification, unigenes involved in terms such as "cellular process," "metabolic process," "single-organism process," "response to stimulus," etc. were abundantly enriched as the targets of DEMs. Under the molecular function category, unigenes displaying "catalytic activity," "binding," "transporter activity," etc. were targeted by miRNAs. Moreover, "cell," "membrane," "organelle," etc. related unigenes were discovered to be clustered into the cellular component category as targets (Figure A4b in Appendix). In further pathway analysis of 884 putative targets, "cutin, suberin and wax biosynthesis (Pathway ID: ko00073)," "protein processing in endoplasmic reticulum (Pathway ID: ko04141)," "plant hormone signal transduction (Pathway ID: ko04075)," "selenocompound metabolism (Pathway ID: ko00270)" and "cysteine and methionine metabolism (Pathway ID: ko00270)" pathways were significantly enriched with a Q value <0.05. These results suggest that miRNAs were more likely to activate plant primary metabolism and make contributions to the improved vigor shown by hexaploid cytotypes, as it has been noted earlier that hexaploid cytotypes typically exhibited enhanced growth in comparison with diploids.

3.5 | Integrative analysis of gene and miRNA expression confirms that environmental adaptationrelated unigenes are centrally targeted

To detect which biological processes or pathways within a cell were most likely regulated by miRNAs, we integrated overall gene and miRNA expression data to identify miRNA-target interacting pairs that were negatively correlated in log₂fold-change between DEMs and target mRNA expression. As a result, 83 miRNA-target interacting pairs with the involvement of 24 DEMs and 69 targets were visualized by Cytoscape. For each such pair, we then classified 83 miRNA-target interacting pairs into two categories depending on the expression patterns of DEMs as either up-regulated or down-regulated, respectively, for 47 miRNA-target pairs involved in 10 down-regulated miR-NAs and 34 up-regulated targets; or 36 miRNA-target pairs involved in 14 up-regulated miRNA and 35 down-regulated targets (Figure 4). Furthermore, we have also taken note that the coherent miRNA targets included (a) several TFs that were predicted to be targeted by miRNA regulators, for example, sca-miR164d targets FAR1, sca-miR530 targets MYB, sca-miR396a targets Trihelix, and sca-miR5139a targets VOZ1-like, suggesting that these miRNAs may operate to enhance the adaptation of hexaploid cytotypes through an integrative miRNA-TFmRNA regulatory network; (b) receptor-like protein kinases (RLKs) that were predicted to be targets of multiple miRNAs such as sca-miR161a, sca-miR5139a, sca-miR5139b, and sca-miR8155. This target is an important enzyme gene and functions in regulating plant growth, development, signal transduction, immunity, and stress responses (Sun, Li, Wang, Zhang, & Wu, 2017). Notably, these RLK genes were remarkably up-regulated in hexaploid cytotypes, suggesting that their regulator miRNAs may play key roles in the environmental adaptation of hexaploid cytotypes; (c) unigenes associated with methylation and ubiquitination processes, such as histone-lysine N-methyltransferase (CL7649.Contig3_All), ubiquitin-protein ligase (CL2235.Contig13_All), U-box domain-containing protein (CL2207.Contig4_All), and F-box protein (Unigene1223_All), that were predicted to be targets of scamiR396d, sca-miR444a, sca-miR393d, and sca-miR5139a, suggesting that these unigenes may be subjected to miRNA-mediated DNA

methylation and ubiquitination; and (d) two dirigent protein genes (CL6884.Contig1_All and CL6884.Contig3_All) that were predicted to be targets of sca-miR169d. This target was an unspecific oxidizing enzyme gene for radical formation that functions in lignan biosynthesis, which was previously reported to be an integral regulator of plant secondary metabolism (Effenberger et al., 2015). Notably, these dirigent protein genes were remarkably up-regulated in hexaploid cytotypes, suggesting that its regulator sca-miR169d may play key roles in plant secondary metabolism (Table A5 in Appendix).

4 | DISCUSSION

A large number of works have investigated ecological and evolutionary elements responsible for successful invasion (Hahn et al., 2012; Thébault et al., 2011). However, research into the molecular basis for invasiveness in invasive plants is just getting started. Here, we found 12,897 unigenes and 59 miRNA regulators with divergences in expression between diploid and hexaploid cytotypes. Intriguingly, among them were an over-representation of unigenes and coherent miRNA targets relevant to metabolism, plant growth and development, and stress responses, implying that these modified genetic and epigenetic attributes may harbor both biochemical and ecological advantages that were beneficial to the successful invasion of hexaploid cytotypes.

4.1 | Unique gene and miRNA expression characteristics might have contributed to the invasiveness of hexaploid cytotypes

In Arabidopsis thaliana, only 0.1% differences in gene expression between diploid and autotetraploid were detected (Yu et al., 2010). In newly synthesized autotetraploid Paspalum notatum, 0.6% of genes were differentially expressed compared to its diploid (Martelotto et al., 2005). Similarly, the analysis of 21,081 genes in Citrus limonia autotetraploids revealed less than 1.1% differences in comparison with diploids (Allario et al., 2011). In contrast, many researchers have observed a more noticeable transcriptomic divergence between allopolyploids and their parents in several plants (Li et al., 2014; Ye et al., 2016). Remarkably, here we detected >10% transcriptomic differences as a consequence of hexaploid cytotype formation. Two factors may account for this dramatic change. First, S. canadensis is a polyploid, and assembling its transcriptome has been exceedingly difficult because it principally comprises highly similar repeats, thereby causing several contigs that often represent nonoverlapping fragments of the same unigene. Second, given that polyploid effects on gene expression might be induced by genome doubling and/or hybridization, we speculate that the expression pattern of hexaploid cytotypes of S. canadensis should be that of an allohexaploid. Furthermore, a significant caveat in the interpretation of these results is that we have only sequenced one population per ploidy level, and genetic differentiation among different geographic populations of the same ploidy could also be contributing to gene and miRNA expression differences. Thus, further work is essential to explore

WILEY

the genetic relationship between cytotypes. Furthermore, to test whether the invasiveness difference between plants was reflected in the changes of their gene expression patterns, we examined evidence for successful invasion in introduced populations across multiple invasive plants. Here, common-garden studies comparing native and introduced populations of Cirsium arvense. Centaurea diffusa, and Mikania micrantha, as well as comparisons between S. canadensis and invasive taxa of the Asteraceae, have been performed, and obvious similarities have emerged (Guggisberg, Lai, Huang, & Rieseberg, 2013; Guo et al., 2018; Hodgins et al., 2015; Turner, Nurkowski, & Rieseberg, 2017). In these studies, introduced populations notably differ from their native populations with regard to stress response. In line with this observation, the significantly different regulation of stress response genes, such as receptor-like proteins, is of particular interest between introduced and native populations because these genes mediate plant cellular defense pathways. Similar, several stress response genes associated with secondary metabolism, such as the cytochrome P450 gene family, were also found to be significantly expressed in the present work. Therefore, it is reasonable to speculate that these stress response genes might have crucial functions in invasive characteristics. However, we also noticed that genes involved in photosynthesis were exclusively enriched in M. micrantha (Guo et al., 2018). Hence, it seems that the pattern of gene expression across different invasive plants is dependent on a specific plant, and thus, it is difficult to generalize a rule of gene expression during invasion.

Likewise, the relative amount of miRNAs was higher in a derived hexaploid wheat (BBAADD) than in the parental tetraploid *Triticum turgidum* ssp. *durum* (BBAA) and diploid *Aegilops tauschii* (DD) (Kenan-Eichler et al., 2011). Analogously, the number of miRNA or miRNA families in cultivated allotetraploid cotton *G. hirsutum* (AADD) was markedly greater than those in its two diploid ancestors, *G. raimondii* (DD), and *G. arboreum* (AA) (Xie & Zhang, 2015). Ghani et al. (2014) also reported that the percentages and expression levels of miRNAs increased in allodiploid (AB) and allotetraploid (AABB) relative to the parents *Brassica rapa* (AA) and *Brassica nigra* (BB). In the present work, the number and expression levels of miRNAs in hexaploid cytotypes were greater than those in their diploids, which was consistent with the findings of the above-mentioned studies. These results suggest that an increase in ploidy was generally coupled with an obvious increase in the percentages and expression levels of miRNAs.

4.2 | Several regulatory mechanisms seem to operate gene expression properly in hexaploid cytotypes

How does hexaploid cytotypes regulate the differential expression of unigenes? Several mechanisms could be associated with this regulation. miRNAs work as regulators for controlling target-gene expression, thereby affecting a variety of aspects of phenotype, growth, development, and stress response (Ha et al., 2009). Here, we showed a subset of key candidate miRNA regulators within diploid and hexaploid cytotypes and used these DEMs to predict putative targets using two different target-prediction software. To shed light on the regulatory action of these DEMs, we compared these predicted targets with DEUs based on GO functional classification (Figure A4a,b in Appendix) and found that biological processes were highly likely to be regulated by miRNAs, such as (a) a considerable proportion of the enriched unigenes were clustered in "biological process"; (b) processes such as "metabolic" and "cellular" were abundantly enriched; and (c) "single-organism," "localization," "biological regulation," and "response to stimulus" were also adequately reflected. Such observations suggested that unigenes described in the above-mentioned terms were most likely targeted by miRNAs. However, unigenes associated with "cell killing," "locomotion," and "rhythmic process" were enriched only in DEUs, implying that although unigenes associated with the foregoing processes were differentially expressed, this regulation of gene expression cannot be attributed to the miRNA-induced cleavage of targets. In contrast, no term was only enriched under the same category for the targets

FIGURE 3 A bar graph representing the differential expression of TF-encoding genes in diploid and hexaploid cytotypes of *S. canadensis*. Yellow indicates the upregulated genes and blue down-regulated genes in hexaploid cytotypes

of DEMs. These observations suggested that few specific biological processes were regulated by miRNAs. Similarly, "channel regulator activity" and "electron carrier activity" enriched in the "molecular function" category were only amid DEUs. In addition, under the category of "cellular component," unigenes related to terms "cell," "membrane" and "organelle" were overwhelming in this comparison, whereas no unigene associated with terms "nucleoid," "virion," and "virion part" was enriched among the targets of DEMs, indicating that these unigenes are closely regulated at the transcriptional level and may not be prominently influenced by miRNA-induced gene silencing.

In addition to miRNAs, other accessional regulation manners, such as DNA methylation, may also function to regulate gene expression. There is impressive evidence that an allopolyploid's intergenomic interactions between two divergent genomes were projected to incur DNA methylation changes, eventually causing the differential expression of genes, which can potentially lead to profound phenotypic consequences (Chen, 2007; Salmon & Ainouche, 2010). DNA methylation changes between an allopolyploid and its parents have been very well reported. For instance, in *Spartina* allopolyploids, a high level of epigenetic regulation might explain the morphological plasticity and its larger ecological amplitude (Salmon, Ainouche, & Wendel, 2005). Additionally, Madlung et al. (2002) reported that changes in DNA methylation would result in the development of altered morphologies in

synthetic allotetraploids. Although DNA methylation alterations are principally observed in allopolyploids, activation, or repression of gene expression has also been shown to correlate with DNA methylation variation in autopolyploid Arabidopsis (Yu et al., 2010) and Cymbopogon (Lavania et al., 2012). In the present work, a large number of DEUs related to epigenetic regulation were investigated in two cytotypes of S. canadensis (Supporting Information Table S3). In particular, transcriptome analysis defined eleven unigenes (annotated as DNA (cytosine-5)-methyltransferase1 gene, for example, CL12526.Contig3 All, CL5231.Contig1 All, and CL5231. Contig2 All) that displayed striking changes in gene expression. Interestingly, almost all the DNA (cytosine-5)-methyltransferase1 genes were found to be significantly down-regulated (10/11 genes) in hexaploid cytotypes, and these observations should be further investigated because such genes could potentially participate in the maintenance of CG methylation. Additionally, to answer developmental and environmental alterations, chromatin composed of DNA and histones in eukaryotic cell nuclei is modulated by several histone modifications. Among these modifications, histone demethylation regulates gene expression mainly by demethylating histone lysine residues (Shi & Tsukada, 2013). Recent studies have identified Jumonji (JmJ) proteins to be involved in histone demethylation and closely related to the reproductive process. The lossof-function mutations of the rice gene JmJ706 resulted in spikelet development defects (Sun & Zhou, 2008). Here, a total of eight

FIGURE 4 miRNA-gene interaction network of *S. canadensis*. In this network, oval nodes represented unigenes and triangle nodes represented miRNAs. The negative correlation was denoted by a line. The yellow and blue color mean up-regulation and down-regulation and the highest to lowest fold changes are marked from yellow to blue

FIGURE 5 Graphical summary of molecular responses to ploidy alteration in *S. canadensis*. Dotted lines and dashed boxes represent the putative regulations

WILEY_Ecology and Evolution

DEUs (e.g., CL1566.Contig6_All, CL1566.Contig9_All, and CL1566. Contig12_All) were annotated as *JmJ* genes, and all of them were up-regulated in hexaploid cytotypes, which might partly suggest that the JmJ histone demethylase unigenes may alter the expression of a large number of target genes and contribute to the variation in physiology, biochemistry and phenotype between diploid and hexaploid cytotypes. However, further study is needed. Taken together, these data clearly state that complicated and overlapping gene expression regulatory mechanisms may have evolved in hexaploid cytotypes to guarantee suitable transcriptional control in response to environmental stimuli.

4.3 | Potential roles of transcriptional alterations in the successful invasion of hexaploid cytotypes

Polyploids play recognized roles in driving organ size and growth of plants. The leaf is the main photosynthetic organ, and its size strongly affects the energy capture, photosynthetic capacity, and physiological activities of plants (Baute et al., 2017; Niinemets, Portsmuth, & Tobias, 2006). The coordination of cell proliferation and expansion is a crucial determinant that serves a critical function in precisely controlling leaf size and growth caused by cell ploidy (Baute et al., 2017; Marshall et al., 2012; Sugiyama, 2005), which have been previously suggested to be regulated by a number of genes encoding transcription factors, modification proteins, plant hormones, and cell wall protein. The Growth-Regulating-Factor (GRF) protein, a plant-specific transcription factor, has been confirmed to affect leaf growth by positively regulating cell proliferation, cell expansion, and adaxial-abaxial patterning (Omidbakhshfard, Proost, Fujikura, & Mueller-Roeber, 2015). In addition, the GRF protein has also been shown to perform transcription regulation functions by interacting with GRF-Interacting Factor (GIF) protein (Debernardi et al., 2014). In this work, five unigenes (unigene52239_All, CL15674.Contig2_All, CL8349. Contig2_All, CL1635.Contig4_All, and CL1635.Contig1_All) annotated as GRF and two unigenes (Unigene15938 All and CL6058. Contig2_All) annotated as GIF were found to be differentially expressed and may form functional complexes potentially implicated in leaf size and growth. Furthermore, other transcription factors, such as the TCP transcription factor (e.g., CL7816.Contig2_All, CL9341.Contig3_All), were also identified as regulators of leaf size. Except for TFs, regulatory proteins act as important regulators of leaf size and growth by influencing cell proliferation. EBP1, an ortholog of ErbB3-binding protein from humans, regulates leaf size and growth by cell proliferation. Some studies highlight that the expression of EBP1 correlates with plant organ size, growth, and stress tolerance (Cao et al., 2009; Horváth et al., 2006). In the present work, one ortholog of EBP1, CL16506.Contig4_All, was found to be significantly up-regulated in hexaploid cytotypes, which may be responsible for the larger leaves, faster growth, and better stress resistance of hexaploid cytotypes. Similarly, F-box proteins, which are members of regulatory protein families that affects leaf size (Baute et al., 2017), are abundantly expressed.

Moreover, earlier studies showed that auxin mediated the expression of multiple genes (e.g., ARGOS and ARF) to affect plant organ size and growth (Schruff et al., 2006; Wang, Zhou, Xu, & Gao, 2010). Auxin-Regulated Gene involved in Organ Size (ARGOS), a gene deeply induced by auxin, participate in organ size regulation. Wang, Zhou, et al. (2010) also pointed out that overexpression of a Chinese cabbage (Brassica rapa) BrARGOS gene in Arabidopsis elevates the size of plant organs. In this work, an ortholog of BrARGOS, CL15040.Contig2_All was detected, and the up-regulated expression may have similar functions in the organ giantism observed in hexaploid cytotypes. Auxin Response Factor (ARF), a transcription factor, functions in plant size, growth, and stress adaptation by transcriptionally activating and repressing the expression of auxin response genes (Zhao, Zhang, Ma, & Wang, 2016). Here, 16 ARF encoding genes were found to be differentially expressed, which might contribute to invasiveness differences between diploid and hexaploid cytotypes. Lastly, abundant studies have shown correlations between expansin gene expression and cell wall remodeling, growth and stress response, and phenotype changes in plants (Goh, Sloan, Malinowski, & Fleming, 2014; Lee & Choi, 2005; Li et al., 2013), which supports the roles for expansin as an important cell wall protein in plant cell wall modification, growth promotion, and stress tolerance. As expected, the overexpression of expansin genes has remodeled leaf structure, which confers them enhanced tolerance to abiotic stresses (Cho & Cosgrove, 2000; Kwon et al., 2008). In the present work, thirteen unigenes encoding expansins were differentially expressed, and eleven of them were more highly expressed in hexaploid cytotypes of S. canadensis than in diploid cytotypes. These results suggested that the activation of expansins may be a rapid growth and adaptation mechanism of hexaploid cytotypes in novel heterogeneous environments.

Furthermore, polyploids can also profoundly affect plant metabolism qualitatively and quantitatively, furnishing the chance for increased metabolic activity through transcriptional divergence, which eventually results in alterations in the levels of secondary metabolites (Fasano et al., 2016). There are multiple studies on the induction of polyploids to promote the production of specific secondary metabolites. For instance, autotetraploids of Catharanthus roseus produced more vindoline, catharanthine, and vinblastine than their diploids (Xing et al., 2011). Echinacea purpurea autotetraploids showed that the induction of polyploids resulted in higher caffeic acid derivatives and alkamides (Xu et al., 2014). Evidence of the influence of polyploids on chemical profiles has also been recorded in allopolyploids. Banyai et al. (2010) reported that allotetraploid Artemisia annua produced more terpenoids or triterpene-type compounds than diploids. Supporting the role of plant secondary metabolism in polyploid-mediated invasiveness differences "biosynthesis of secondary metabolites (Pathway ID: ko01110)" was found to be the most significantly enriched pathway with a Q value far below 0.05 in the pathway enrichment analysis of DEUs in the present work. Taking the above into account, we propose that polyploids are more likely to remodel the

WILEY

transcriptome and metabolome in hexaploid cytotypes, resulting in ploidy-specific metabolic adaptation. Moreover, a marked number of DEUs encoding enzymes related to plant metabolism were observed, which further supports this plausible explanation. The synthesis of secondary metabolites primarily contains the oxidation, reduction, and cyclization steps, in which unigenes encoding enzymes of cytochrome P450 (CYPs) and uridine diphosphate glucuronosyl transferases (UGTs) play crucial roles in catalyzing these reactions (Zhang et al., 2016). Based on the functional annotation of DEUs, a total of 120 core enzyme unigenes encoding CYPs were differentially expressed (Table A6 in Appendix). In addition, CYPs are one of the largest superfamilies of enzyme proteins (Darabi, Seddigh, & Abarshahr, 2017). A large number of CYPs are involved in a wide range of biosynthetic reactions and biochemical pathways, leading to the synthesis of UV protectants (flavonoids and anthocyanins), defensive compounds (isoflavonoids, phytoalexins, hydroxamic acids, and terpenes), fatty acids, hormones (gibberellins and brassinosteroids), signaling molecules (oxylipins, salicylic acid, and jasmonic acid), accessory pigments (carotenoids), and structural polymers such as lignins (Darabi et al., 2017; Schuler & Werck-Reichhart, 2003). In the present work, many CYP-related unigenes were identified, such as CYP93A (e.g., CL361. Contig6_All, CL1330.Contig7_All, CL16738.Contig1_All), CYP76B (e.g., CL3689.Contig2_All, CL1852.Contig2_All), and CYP71 (e.g., CL6714.Contig2_All, Unigene23159_All, CL15279.Contig1_All), which respectively participated in the biosynthesis of isoflavonoids, flavonoids, and sesquiterpenoids and triterpenoids, which may act as defensive compounds that protect against oxidative damage under abiotic stress. Furthermore, a great deal of UGT genes that participated in flavonoid biosynthesis, such as UGT73, UGT74, UGT76, UGT83, UGT85, and UGT89, were also identified (Table A7 in Appendix). Given these findings, it is attractive to investigate the potential model whereby polyploids impact the metabolome in hexaploid cytotypes of S. canadensis.

In conclusion, important candidate unigenes and miRNA regulators that contributed to the successful invasion of hexaploid cytotypes of *S. canadensis* have been investigated in the current work, and we have also further inferred ploidy-related regulation of DNA methylation as an additional modulatory event that occurs to modulate transcriptome reprogramming to drive invasion success. Furthermore, a model for depicting the events involved in ploidy alteration in *S. canadensis* is summarized in Figure 5. Collectively, this work not only describes which molecular processes and functional pathways are likely vital in the successful invasion of polyploids but also offers a valuable dataset for future functional experiments aiming to determine which of these candidate unigenes and miRNA regulators truly underlie the differences in invasiveness between diploid and hexaploid cytotypes.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (31570539, 31370258).

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

C.C.X. collected plants, performed greenhouse experiment, analyzed the collected data, and wrote this manuscript; Y.M.G. participated in data analysis; J.B.W. conceived the research and contributed to data interpretation and revisions of this manuscript.

DATA ACCESSIBILITY

The mRNA-seq and sRNA-seq data as fastq files from diploid and hexaploid cytotypes of *S. canadensis* were deposited in NCBI SRA database under the accession number SRP152671.

ORCID

Jianbo Wang D https://orcid.org/0000-0002-3040-5522

REFERENCES

- Abhilasha, D., Quintana, N., Vivanco, J., & Joshi, J. (2008). Do allelopathic compounds in invasive *Solidago canadensis* s.l. restrain the native European flora? *Journal of Ecology*, 96, 993–1001. https://doi. org/10.1111/j.1365-2745.2008.01413.x
- Allario, T., Brumos, J., Colmenero-Flores, J. M., Tadeo, F., Froelicher, Y., Talon, M., ... Morillon, R. (2011). Large changes in anatomy and physiology between diploid Rangpur lime (*Citrus limonia*) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany, 62, 2507–2519. https://doi. org/10.1093/jxb/erq467
- Axtell, M. J. (2008). Evolution of microRNAs and their targets: Are all microRNAs biologically relevant? *Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms*, 1779, 725–734. https://doi.org/10.1016/j. bbagrm.2008.02.007
- Banyai, W., Sangthong, R., Karaket, N., Inthima, P., Mii, M., & Supaibulwatana, K. (2010). Overproduction of artemisinin in tetraploid Artemisia annua L. Plant Biotechnology, 27, 427–433. https://doi. org/10.5511/plantbiotechnology.10.0726a
- Baute, J., Polyn, S., Block, J. D., Blomme, J., Lijsebettens, M. V., & Inzé, D. (2017). F-Box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant and Cell Physiology, 58, 962–975. https://doi.org/10.1093/pcp/ pcx035
- Cao, P. X., Song, J., Zhou, C. J., Weng, M. L., Liu, J., Wang, F. X., ... Wang, B. (2009). Characterization of multiple cold induced genes from *Ammopiptanthus mongolicus* and functional analyses of gene *AmEBP1*. *Plant Molecular Biology*, *69*, 529–539. https://doi.org/10.1007/s11103-008-9434-1
- Chen, Z. J. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. *Annual Review* of Plant Biology, 58, 377-406. https://doi.org/10.1146/annurev. arplant.58.032806.103835
- Cho, H. T., & Cosgrove, D. J. (2000). Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 97, 9783–9788. https://doi.org/10.1073/pnas.160276997
- Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization

and analysis in functional genomics research. *Bioinformatics*, 21, 3674–3676. https://doi.org/10.1093/bioinformatics/bti610

- Darabi, M., Seddigh, S., & Abarshahr, M. (2017). Structural, functional, and phylogenetic studies of cytochrome P450 (CYP) enzyme in seed plants by bioinformatics tools. *Caryologia*, 70, 62–76. https://doi.org/ 10.1080/00087114.2016.1274866
- Debernardi, J. M., Mecchia, M. A., Vercruyssen, L., Smaczniak, C., Kaufmann, K., Inze, D., ... Palatnik, J. F. (2014). Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. *Plant Journal*, 79, 413– 426. https://doi.org/10.1111/tpj.12567
- Dyer, E. E., Cassey, P., Redding, D. W., Collen, B., Franks, V., Gaston, K. J., ... Blackburn, T. M. (2017). The global distribution and drivers of alien bird species richness. *PLoS Biology*, 15, e2000942. https://doi. org/10.1371/journal.pbio.2000942
- Effenberger, I., Zhang, B., Li, L., Wang, Q., Liu, Y. X., Klaiber, I., ... Schaller, A. (2015). Dirigent proteins from cotton (*Gossypium* sp.) for the atropselective synthesis of gossypol. *Angewandte Chemie-International Edition*, 54, 14660–14663. https://doi.org/10.1002/anie.201507543
- Fahlgren, N., & Carrington, J. C. (2010). miRNA target prediction in plants. Methods in Molecular Biology, 592, 51–57. https://doi. org/10.1007/978-1-60327-005-2_4
- Fasano, C., Diretto, G., Aversano, R., D'Agostino, N., Di Matteo, A., Frusciante, L., ... Carputo, D. (2016). Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytologist, 210, 1382–1394. https://doi.org/10.1111/nph.13878
- Ghani, M. A., Li, J. X., Rao, L. L., Raza, M. A., Cao, L. W., Yu, N. N., ... Chen, L. P. (2014). The role of small RNAs in wide hybridisation and allopolyploidisation between *Brassica rapa* and *Brassica nigra*. *BMC Plant Biology*, 14, 272. https://doi.org/10.1186/s12870-014-0272-9
- Goh, H. H., Sloan, J., Malinowski, R., & Fleming, A. (2014). Variable expansin expression in Arabidopsis leads to different growth responses. *Journal of Plant Physiology*, 171, 329–339. https://doi.org/10.1016/j. jplph.2013.09.009
- Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., ... Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology*, 29, 644–U130. https://doi.org/10.1038/nbt.1883
- Guggisberg, A., Lai, Z., Huang, J., & Rieseberg, L. H. (2013). Transcriptome divergence between introduced and native populations of Canada thistle, *Cirsium arvense*. New Phytologist, 199, 595–608. https://doi. org/10.1111/nph.12258
- Guo, W. X., Liu, Y., Ng, W. L., Liao, P. C., Huang, B. H., Li, W. X., ... Huang, Y. L. (2018). Comparative transcriptome analysis of the invasive weed *Mikania micrantha* with its native congeners provides insights into genetic basis underlying successful invasion. *BMC Genomics*, *19*, 392. https://doi.org/10.1186/s12864-018-4784-9
- Ha, M., Lu, J., Tian, L., Ramachandran, V., Kasschau, K. D., Chapman, E. J., ... Chen, Z. J. (2009). Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. *Proceedings* of the National Academy of Sciences of the United States of America, 106, 17835–17840. https://doi.org/10.1073/pnas.0907003106
- Hahn, M. A., Buckley, Y. M., & Müller-Schärer, H. (2012). Increased population growth rate in invasive polyploid *Centaurea stoebe* in a common garden. *Ecology Letters*, 15, 947–954. https://doi. org/10.1111/j.1461-0248.2012.01813.x
- Hao, G. Y., Lucero, M. E., Sanderson, S. C., Zacharias, E. H., & Holbrook, N. M. (2013). Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in *Atriplex canescens* (Chenopodiaceae). New Phytologist, 197, 970–978. https:// doi.org/10.1111/nph.12051
- Hodgins, K. A., Bock, D. G., Hahn, M. A., Heredia, S. M., Turner, K. G.,
 & Rieseberg, L. H. (2015). Comparative genomics in the Asteraceae
 reveals little evidence for parallel evolutionary change in invasive

taxa. Molecular Ecology, 24, 2226-2240. https://doi.org/10.1111/ mec.13026

- Hodgins, K. A., Lai, Z., Nurkowski, K., Huang, J., & Rieseberg, L. H. (2013). The molecular basis of invasiveness: Differences in gene expression of native and introduced common ragweed (*Ambrosia artemisiifolia*) in stressful and benign environments. *Molecular Ecology*, 22, 2496– 2510. https://doi.org/10.1111/mec.12179
- Horváth, B. M., Magyar, Z., Zhang, Y. X., Hamburger, A. W., Bakó, L., Visser, R. G., ... Bögre, L. (2006). EBP1 regulates organ size through cell growth and proliferation in plants. *EMBO Journal*, 25, 4909–4920. https://doi.org/10.1038/sj.emboj.7601362
- Huang, X. N., Li, S. G., Ni, P., Gao, Y. C., Jiang, B., Zhou, Z. C., & Zhan, A. B. (2017). Rapid response to changing environments during biological invasions: DNA methylation perspectives. *Molecular Ecology*, 26, 6621-6633. https://doi.org/10.1111/mec.14382
- Jackson, S., & Chen, Z. J. (2010). Genomic and expression plasticity of polyploidy. Current Opinion in Plant Biology, 13, 153–159. https://doi. org/10.1016/j.pbi.2009.11.004
- Kenan-Eichler, M., Leshkowitz, D., Tal, L., Noor, E., Melamed-Bessudo, C., Feldman, M., & Levy, A. A. (2011). Wheat hybridization and polyploidization results in deregulation of small RNAs. *Genetics*, 188, 263–272. https://doi.org/10.1534/genetics.111.128348
- Kwon, Y. R., Lee, H. J., Kim, K. H., Hong, S. W., Lee, S. J., & Lee, H. (2008). Ectopic expression of *Expansin3* or *Expansin/1* causes enhanced hormone and salt stress sensitivity in Arabidopsis. *Biotechnology Letters*, 30, 1281–1288. https://doi.org/10.1007/s10529-008-9678-5
- Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–U54. https://doi.org/10.1038/ nmeth.1923
- Lavania, U. C., Srivastava, S., Lavania, S., Basu, S., Misra, N. K., & Mukai, Y. (2012). Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. *Plant Journal*, 71, 539–549. https://doi.org/10.1111/j.1365-313X.2012.05006.x
- Lee, Y., & Choi, D. (2005). Biochemical properties and localization of the beta-expansin OsEXPB3 in rice (Oryza sativa L.). Molecules and Cells, 20, 119–126.
- Levin, D. A. (1983). Polyploidy and novelty in flowering plants. American Naturalist, 122, 1–25. https://doi.org/10.1086/284115
- Li, A. L., Liu, D. C., Wu, J., Zhao, X. B., Hao, M., Geng, S. F., ... Mao, L. (2014). mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. *Plant Cell*, 26, 1878–1900. https://doi.org/10.1105/ tpc.114.124388
- Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323. https://doi.org/10.1186/1471-2105-12-323
- Li, F., Han, Y. Y., Feng, Y. N., Xing, S. C., Zhao, M. R., Chen, Y. H., & Wang, W. (2013). Expression of wheat expansin driven by the *RD29* promoter in tobacco confers water-stress tolerance without impacting growth and development. *Journal of Biotechnology*, *163*, 281–291. https://doi.org/10.1016/j.jbiotec.2012.11.008
- Li, J. (2011). Ecological significance of polyploidy in the invasion of *S. canadensis* in China. [D]. Doctoral Dissertation of Nanjing Agricultural University, Nanjing, China.
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8
- Madlung, A. (2013). Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. *Heredity*, 110, 99–104. https://doi.org/10.1038/hdy.2012.79
- Madlung, A., Masuelli, R. W., Watson, B., Reynolds, S. H., Davison, J., & Comai, L. (2002). Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. *Plant Physiology*, 129, 733–746. https://doi.org/10.1104/pp.003095

Ecology and Evolution

- Marshall, W. F., Young, K. D., Swaffer, M., Wood, E., Nurse, P., Kimura, A., ... Roeder, A. H. K. (2012). What determines cell size? *BMC Biology*, 10, 101. https://doi.org/10.1186/1741-7007-10-101
- Martelotto, L. G., Ortiz, J. P. A., Stein, J., Espinoza, F., Quarin, C. L., & Pessino, S. C. (2005). A comprehensive analysis of gene expression alterations in a newly synthesized *Paspalum notatum* autotetraploid. *Plant Science*, *169*, 211–220. https://doi.org/10.1016/j. plantsci.2005.03.015
- Melville, M. R., & Morton, J. K. (1982). A biosystematic study of the Solidago canadensis (Compositae) complex. I. The Ontario populations. Canadian Journal of Botany-revue Canadienne De Botanique, 60, 976–997. https://doi.org/10.1139/b82-123
- Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., & Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Research*, 41, e121. https://doi. org/10.1093/nar/gkt263
- Morin, R. D., Aksay, G., Dolgosheina, E., Ebhardt, H. A., Magrini, V., Mardis, E. R., ... Unrau, P. J. (2008). Comparative analysis of the small RNA transcriptomes of *Pinus contorta* and *Oryza sativa*. *Genome Research*, 18, 571–584. https://doi.org/10.1101/gr.6897308
- Niinemets, U., Portsmuth, A., & Tobias, M. (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. *New Phytologist*, 171, 91–104. https://doi. org/10.1111/j.1469-8137.2006.01741.x
- Omidbakhshfard, M. A., Proost, S., Fujikura, U., & Mueller-Roeber, B. (2015). Growth-regulating factors (GRFs): A small transcription factor family with important functions in plant biology. *Molecular Plant*, 8, 998–1010. https://doi.org/10.1016/j.molp.2015.01.013
- Pandit, M. K., Pocock, M. J. O., & Kunin, W. E. (2011). Ploidy influences rarity and invasiveness in plants. *Journal of Ecology*, 99, 1108–1115. https://doi.org/10.1111/j.1365-2745.2011.01838.x
- Pandit, M. K., White, S. M., & Pocock, M. J. O. (2014). The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: A global analysis. *New Phytologist*, 203, 697–703. https://doi.org/10.1111/nph.12799
- Pertea, G., Huang, X. Q., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., ... Quackenbush, J. (2003). TIGR Gene Indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. *Bioinformatics*, 19, 651–652. https://doi.org/10.1093/ bioinformatics/btg034
- Prentis, P. J., & Pavasovic, A. (2013). Understanding the genetic basis of invasiveness. *Molecular Ecology*, 22, 2366–2368. https://doi. org/10.1111/mec.12277
- Rajagopalan, R., Vaucheret, H., Trejo, J., & Bartel, D. P. (2006). A diverse and evolutionarily fluid set of microRNAs in *Arabidopsis thaliana*. *Genes* & *Development*, 20, 3407–3425. https://doi.org/10.1101/gad.1476406
- Rejmánek, M. (2015). Ecology: Global trends in plant naturalization. *Nature*, 525, 39-40. https://doi.org/10.1038/nature15206
- Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. *Trends in Genetics*, 16, 276–277. https://doi.org/10.1016/S0168-9525(00)02024-2
- Richardson, D. M., & Pyšek, P. (2008). Fifty years of invasion ecology the legacy of Charles Elton. *Diversity and Distributions*, 14, 161–168. https://doi.org/10.1111/j.1472-4642.2008.00464.x.
- Rius, M., & Darling, J. A. (2014). How important is intraspecific genetic admixture to the success of colonising populations? *Trends in Ecology & Evolution*, 29, 233–242. https://doi.org/10.1016/j.tree.2014.02.003
- Salmon, A., & Ainouche, M. L. (2010). Polyploidy and DNA methylation: New tools available. *Molecular Ecology*, 19, 213–215. https://doi. org/10.1111/j.1365-294X.2009.04461.x
- Salmon, A., Ainouche, M. L., & Wendel, J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in *Spartina* (Poaceae). *Molecular Ecology*, 14, 1163–1175. https://doi. org/10.1111/j.1365-294X.2005.02488.x

- Schruff, M. C., Spielman, M., Tiwari, S., Adams, S., Fenby, N., & Scott, R. J. (2006). The AUXIN RESPONSE FACTOR2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 133, 251–261. https://doi.org/10.1242/dev.02194
- Schuler, M. A., & Werck-Reichhart, D. (2003). Functional genomics of P450s. Annual Review of Plant Biology, 54, 629–667. https://doi. org/10.1146/annurev.arplant.54.031902.134840
- Shi, Y. G., & Tsukada, Y. (2013). The discovery of histone demethylases. Cold Spring Harbor Perspectives in Biology, 5, a017947. https://doi. org/10.1101/cshperspect.a017947
- Song, C. N., Wang, C., Zhang, C. Q., Korir, N. K., Yu, H. P., Ma, Z. Q., & Fang, J. G. (2010). Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (*Citrus trifoliata*). *BMC Genomics*, 11, 431. https://doi.org/10.1186/1471-2164-11-431
- Song, Q. X., & Chen, Z. J. (2015). Epigenetic and developmental regulation in plant polyploids. *Current Opinion in Plant Biology*, 24, 101–109. https://doi.org/10.1016/j.pbi.2015.02.007
- Sugiyama, S. I. (2005). Polyploidy and cellular mechanisms changing leaf size: Comparison of diploid and autotetraploid populations in two species of *Lolium*. *Annals of Botany*, *96*, 931–938. https://doi. org/10.1093/aob/mci245
- Sun, J. M., Li, L. T., Wang, P., Zhang, S. L., & Wu, J. Y. (2017). Genomewide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. *BMC Genomics*, 18, 763. https://doi. org/10.1186/s12864-017-4155-y
- Sun, Q. W., & Zhou, D. X. (2008). Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proceedings of the National Academy of Sciences of the United States of America, 105, 13679–13684. https://doi.org/10.1073/ pnas.0805901105
- Sun, Y., Wu, Y., Yang, C. W., Sun, S., Lin, X. Y., Liu, L. X., ... Liu, B. (2017). Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversity at the population level in rice. *Molecular Ecology*, 26, 5451–5466. https://doi.org/10.1111/ mec.14297
- Szymura, M., Szymura, T. H., Wolski, K., & Swierszcz, S. (2018). Can native grass species outcompete invasive goldenrods? Results of a replacement series experiment. Weed Research, 58, 304–317. https:// doi.org/10.1111/wre.12306
- te Beest, M., Le Roux, J. J., Richardson, D. M., Brysting, A. K., Suda, J., Kubešová, M., & Pyšek, P. (2012). The more the better? The role of polyploidy in facilitating plant invasions. *Annals of Botany*, 109, 19– 45. https://doi.org/10.1093/aob/mcr277
- Thébault, A., Gillet, F., Müller-Schärer, H., & Buttler, A. (2011). Polyploidy and invasion success: Trait trade-offs in native and introduced cytotypes of two Asteraceae species. *Plant Ecology*, 212, 315–325. https://doi.org/10.1007/s11258-010-9824-8
- Turner, K. G., Nurkowski, K. A., & Rieseberg, L. H. (2017). Gene expression and drought response in an invasive thistle. *Biological Invasions*, 19, 875–893. https://doi.org/10.1007/s10530-016-1308-x
- Vigna, B. B. Z., de Oliveira, F. A., de Toledo-Silva, G., da Silva, C. C., do Valle, C. B., & de Souza, A. P. (2016). Leaf transcriptome of two highly divergent genotypes of *Urochloa humidicola* (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas. *BMC Genomics*, *17*, 910. https://doi.org/10.1186/ s12864-016-3270-5
- Wang, B., Zhou, X. C., Xu, F., & Gao, J. W. (2010). Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size. *Transgenic Research*, 19, 461–472. https://doi.org/10.1007/ s11248-009-9324-6
- Wang, C. Y., Jiang, K., Zhou, J. W., & Wu, B. D. (2018). Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China. Science of

4836

the Total Environment, 631-632, 702-713. https://doi.org/10.1016/j. scitotenv.2018.03.061

- Wang, L. C. (2007). Biological characteristics of Solidago canadensis and anatomy comparation with HuangYing (Solidago canadensis CV.). [D]. Doctoral Dissertation of Shanghai Jiaotong University, Shanghai, China.
- Wang, L. K., Feng, Z. X., Wang, X., Wang, X. W., & Zhang, X. G. (2010). DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. *Bioinformatics*, 26, 136–138. https://doi. org/10.1093/bioinformatics/btp612
- Wang, P. L. (2016). Origin and phylogenetic relationship of invasive Solidago canadensis L. [D]. Doctoral Dissertation of Shanghai Normal University, Shanghai, China.
- Werner, P. A., Bradbury, I. K., & Gross, R. S. (1980). The biology of Canadian weeds. 45. Solidago canadensis L. Canadian Journal of Plant Science, 60, 1393–1409. https://doi.org/10.4141/cjps80-194
- Wu, H. J., Ma, Y. K., Chen, T., Wang, M., & Wang, X. J. (2012). PsRobot: A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Research, 40, W22–W28. https://doi.org/10.1093/nar/gks554
- Xie, F. L., & Zhang, B. H. (2015). MicroRNA evolution and expression analysis in polyploidized cotton genome. *Plant Biotechnology Journal*, 13, 421–434. https://doi.org/10.1111/pbi.12295
- Xing, S. H., Guo, X. B., Wang, Q., Pan, Q. F., Tian, Y. S., Liu, P., ... Tang, K. X. (2011). Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in *Catharanthus roseus* (L.) G. Don. *Journal of Biomedicine and Biotechnology*, 2011, 793198. https://doi.org/10.1155/2011/793198
- Xu, C.-G., Tang, T.-X., Chen, R., Liang, C.-H., Liu, X.-y., Wu, C.-L., ... Wu, H. (2014). A comparative study of bioactive secondary metabolite production in diploid and tetraploid *Echinacea purpurea* (L.) Moench. *Plant Cell Tissue and Organ Culture*, 116, 323–332. https://doi. org/10.1007/s11240-013-0406-z
- Ye, B. Y., Wang, R. H., & Wang, J. B. (2016). Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid *Raphanobrassica*. *Scientific Reports*, 6, 37416–000. https:// doi.org/10.1038/srep37416

- Yu, Z., Haberer, G., Matthes, M., Rattei, T., Mayer, K. F. X., Gierl, A., & Torres-Ruiz, R. A. (2010). Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107, 17809–17814. https://doi.org/10.1073/pnas.1000852107
- Zhang, J. S., Dai, L. H., Yang, J. G., Liu, C., Men, Y., Zeng, Y., ... Sun, Y. X. (2016). Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from *Siraitia grosvenorii*. *Plant* and Cell Physiology, 57, 1000–1007. https://doi.org/10.1093/pcp/ pcw038
- Zhao, S., Zhang, M. L., Ma, T. L., & Wang, Y. (2016). Phosphorylation of ARF2 relieves its repression of transcription of the K⁺ transporter gene HAK5 in response to low potassium stress. *Plant Cell*, 28, 3005– 3019. https://doi.org/10.1105/tpc.16.00684
- Zhou, Y. Y., Kang, L., Liao, S. Y., Pan, Q., Ge, X. H., & Li, Z. Y. (2015). Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (*Isatis indigotica* Fort.). *PLoS One*, 10, e0116392. https://doi.org/10.1371/journal.pone.0116392

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Xu C, Ge Y, Wang J. Molecular basis underlying the successful invasion of hexaploid cytotypes of *Solidago canadensis* L.: Insights from integrated gene and miRNA expression profiling. *Ecol Evol*. 2019;9:4820–4852. https://doi.org/10.1002/ece3.5084

×
₫
Ш
P
₹

S
\leq
4
2
5
σ
Ē
σ
ŝ
۳
5
50
.=
⊣
5
Š
-
6
a,
\sim
5
Š
<u><u> </u></u>
1.1
Б
qRT
r qRT
or qRT
I for qR1
ed for qRT
ned for qRT
gned for qRT
signed for qR1
esigned for qR1
designed for qR1
s designed for qR1
ers designed for qR1
ners designed for qR1
imers designed for qR1
'rimers designed for qR1
Primers designed for qR1
Primers designed for qR1
 Primers designed for qR1
A1 Primers designed for qR1
A1 Primers designed for qR1
E A1 Primers designed for gR1
LE A1 Primers designed for gR1
3LE A1 Primers designed for qR1
BLE A1 Primers designed for qR1
ABLE A1 Primers designed for qR1

	Primers		
MiRNA/unigene	RT primer	Sense primer	Anti-sense primer
sca-miR164d	GTCGTATCCAGTGCAGGGTCCCGAGGTATTCGCACTGGATACGACGCACGT	GCCGCTTGGAGAGCAGGGC	GTGCAGGGTCCGAGGT
sca-miR165a	GTCGTATCCAGTGCAGGGTCCCGAGGTATTCGCACTGGATACGACGGGGAT	GCCGCTTCGGACCAGGCTTC	GTGCAGGGTCCGAGGT
sca-miR166p	GTCGTATCCAGTGCAGGGTCCCGAGGTATTCGCACTGGATACGACCCTTGA	GCCGCTGGAATGTTGTCTGGT	GTGCAGGGTCCGAGGT
sca-miR169d	GTCGTATCCAGTGCAGGGTCCCGAGGTATTCGCACTGGATACGACAGGCAA	GCCGCTTAGCCAAGGATGAC	GTGCAGGGTCCGAGGT
sca-miR169e	GTCGTATCCAGTGCAGGGTCCCGAGGTATTCGCACTGGATACGACTCGGCA	GCCGCTCAGCCAAGGATGACT	GTGCAGGGTCCGAGGT
sca-miR396d	GTCGTATCCAGTGCAGGGTCCCGAGGTATTCGCACTGGATACGACTTTCCC	GCCGCTGTTCAATAAGCTGT	GTGCAGGGTCCGAGGT
Unigene3688_All		TGTAAACGCTTCCGTAAATCAG	TGCCACAATAGACAACCCAC
Unigene13166_All		GGATGGAGTAAGCCGAGGAT	GAAGTGACCGTGACAATGACC
CL3766.Contig4_All		TCTGGTTTCCGTATCATTCCT	CCGATGCGATGTCCCTAA
CL4387.Contig1_All		CTGGCTGTCATCACCTTTGG	CCTCTAACTGCTGCTGCGTAT
CL6884.Contig1_All		AGCATACCCAGTAGCAAACCG	TCAAAGATGATTGGAAAGGCAC
CL12537.Contig2_All		TTCAGACATAAGGGAAGGTGGT	ATCCGAAAATGAGATAAGAGGC
Unigene30116_All		ACTGCCGTCTCCCGATTTATG	CTGCTTATGTATGCCTCTGTCTTC
Unigene21625_All		AGACAGAGGCATACATAAGCAGG	ACACCCAAAGGGGGGGGGCCA
CL7649.Contig3_All		GAAGACAGAGGCATACATAAGCAG	ACACCCAAAGGGGGGGGGCCA
CL2151.Contig12_All		TCGCTCAGGGTATTCAGGT	CATTTCACGGAAGGGGGTT
CL5929.Contig3_All		CTAACTGGAGTATCGCCGTGTC	CGGGTCATTCGCTTCTTTG
CL8246.Contig1_All		CAAGCCCTTCATCCATCTATT	CAAACCCCATTTCCCTCA
CL17048.Contig1_All		GAGTTCAGGGATGTATGGAGGTT	GATGATAGTTG TCCGCACAGATT
Unigene38227_All		CGTAATAAGCAGGTGGCATCA	CAAGCATTTTCCCAGCAGAGT
CL12301.Contig3_All		TGGAAGAACCATCACGAGC	AACACTACGACCCGAACGA
CL15040.Contig2_All		CGACACCGTTAGTCCAAGCA	GACAACAAGGCGGCGTACA
CL15841.Contig1_All		TGTAAGGCAAAGGCACTGGG	CGGCTTCTTCGGCTGTATCA
Unigene2041_All		CGGGGTCTTTACAGGTTACTCG	TGTGCTCCACTCCAGCGTTT
GAPDH		TAAGGTCGTCGCTTGGTA	TCTTCTTCGGATGGGTTC

WILEY

II FY_Ecology and Evolution

 TABLE A2
 Overview of sequencing data of trinity-assembled S. canadensis transcriptome

Category	D1	D2	D3	H1	H2	H3
Raw reads (Mb)	55,530,162	55,530,388	55,530,274	57,163,624	55,530,288	55,511,070
Clean reads (Mb)	48,699,934	48,275,088	48,972,390	48,416,760	48,261,972	46,824,558
Q20 (%)	98.94	98.89	98.89	98.89	98.94	98.88
Unigenes	55,769	56,001	58,471	57,867	58,152	56,528
Mean length	965	949	953	944	904	950
N50	1,458	1,403	1,433	1,449	1,377	1,455
GC (%)	39.67	39.59	39.62	39.80	39.84	39.81

Note. D1-D3 and H1-H3 correspond to diploid and hexaploid cytotypes of S.canadensis, respectively.

TABLE A3 KEGG pathway enrichment analysis of differentially expressed unigenes

No.	Pathway	DEU number	Q value	Pathway ID	Level 1
1	Biosynthesis of secondary metabolites	1,217 (14.04%)	9.11E-06	ko01110	Metabolism
2	Carotenoid biosynthesis	63 (0.73%)	4.40E-05	ko00906	Metabolism
3	Metabolic pathways	2,022 (23.33%)	1.73E-04	ko01100	Metabolism
4	Sesquiterpenoid and triterpenoid biosynthesis	45 (0.52%)	1.61E-02	ko00909	Metabolism
5	Fatty acid degradation	70 (0.81%)	1.79E-02	ko00071	Metabolism
6	Pentose and glucuronate interconversions	141 (1.63%)	4.00E-02	ko00040	Metabolism
7	lsoflavonoid biosynthesis	42 (0.48%)	4.00E-02	ko00943	Metabolism
8	Flavone and flavonol biosynthesis	44 (0.51%)	4.00E-02	ko00944	Metabolism
9	Steroid biosynthesis	49 (0.57%)	6.31E-02	ko00100	Metabolism
10	Nitrogen metabolism	53 (0.61%)	6.31E-02	ko00910	Metabolism
11	Anthocyanin biosynthesis	22 (0.25%)	6.31E-02	ko00942	Metabolism
12	Tryptophan metabolism	61 (0.7%)	6.31E-02	ko00380	Metabolism
13	Amino sugar and nucleotide sugar metabolism	162 (1.87%)	6.48E-02	ko00520	Metabolism
14	Tyrosine metabolism	59 (0.68%)	6.77E-02	ko00350	Metabolism
15	Monobactam biosynthesis	28 (0.32%)	6.77E-02	ko00261	Metabolism
16	Glutathione metabolism	62 (0.72%)	7.37E-02	ko00480	Metabolism
17	Arginine and proline metabolism	72 (0.83%)	9.97E-02	ko00330	Metabolism
18	Lysine biosynthesis	28 (0.32%)	9.97E-02	ko00300	Metabolism
19	Flavonoid biosynthesis	63 (0.73%)	9.97E-02	ko00941	Metabolism
20	Indole alkaloid biosynthesis	11 (0.13%)	1.19E-01	ko00901	Metabolism
21	Ubiquinone and other terpenoid-quinone biosynthesis	57 (0.66%)	1.24E-01	ko00130	Metabolism
22	Butanoate metabolism	30 (0.35%)	1.28E-01	ko00650	Metabolism
23	Degradation of aromatic compounds	18 (0.21%)	1.30E-01	ko01220	Metabolism
24	Circadian rhythm—plant	85 (0.98%)	1.36E-01	ko04712	Organismal Systems
25	Valine, leucine and isoleucine degradation	80 (0.92%)	1.50E-01	ko00280	Metabolism
26	Vitamin B6 metabolism	22 (0.25%)	1.50E-01	ko00750	Metabolism
27	C5-Branched dibasic acid metabolism	18 (0.21%)	1.88E-01	ko00660	Metabolism
28	Nonhomologous end-joining	11 (0.13%)	2.09E-01	ko03450	Genetic Information Processing
29	alpha-Linolenic acid metabolism	59 (0.68%)	2.09E-01	ko00592	Metabolism
30	Porphyrin and chlorophyll metabolism	62 (0.72%)	2.09E-01	ko00860	Metabolism
31	Arachidonic acid metabolism	32 (0.37%)	2.09E-01	ko00590	Metabolism

-WILEY

TABLE A3 (Continued)

No.	Pathway	DEU number	Q value	Pathway ID	Level 1
32	Fatty acid metabolism	83 (0.96%)	2.09F-01	ko01212	Metabolism
33	Phenylalanine metabolism	45 (0.52%)	2.09E-01	ko00360	Metabolism
34	Stilbenoid, diarylbentanoid and gingerol biosynthesis	63 (0.73%)	2.09F-01	ko00945	Metabolism
35	Ether lipid metabolism	45 (0.52%)	2.14E-01	ko00565	Metabolism
36	Limonene and pinene degradation	55 (0.63%)	2.27E-01	ko00903	Metabolism
37	Brassinosteroid biosynthesis	15 (0.17%)	2.27E-01	ko00905	Metabolism
38	Mismatch repair	131 (1.51%)	2.27E-01	ko03430	Genetic Information Processing
39	Ascorbate and aldarate metabolism	68 (0.78%)	2.29E-01	ko00053	Metabolism
40	Fatty acid biosynthesis	36 (0.42%)	2.73E-01	ko00061	Metabolism
41	Glycolysis/ Gluconeogenesis	185 (2.13%)	2.75E-01	ko00010	Metabolism
42	Isoquinoline alkaloid biosynthesis	31 (0.36%)	3.55E-01	ko00950	Metabolism
43	ABC transporters	122 (1.41%)	3.71E-01	ko02010	Environmental Information Processing
44	Pentose phosphate pathway	93 (1.07%)	3.78E-01	ko00030	Metabolism
45	Nucleotide excision repair	151 (1.74%)	4.22E-01	ko03420	Genetic Information Processing
46	Riboflavin metabolism	19 (0.22%)	4.22E-01	ko00740	Metabolism
47	Pantothenate and CoA biosynthesis	36 (0.42%)	4.33E-01	ko00770	Metabolism
48	Homologous recombination	138 (1.59%)	4.33E-01	ko03440	Genetic Information Processing
49	Valine, leucine, and isoleucine biosynthesis	31 (0.36%)	4.33E-01	ko00290	Metabolism
50	Phenylalanine, tyrosine, and tryptophan biosynthesis	42 (0.48%)	4.36E-01	ko00400	Metabolism
51	Histidine metabolism	27 (0.31%)	4.36E-01	ko00340	Metabolism
52	Alanine, aspartate, and glutamate metabolism	61 (0.7%)	4.56E-01	ko00250	Metabolism
53	Folate biosynthesis	18 (0.21%)	4.75E-01	ko00790	Metabolism
54	Glycerolipid metabolism	103 (1.19%)	4.86E-01	ko00561	Metabolism
55	Galactose metabolism	96 (1.11%)	4.88E-01	ko00052	Metabolism
56	Carbon fixation in photosynthetic organisms	93 (1.07%)	5.74E-01	ko00710	Metabolism
57	DNA replication	135 (1.56%)	5.80E-01	ko03030	Genetic Information Processing
58	Glycine, serine, and threonine metabolism	67 (0.77%)	6.39E-01	ko00260	Metabolism
59	Insulin resistance	76 (0.88%)	6.90E-01	ko04931	Human Diseases
60	Starch and sucrose metabolism	248 (2.86%)	6.91E-01	ko00500	Metabolism
61	Arginine biosynthesis	46 (0.53%)	6.91E-01	ko00220	Metabolism
62	Sphingolipid metabolism	66 (0.76%)	6.95E-01	ko00600	Metabolism
63	Biosynthesis of unsaturated fatty acids	38 (0.44%)	6.95E-01	ko01040	Metabolism
64	Biosynthesis of amino acids	277 (3.2%)	8.15E-01	ko01230	Metabolism
65	Proteasome	45 (0.52%)	8.16E-01	ko03050	Genetic Information Processing
66	N-Glycan biosynthesis	50 (0.58%)	8.32E-01	ko00510	Metabolism
67	Terpenoid backbone biosynthesis	57 (0.66%)	8.94E-01	ko00900	Metabolism
68	Other types of O-glycan biosynthesis	15 (0.17%)	9.08E-01	ko00514	Metabolism
69	Fructose and mannose metabolism	70 (0.81%)	9.12E-01	ko00051	Metabolism
70	RNA transport	299 (3.45%)	9.24E-01	ko03013	Genetic Information Processing

TABLE A3 (Continued)

No.	Pathway	DEU number	Q value	Pathway ID	Level 1
71	SNARE interactions in vesicular transport	26 (0.3%)	9.52E-01	ko04130	Genetic Information Processing
72	Phenylpropanoid biosynthesis	125 (1.44%)	9.88E-01	ko00940	Metabolism
73	Other glycan degradation	77 (0.89%)	9.88E-01	ko00511	Metabolism
74	Lysine degradation	46 (0.53%)	9.88E-01	ko00310	Metabolism
75	Citrate cycle (TCA cycle)	48 (0.55%)	9.88E-01	ko00020	Metabolism
76	Synthesis and degradation of ketone bodies	4 (0.05%)	9.88E-01	ko00072	Metabolism
77	Zeatin biosynthesis	32 (0.37%)	9.88E-01	ko00908	Metabolism
78	Cysteine and methionine metabolism	94 (1.08%)	9.88E-01	ko00270	Metabolism
79	Nicotinate and nicotinamide metabolism	26 (0.3%)	9.88E-01	ko00760	Metabolism
80	Glycerophospholipid metabolism	110 (1.27%)	9.88E-01	ko00564	Metabolism
81	Base excision repair	52 (0.6%)	9.88E-01	ko03410	Genetic Information Processing
82	Carbon metabolism	285 (3.29%)	9.88E-01	ko01200	Metabolism
83	Pyruvate metabolism	107 (1.23%)	9.88E-01	ko00620	Metabolism
84	Basal transcription factors	54 (0.62%)	9.88E-01	ko03022	Genetic Information Processing
85	Tropane, piperidine, and pyridine alkaloid biosynthesis	27 (0.31%)	1.00E+00	ko00960	Metabolism
86	Propanoate metabolism	40 (0.46%)	1.00E+00	ko00640	Metabolism
87	2-Oxocarboxylic acid metabolism	70 (0.81%)	1.00E+00	ko01210	Metabolism
88	Fatty acid elongation	21 (0.24%)	1.00E+00	ko00062	Metabolism
89	beta-Alanine metabolism	49 (0.57%)	1.00E+00	ko00410	Metabolism
90	Benzoxazinoid biosynthesis	6 (0.07%)	1.00E+00	ko00402	Metabolism
91	Lipoic acid metabolism	3 (0.03%)	1.00E+00	ko00785	Metabolism
92	mRNA surveillance pathway	177 (2.04%)	1.00E+00	ko03015	Genetic Information Processing
93	Sulfur metabolism	36 (0.42%)	1.00E+00	ko00920	Metabolism
94	Phosphatidylinositol signaling system	73 (0.84%)	1.00E+00	ko04070	Environmental Information Processing
95	Monoterpenoid biosynthesis	19 (0.22%)	1.00E+00	ko00902	Metabolism
96	One carbon pool by folate	11 (0.13%)	1.00E+00	ko00670	Metabolism
97	Aminoacyl-tRNA biosynthesis	73 (0.84%)	1.00E+00	ko00970	Genetic Information Processing
98	Selenocompound metabolism	17 (0.2%)	1.00E+00	ko00450	Metabolism
99	RNA polymerase	51 (0.59%)	1.00E+00	ko03020	Genetic Information Processing
100	Glycosaminoglycan degradation	25 (0.29%)	1.00E+00	ko00531	Metabolism
101	Taurine and hypotaurine metabolism	2 (0.02%)	1.00E+00	ko00430	Metabolism
102	RNA degradation	172 (1.98%)	1.00E+00	ko03018	Genetic Information Processing
103	Regulation of autophagy	49 (0.57%)	1.00E+00	ko04140	Cellular Processes
104	Biotin metabolism	9 (0.1%)	1.00E+00	ko00780	Metabolism
105	Glyoxylate and dicarboxylate metabolism	68 (0.78%)	1.00E+00	ko00630	Metabolism
106	Oxidative phosphorylation	85 (0.98%)	1.00E+00	ko00190	Metabolism
107	Inositol phosphate metabolism	53 (0.61%)	1.00E+00	ko00562	Metabolism
108	Glycosphingolipid biosynthesis-ganglio series	16 (0.18%)	1.00E+00	ko00604	Metabolism

4841

-WILEY

TABLE A3 (Continued)

No.	Pathway	DEU number	Q value	Pathway ID	Level 1
109	Protein export	25 (0.29%)	1.00E+00	ko03060	Genetic Information Processing
110	Glucosinolate biosynthesis	14 (0.16%)	1.00E+00	ko00966	Metabolism
111	Caffeine metabolism	1 (0.01%)	1.00E+00	ko00232	Metabolism
112	Ribosome	161 (1.86%)	1.00E+00	ko03010	Genetic Information Processing
113	Ribosome biogenesis in eukaryotes	129 (1.49%)	1.00E+00	ko03008	Genetic Information Processing
114	Photosynthesis—antenna proteins	11 (0.13%)	1.00E+00	ko00196	Metabolism
115	Sulfur relay system	9 (0.1%)	1.00E+00	ko04122	Genetic Information Processing
116	Glycosphingolipid biosynthesis-globo series	6 (0.07%)	1.00E+00	ko00603	Metabolism
117	Purine metabolism	170 (1.96%)	1.00E+00	ko00230	Metabolism
118	Peroxisome	92 (1.06%)	1.00E+00	ko04146	Cellular Processes
119	Linoleic acid metabolism	15 (0.17%)	1.00E+00	ko00591	Metabolism
120	Photosynthesis	24 (0.28%)	1.00E+00	ko00195	Metabolism
121	Diterpenoid biosynthesis	28 (0.32%)	1.00E+00	ko00904	Metabolism
122	Pyrimidine metabolism	120 (1.38%)	1.00E+00	ko00240	Metabolism
123	Ubiquitin mediated proteolysis	124 (1.43%)	1.00E+00	ko04120	Genetic Information Processing
124	Phagosome	55 (0.63%)	1.00E+00	ko04145	Cellular Processes
125	Glycosylphosphatidylinositol(GPI)-anchor biosynthesis	9 (0.1%)	1.00E+00	ko00563	Metabolism
126	Thiamine metabolism	3 (0.03%)	1.00E+00	ko00730	Metabolism
127	Endocytosis	279 (3.22%)	1.00E+00	ko04144	Cellular Processes
128	Plant-pathogen interaction	330 (3.81%)	1.00E+00	ko04626	Organismal Systems
129	Spliceosome	299 (3.45%)	1.00E+00	ko03040	Genetic Information Processing
130	Protein processing in endoplasmic reticulum	261 (3.01%)	1.00E+00	ko04141	Genetic Information Processing
131	Cyanoamino acid metabolism	50 (0.58%)	1.00E+00	ko00460	Metabolism
132	Cutin, suberine and wax biosynthesis	25 (0.29%)	1.00E+00	ko00073	Metabolism
133	Plant hormone signal transduction	223 (2.57%)	1.00E+00	ko04075	Environmental Information Processing

Турез	D1	D2	D3	H1	H2	H3
Total reads	29,794,250	29,769,382	30,089,531	29,659,432	30,538,664	30,082,793
High quality	28,662,008	28,616,221	29,119,621	28,456,348	29,785,812	29,129,419
3' adapter null	857,422	939,693	774,556	955,551	942,121	1,149,111
Insert null	4,884	4,435	3,161	3,296	11,658	23,691
5' adapter contaminants	20,936	18,487	25,611	25,329	26,543	30,913
Length small than 18 nt	82,118	249,833	384,772	97,260	332,130	167,214
Poly A	900	3,616	1,191	3,217	2,463	2,386
Clean reads	27,695,748	27,400,157	27,930,330	27,371,695	28,470,897	27,756,104

WILEY _______

TABLE A5 List of oppositely regulated miRNA-target pairs in the transcriptome and sRNA sequencing

AL

MiRNA family	MIRNA	MiRNA log ₂ FC	Target location	Target log ₂ FC	Target function
miR156	sca-miR156a	-1.12	CL14854.Contig4_All	3.86	Unknown
miR160	sca-miR160e	4.90	CL5636.Contig1_All	-2.93	Uncharacterized protein LOC104216279 isoform X3
miR161	sca-miR161a	-1.39	CL11073.Contig3_All	2.62	ATP sulfurylase 2
			Unigene3240_All	7.45	Receptor-like protein kinase FERONIA
miR164	sca-miR164d	4.07	Unigene3688_All	-2.14	FAR1
			Unigene13166_All	-4.50	Wall-associated receptor kinase-like 6
miR165	sca-miR165a	1.16	CL3766.Contig4_All	-2.83	Homeobox-leucine zipper protein REVOLUTA
			CL3766.Contig1_All	-3.40	Homeobox-leucine zipper protein REVOLUTA
			CL3766.Contig6_All	-8.43	Homeobox-leucine zipper protein REVOLUTA
miR166	sca-miR166p	5.16	Unigene5410_All	-7.61	Hypothetical protein AMTR_s00109p00105850
			CL4387.Contig1_All	-3.45	Unknown
			CL2373.Contig3_All	-3.51	Ribosomal protein L5
miR169	sca-miR169d	-1.24	CL6884.Contig3_All	6.65	Dirigent protein 21
			CL6884.Contig1_All	6.50	Dirigent protein 21
			CL12537.Contig3_All	6.35	Nuclear transcription factor Y subunit A-1
			CL4633.Contig1_All	2.43	Nuclear transcription factor Y subunit A-8
			CL12537.Contig2_All	5.95	Nuclear transcription factor Y subunit A-9
	sca-miR169e	4.35	CL16645.Contig3_All	-4.51	Calcium-dependent protein kinase 4
			CL2545.Contig2_All	-2.57	Probable UDP-3-O-acylglucosamine N-acyltransferase 2
miR171	sca-miR171c	2.79	Unigene25276_All	-5.07	Ras-related protein Rab7
			CL11323.Contig2_All	-4.39	U-box superfamily protein
miR393	sca-miR393d	2.48	Unigene1223_All	-2.53	F-box protein
			CL3203.Contig2_All	-2.48	Transport inhibitor response 1-like protein
	sca-miR393e	1.72	CL3203.Contig2_All	-2.48	Transport inhibitor response 1-like protein
miR396	sca-miR396a	5.04	CL2872.Contig4_All	-2.13	DEAD-box ATP-dependent RNA helicase 42
			CL3408.Contig3_All	-2.20	Glutamate synthase 1
			CL3408.Contig1_All	-6.58	Glutamate synthase 1
			CL6266.Contig7_All	-2.93	Trihelix transcription factor GT-1
	sca-miR396d	3.50	CL7649.Contig3_All	-3.28	DNA (cytosine-5)-methyltransferase 1A
			CL7649.Contig4_All	-5.17	DNA (cytosine-5)-methyltransferase 1A
			Unigene30116_All	-5.53	DNA (cytosine-5)-methyltransferase 1A
			Unigene21625_All	-6.75	DNA (cytosine-5)-methyltransferase 1A
			CL7984.Contig4_All	-4.01	Structural maintenance of chromosomes protein 5
miR444	sca-miR444a	4.18	CL5553.Contig1_All	-2.05	ABC transporter B family member 27
			CL2235.Contig13_All	-7.14	Probable E3 ubiquitin ligase SUD1
			CL2235.Contig14_All	-7.31	Probable E3 ubiquitin ligase SUD1
			CL6747.Contig1_All	-7.57	Transcription factor IIIB 90 kDa subunit
			CL5418.Contig5_All	-5.63	Uncharacterized protein ycf45
			CL5418.Contig11_All	-7.72	Uncharacterized protein ycf45
	sca-miR444b	3.88	CL1135.Contig2_All	-4.92	Cysteine proteinase RD21a
			CL1135.Contig6_All	-6.70	Hypothetical protein EUGRSUZ_H026191, partial
			CL1135.Contig5_All	-6.98	Unnamed protein product
miR5048	sca-miR5048a	3.48	Unigene14872_All	-2.57	Auxin-binding protein T85

TABLE A5 (Continued)

4843

-WILEY

MiRNA family	MiRNA	MiRNA log ₂ FC	Target location	Target log ₂ FC	Target function
miR5139	sca-miR5139a	-2.10	Unigene17742_All	2.48	Gamma-glutamyl hydrolase 2
			Unigene7716_All	6.64	HA383 clone BAC 0148N20, complete sequence
			Unigene15641_All	6.64	LRR receptor-like serine/threonine-protein kinase
			Unigene5583_All	3.96	Unknown
			CL2157.Contig2_All	4.05	Oryza sativa genomic DNA
			CL5222.Contig1_All	2.77	Retrovirus-related Pol polyprotein from transposon TNT 1-94
			CL17163.Contig1_All	2.05	Retrovirus-related Pol polyprotein from transposon TNT 1-94
			CL1303.Contig1_All	5.73	Transcription factor VOZ1-like
			CL2207.Contig4_All	6.41	U-box domain-containing protein 30
	sca-miR5139b	-1.87	Unigene26373_All	3.19	Anthocyanidin 5,3-O-glucosyltransferase
			Unigene7716_All	6.64	HA383 clone BAC 0148N20, complete sequence
			Unigene15641_All	6.64	LRR receptor-like serine/threonine-protein kinase
			CL2157.Contig2_All	4.05	Oryza sativa genomic DNA
			CL17163.Contig1_All	2.05	Retrovirus-related Pol polyprotein from transposon TNT 1-94
			CL2207.Contig4_All	6.41	U-box domain-containing protein 30
miR530	sca-miR530	-1.13	Unigene14091_All	5.08	Probable disease resistance protein
			CL1613.Contig1_All	5.74	Transcription factor MYB1R1
miR6173	sca-miR6173	-2.45	CL13158.Contig1_All	3.25	Protein YLS9
miR6300	sca-miR6300	-1.02	Unigene8614_All	2.59	Flowering time control protein FCA
			CL3059.Contig5_All	5.32	Gag-pol polyprotein
			Unigene7996_All	4.80	Laccase-15
miR8155	sca-miR8155	-3.15	Unigene4360_All	3.97	ABC transporter D family member 1
			Unigene16624_All	5.45	ABC transporter G family member 31
			CL4044.Contig2_All	3.13	Cysteine synthase
			Unigene2778_All	6.69	Delta-1-pyrroline-5-carboxylate dehydrogenase 1 protein
			Unigene6077_All	4.95	Delta-1-pyrroline-5-carboxylate dehydrogenase 1 protein
			Unigene17742_All	2.48	Gamma-glutamyl hydrolase 2
			Unigene7716_All	6.64	HA383 clone BAC 0148N20, complete sequence
			Unigene15641_All	6.64	LRR receptor-like serine/threonine-protein kinase
			Unigene5583_All	3.96	Unknown
			CL2157.Contig2_All	4.05	Oryza sativa genomic DNA
			CL10305.Contig2_All	9.88	Probable pyridoxal biosynthesis protein PDX1.2
			CL3399.Contig2_All	7.36	Protein ECERIFERUM 3
			CL5222.Contig1_All	2.77	Retrovirus-related Pol polyprotein from transposon TNT 1-94
			CL17163.Contig1_All	2.05	Retrovirus-related Pol polyprotein from transposon TNT 1-94
			CL2207.Contig4_All	6.41	U-box domain-containing protein 30
miR894	sca-miR894	-2.09	CL732.Contig5_All	6.38	Hypothetical protein MTR_4g131890
			CL732.Contig8_All	6.12	Hypothetical protein MTR_4g131890
			CL732.Contig4_All	7.09	Unknown
miR9662	sca-miR9662a	3.45	CL14321.Contig1_All	-3.13	Mitochondrial import inner membrane translocase subunit TIM10

TABLE A6 List of differentially expressed unigenes associated with CYPs

Unigene	ID	Plausible metabolic pathway	D_FPKM	H_FPKM	Log ₂ FC	Up/ down
CL7441.Contig4 All	CYP59		0.85	52.82	5.95	Up
Unigene11828 All	CYP19-4		20.74	380.99	4.20	Up
CL13176.Contig1 All	CYP19-4		16.40	165.24	3.33	Up
CL10739.Contig3 All	CYP19-4		67.91	477.41	2.81	Up
CL13176.Contig2 All	CYP19-4		133.98	27.73	-2.27	Down
Unigene6217 All	CYP19-4		174.06	22.41	-2.96	Down
Unigene30406 All	CYP19-4		33.84	3.09	-3.45	Down
CL10739.Contig1 All	CYP19-4		216.00	1.45	-7.22	Down
CL9185.Contig2 All	CYP2		85.28	4,912.78	5.85	Up
CL9185.Contig1 All	CYP2		6,998.33	984.99	-2.83	Down
CL10739.Contig2 All	CYP20-3		30.98	4.35	-2.83	Down
CL9682.Contig2_All	CYP21-3		122.88	28.86	-2.09	Down
CL2380.Contig5_All	CYP40		15.43	261.52	4.08	Up
Unigene2002_All	CYP40		16.43	71.43	2.12	Up
CL7441.Contig2_All	CYP59		89.44	17.15	-2.38	Down
Unigene29249_All	CYP63		24.86	0.67	-5.22	Down
Unigene22411_All	CYP704C1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	86.83	1,208.25	3.80	Up
Unigene22213_All	CYP704C1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	17.65	214.89	3.61	Up
CL1310.Contig1_All	CYP704C1	Cutin, suberine, and wax biosynthesis	78.69	914.18	3.54	Up
Unigene22236_All	CYP704C1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	144.79	19.62	-2.88	Down
Unigene5770_All	CYP704C1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	121.73	5.83	-4.38	Down
CL14169.Contig2_All	CYP710A1		68.67	319.20	2.22	Up
CL4539.Contig3_All	CYP711A1		51.23	4.49	-3.51	Down
CL2023.Contig1_All	CYP716B1		631.08	32.09	-4.30	Down
CL2023.Contig3_All	CYP716B1		1,621.08	31.09	-5.70	Down
CL2023.Contig7_All	CYP716B2		15.01	1,730.37	6.85	Up
Unigene12692_All	CYP71A1	Flavone and flavonol biosynthesis;Flavonoid biosynthesis	90.37	8.93	-3.34	Down
Unigene15825_All	CYP71A2	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	2.13	140.71	6.05	Up
CL8060.Contig1_All	CYP71A2	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	898.29	8,213.10	3.19	Up
CL977.Contig3_All	CYP71A4	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	183.01	1,254.69	2.78	Up
CL977.Contig2_All	CYP71A4	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	32.82	197.65	2.59	Up
CL977.Contig5_All	CYP71A4	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	143.64	776.66	2.43	Up
Unigene26266_All	CYP71A4	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	80.86	2.90	-4.80	Down
Unigene17018_All	CYP71A4		275.49	4.65	-5.89	Down
CL15273.Contig1_All	CYP71A6	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	5.13	620.22	6.92	Up
CL15955.Contig1_All	CYP71A8	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	2.73	331.81	6.92	Up
CL8060.Contig3_All	CYP71AJ1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	19.87	827.24	5.38	Up
Unigene23908_All	CYP71AV1		23.88	0.29	-6.36	Down
CL6714.Contig2_All	CYP71AV8	Sesquiterpenoid and triterpenoid biosynthesis	0.27	28.54	6.71	Up
CL6714.Contig1_All	CYP71AV8	Sesquiterpenoid and triterpenoid biosynthesis	82.83	1.05	-6.30	Down
CL9888.Contig1_All	CYP71BL3		26.09	0.29	-6.48	Down
Unigene23159_All	CYP71D55	Sesquiterpenoid and triterpenoid biosynthesis	64.86	8.37	-2.95	Down
CL15279.Contig1_All	CYP71D55	Sesquiterpenoid and triterpenoid biosynthesis	715.14	75.17	-3.25	Down

Ecology and Evolution

4845

WILEY

TABLE A6 (Continued)

Unigene	ID	Plausible metabolic pathway	D_FPKM	H_FPKM	Log ₂ FC	Up/ down
CL9608.Contig2_All	CYP71D55	Sesquiterpenoid and triterpenoid biosynthesis	423.22	28.36	-3.90	Down
CL5543.Contig2_All	CYP72A154		7.85	200.64	4.67	Up
Unigene27925_All	CYP72A219		0.23	15.61	6.09	Up
Unigene22475_All	CYP72A219		2.61	85.74	5.04	Up
CL4064.Contig5_All	CYP72A219		27.03	389.02	3.85	Up
Unigene6002_All	CYP72A219		39.16	198.43	2.34	Up
CL10015.Contig2_All	CYP72A219		370.63	91.20	-2.02	Down
Unigene6055_All	CYP72A219		1,306.33	209.38	-2.64	Down
Unigene5550_All	CYP72A219		1,484.07	76.13	-4.29	Down
CL553.Contig1_All	CYP72A219		17.50	0.65	-4.76	Down
CL4046.Contig2_All	CYP749A22	Brassinosteroid biosynthesis	0.30	77.92	8.00	Up
CL4046.Contig8_All	CYP749A22	Brassinosteroid biosynthesis	0.25	18.51	6.21	Up
CL4046.Contig1_All	CYP749A22	Brassinosteroid biosynthesis	8.29	138.16	4.06	Up
CL14877.Contig1_All	CYP749A22	Brassinosteroid biosynthesis	38.24	315.95	3.05	Up
CL4046.Contig5_All	CYP749A22	Brassinosteroid biosynthesis	24.46	0.32	-6.26	Down
CL4046.Contig6_All	CYP749A22	Brassinosteroid biosynthesis	203.05	1.08	-7.55	Down
CL37.Contig2_All	CYP75B2	Flavone and flavonol biosynthesis;Flavonoid biosynthesis	1.58	630.70	8.64	Up
CL8453.Contig3_All	CYP75B2		465.26	90.17	-2.37	Down
CL37.Contig1_All	CYP75B2	Flavone and flavonol biosynthesis;Flavonoid biosynthesis	708.39	23.03	-4.94	Down
CL1605.Contig12_All	CYP76AD1		118.74	26.26	-2.18	Down
CL2830.Contig3_All	CYP76B1	Flavonoid biosynthesis;Stilbenoid, diarylheptanoid and gingerol biosynthesis;Phenylpropanoid biosynthesis	3.67	82.10	4.48	Up
CL3689.Contig2_All	CYP76B6	Flavone and flavonol biosynthesis;Flavonoid biosynthesis	3.79	65.45	4.11	Up
CL1852.Contig2_All	CYP76B6	Flavone and flavonol biosynthesis;Flavonoid biosynthesis	42.67	171.06	2.00	Up
CL4701.Contig3_All	CYP76C1		32.81	195.06	2.57	Up
Unigene28192_All	CYP76C1		93.38	421.32	2.17	Up
CL7793.Contig1_All	CYP76C1		136.81	560.21	2.03	Up
CL7793.Contig2_All	CYP76C1		1,323.87	213.51	-2.63	Down
CL4701.Contig5_All	CYP76C1		24.44	1.49	-4.04	Down
CL4701.Contig4_All	CYP76C1		79.49	0.33	-7.89	Down
CL14510.Contig2_All	CYP77A2	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	59.18	900.01	3.93	Up
CL5637.Contig1_All	CYP79D1	Glucosinolate biosynthesis	1.58	43.17	4.77	Up
CL8279.Contig1_All	CYP79D1	Glucosinolate biosynthesis	39.87	6.14	-2.70	Down
CL2748.Contig1_All	CYP80B2		1.46	30.68	4.40	Up
CL9352.Contig4_All	CYP81D1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	57.61	8.79	-2.71	Down
CL8387.Contig2_All	CYP81E1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	90.19	15.56	-2.54	Down
CL13045.Contig1_All	CYP81E1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	39.39	1.06	-5.22	Down
CL13045.Contig2_All	CYP81E1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	54.59	0.67	-6.36	Down
Unigene7285_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	0.27	48.54	7.47	Up
Unigene5205_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	0.26	43.78	7.40	Up
Unigene4201_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	0.25	24.18	6.58	Up

TABLE A6 (Continued)

ΧU	ET	AL.

Unigene	ID	Plausible metabolic pathway	D_FPKM	H_FPKM	Log ₂ FC	Up/ down
Unigene4771_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	0.88	39.34	5.47	Up
CL14937.Contig5_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	30.52	375.55	3.62	Up
CL10835.Contig1_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	4.99	55.93	3.49	Up
CL2495.Contig1_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	5.87	63.33	3.43	Up
CL17044.Contig1_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	795.11	168.53	-2.24	Down
Unigene25796_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	500.03	65.44	-2.93	Down
CL8654.Contig1_All	CYP82A3	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	94.77	10.61	-3.16	Down
CL3118.Contig2_All	CYP82G1	Diterpenoid biosynthesis	23.59	3,287.45	7.12	Up
CL3531.Contig2_All	CYP83B1	Glucosinolate biosynthesis	0.70	110.50	7.29	Up
Unigene28320_All	CYP84A1	Phenylpropanoid biosynthesis	453.58	78.83	-2.52	Down
CL2645.Contig3_All	CYP85A1	Brassinosteroid biosynthesis	1.90	31.87	4.07	Up
CL16982.Contig1_All	CYP85A1	Brassinosteroid biosynthesis	68.52	2.80	-4.62	Down
CL16982.Contig2_All	CYP85A1	Brassinosteroid biosynthesis	32.06	0.30	-6.74	Down
Unigene9790_All	CYP86A8	Cutin, suberine, and wax biosynthesis	8.85	121.08	3.77	Up
CL13254.Contig3_All	CYP86B1	Cutin, suberine, and wax biosynthesis	4.35	472.95	6.76	Up
Unigene17254_All	CYP86B1	Cutin, suberine, and wax biosynthesis	32.44	167.27	2.37	Up
CL2327.Contig3_All	CYP87A3		26.15	0.33	-6.31	Down
CL6582.Contig6_All	CYP89A2	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	4.48	267.01	5.90	Up
CL10339.Contig2_All	CYP90A1	Brassinosteroid biosynthesis	7.21	80.63	3.48	Up
CL10339.Contig3_All	CYP90A1	Brassinosteroid biosynthesis	456.50	107.30	-2.09	Down
CL361.Contig6_All	CYP93A1	Isoflavonoid biosynthesis	46.89	4.48	-3.39	Down
CL1330.Contig3_All	CYP93A3	Isoflavonoid biosynthesis	0.57	41.79	6.20	Up
CL16738.Contig3_All	CYP93A3	Isoflavonoid biosynthesis	70.10	924.85	3.72	Up
CL16738.Contig1_All	CYP93A3	Isoflavonoid biosynthesis	46.85	269.17	2.52	Up
CL1330.Contig7_All	CYP93A3	Isoflavonoid biosynthesis	120.62	12.75	-3.24	Down
CL1330.Contig6_All	CYP93A3	Isoflavonoid biosynthesis	148.28	12.08	-3.62	Down
CL7523.Contig2_All	CYP94A1	Stilbenoid, diarylheptanoid, and gingerol biosynthesis	1.22	142.26	6.87	Up
CL2760.Contig1_All	CYP94C1	Cutin, suberine, and wax biosynthesis	2.94	163.00	5.79	Up
CL5348.Contig1_All	CYP94C1		33.97	0.30	-6.82	Down
CL5348.Contig2_All	CYP94C1		76.68	0.34	-7.84	Down
CL4017.Contig2_All	CYP95		3.14	68.85	4.45	Up
Unigene35557_All	CYP97A3	Carotenoid biosynthesis	0.35	469.90	10.40	Up
Unigene9891_All	CYP97B2	Carotenoid biosynthesis	53.06	508.17	3.26	Up
Unigene9890_All	CYP97B2	Carotenoid biosynthesis	219.04	47.55	-2.20	Down
CL3333.Contig5_All	CYP97B2	Carotenoid biosynthesis	78.73	13.35	-2.56	Down
Unigene21607_All	CYP97B2	Carotenoid biosynthesis	428.64	0.41	-10.04	Down
CL1848.Contig1_All	CYP98A2	Flavonoid biosynthesis;Stilbenoid, diarylheptanoid and gingerol biosynthesis;Phenylpropanoid biosynthesis	44.29	3.11	-3.83	Down

Ecology and Evolution

4847

-WILEY

TABLE A7 List of differentially expressed unigenes associated with UGTs

Unigene	Unigene description	ID	D_FPKM	H_FPKM	$\log_2 FC$	Up/down
CL3889.Contig1_All	Anthocyanidin 3-O-glucosyltransferase	RT	121.76	5.30	-4.52	Down
CL3889.Contig2_All	Anthocyanidin 3-O-glucosyltransferase	RT	297.22	4.92	-5.92	Down
CL3889.Contig3_All	Anthocyanidin 3-O-glucosyltransferase	RT	232.97	2.63	-6.47	Down
CL3889.Contig4_All	Anthocyanidin 3-O-glucosyltransferase	RT	321.72	3.03	-6.73	Down
CL373.Contig2_All	Anthocyanidin 5,3-O-glucosyltransferase	RhGT1	63.22	381.10	2.59	Up
CL373.Contig1_All	Anthocyanidin 5,3-O-glucosyltransferase	RhGT1	59.30	241.43	2.03	Up
Unigene19820_All	Scopoletin glucosyltransferase	TOGT1	174.28	754.95	2.12	Up
CL6939.Contig2_All	Sterol 3-beta-glucosyltransferase	UGT80B1	396.44	84.58	-2.23	Down
CL5245.Contig8_All	Sterol 3-beta-glucosyltransferase UGT80A2	UGT80A2	0.37	47.22	6.98	Up
Unigene16792_All	Sterol 3-beta-glucosyltransferase UGT80A2	UGT80A2	0.27	20.82	6.27	Up
Unigene16787_All	Sterol 3-beta-glucosyltransferase UGT80A2	UGT80A2	13.97	75.97	2.44	Up
Unigene16789_All	Sterol 3-beta-glucosyltransferase UGT80A2	UGT80A2	35.83	2.35	-3.93	Down
Unigene16790_All	Sterol 3-beta-glucosyltransferase UGT80A2	UGT80A2	81.30	0.33	-7.93	Down
CL6939.Contig1_All	Sterol 3-beta-glucosyltransferase UGT80B1	UGT80B1	9.07	181.65	4.32	Up
CL6939.Contig5_All	Sterol 3-beta-glucosyltransferase UGT80B1	UGT80B1	18.82	138.67	2.88	Up
CL9172.Contig2_All	UDP-glucose flavonoid 3-O-glucosyltransferase 6	GT6	4.29	82.32	4.26	Up
CL13096.Contig1_All	UDP-glycosyltransferase 73C3	UGT73C3	470.86	56.54	-3.06	Down
Unigene795_All	UDP-glycosyltransferase 73C3	UGT73C3	33.30	3.70	-3.17	Down
CL5682.Contig4_All	UDP-glycosyltransferase 73C5	UGT73C5	101.33	1,257.38	3.63	Up
Unigene22107_All	UDP-glycosyltransferase 73C5	UGT73C5	1,799.31	358.74	-2.33	Down
Unigene748_All	UDP-glycosyltransferase 73C6	UGT73C6	33.10	190.30	2.52	Up
CL12706.Contig2_All	UDP-glycosyltransferase 74B1	UGT74B1	1.82	233.31	7.00	Up
CL3968.Contig2_All	UDP-glycosyltransferase 74E2	UGT74E2	1.50	65.68	5.46	Up
CL3968.Contig1_All	UDP-glycosyltransferase 74E2	UGT74E2	10.66	158.42	3.89	Up
CL307.Contig2_All	UDP-glycosyltransferase 76C1	UGT76C1	24.06	1,960.82	6.35	Up
CL307.Contig1_All	UDP-glycosyltransferase 76C1	UGT76C1	80.06	376.71	2.23	Up
CL4544.Contig1_All	UDP-glycosyltransferase 76C1	UGT76C1	45.19	9.01	-2.33	Down
Unigene240_All	UDP-glycosyltransferase 76C2	UGT76C2	1.21	48.70	5.33	Up
CL14018.Contig2_All	UDP-glycosyltransferase 76C3	UGT76C3	2.47	30.65	3.64	Up
Unigene24228_All	UDP-glycosyltransferase 76E4	UGT76E4	0.33	99.32	8.21	Up
Unigene52237_All	UDP-glycosyltransferase 76E4	UGT76E4	0.70	125.56	7.49	Up
CL2638.Contig3_All	UDP-glycosyltransferase 76E4	UGT76E4	0.34	32.57	6.57	Up
Unigene37400_All	UDP-glycosyltransferase 76E4	UGT76E4	1.07	44.55	5.39	Up
CL10124.Contig2_All	UDP-glycosyltransferase 83A1	UGT83A1	49.76	303.61	2.61	Up
CL10124.Contig1_All	UDP-glycosyltransferase 83A1	UGT83A1	35.29	211.30	2.58	Up
CL11684.Contig1_All	UDP-glycosyltransferase 83A1	UGT83A1	520.60	99.07	-2.39	Down
CL4313.Contig2_All	UDP-glycosyltransferase 83A1	UGT83A1	384.98	52.03	-2.89	Down
CL11650.Contig2_All	UDP-glycosyltransferase 83A1	UGT83A1	70.32	6.45	-3.45	Down
CL3790.Contig2_All	UDP-glycosyltransferase 85A1	UGT85A1	33.94	139.57	2.04	Up
CL7944.Contig1_All	UDP-glycosyltransferase 85A2	UGT85A2	0.32	96.90	8.26	Up
CL12789.Contig1_All	UDP-glycosyltransferase 85A2	UGT85A2	6.27	81.53	3.70	Up
CL9178.Contig2_All	UDP-glycosyltransferase 85A2	UGT85A2	16.84	145.43	3.11	Up
CL12789.Contig2_All	UDP-glycosyltransferase 85A2	UGT85A2	33.46	0.68	-5.62	Down
CL10565.Contig2_All	UDP-glycosyltransferase 85A3	UGT85A3	75.20	312.18	2.05	Up
CL9310.Contig2_All	UDP-glycosyltransferase 85A5	UGT85A5	49.82	11.55	-2.11	Down

TABLE A7 (Continued)

Unigene	Unigene description	ID	D_FPKM	H_FPKM	$\log_2 FC$	Up/down
CL3105.Contig3_All	UDP-glycosyltransferase 85A5	UGT85A5	56.96	10.49	-2.44	Down
Unigene14793_All	UDP-glycosyltransferase 87A2	UGT87A2	0.61	158.97	8.02	Up
Unigene10460_All	UDP-glycosyltransferase 89B1	UGT89B1	3.80	102.43	4.75	Up
Unigene4493_All	UDP-glycosyltransferase 91A1	UGT91A1	30.28	245.03	3.02	Up
CL14041.Contig1_All	UDP-glycosyltransferase 92A1	UGT92A1	190.22	31.04	-2.62	Down
CL8978.Contig2_All	Zeatin O-xylosyltransferase	ZOX1	358.94	77.03	-2.22	Down

FIGURE A1 A photograph of one invasive population of *S. canadensis* in eastern China

FIGURE A2 Length distribution of the assembled "All-Unigene"

FIGURE A3 Quantitative qRT-PCR analysis data of selected ploidy-responsive 18 unigenes in *S. canadensis*. Error bars represent the standard deviations of three qRT-PCR replicates. Corresponding coherent miRNAs are indicated in brackets

(a)

3162 1000

4851

WILEY

FIGURE A6 Size distribution of sRNAs in diploid and hexaploid cytotypes of *S. canadensis*

FIGURE A7 Real-time qRT-PCR analyses of miRNAs in diploid and hexaploid cytotypes of *S. canadensis*. The miRNA levels in diploid cytotypes were arbitrarily set as 1. Error bars represent the standard deviations of three qRT-PCR replicates

FIGURE A8 Pearson correlation scatter plot of comparisons of log_2 fold-change in expression obtained by HiSeq and qRT-PCR data for unigenes and miRNAs. "*r*" represents the Pearson correlation coefficient