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In brief

An epidemiological model was developed

by Covid Act Now (CAN), and its

performance was evaluated against

historical data along with several other

COVID models. It was found that all

models generally captured the potential

magnitude and directionality of the

pandemic in the short term. There are

limitations to epidemiological models,

but understanding these limitations en-

ables these models to be utilized as tools

for data-driven decision-making in viral

outbreaks.
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THE BIGGER PICTURE Development of an epidemiological model by Covid Act Now (CAN) and evaluation
of performance by back-testing against historical data was performed. Similar analysis was performed for
several other COVID models and results compared. It was found that all models generally captured the po-
tential magnitude and directionality of the pandemic in the short term. There are limitations to epidemiolog-
ical models, but understanding these limitations enables thesemodels to be utilized as tools for data-driven
decision-making in viral outbreaks. Further, it can be valuable to have multiple, independently developed
models to mitigate the inaccuracies of or to correct for the incorrect assumptions made by a partic-
ular model.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Covid Act Now (CAN) developed an epidemiological model that takes various non-pharmaceutical interven-
tions (NPIs) into account and predicts viral spread and subsequent health outcomes. In this study, the pro-
jections of the model developed by CAN were back-tested against real-world data, and it was found that the
model consistently overestimated hospitalizations and deaths by 25%–100% and 70%–170%, respectively,
due in part to an underestimation of the efficacy of NPIs. Other COVIDmodels were also back-tested against
historical data, and it was found that all models generally captured the potential magnitude and directionality
of the pandemic in the short term. There are limitations to epidemiological models, but understanding these
limitations enables these models to be utilized as tools for data-driven decision-making in viral outbreaks.
Further, it can be valuable to have multiple, independently developed models to mitigate the inaccuracies
of or to correct for the incorrect assumptions made by a particular model.
INTRODUCTION

Epidemiological models have been used since at least 1927 to

prevent further disease spread, predict the behavior of disease,

and inform control strategies.1,2 The advent of the unprece-

dented COVID-19 pandemic has propelled epidemiological

models into the public and political consciousness. The outputs

of these models have emerged as crucial signals for decision-
This is an open access article under the CC BY-N
makers in policy and public health, with calls for government-

mandated non-pharmaceutical interventions (NPIs), such as

stay-at-home orders, to be derived from data-driven thresholds,

such as case numbers and transmission rates.3

To date, a number of models have been developed to forecast

deaths and hospitalizations given current COVID trajectories.

Many of these models have been published or posted online.4

They have also been referenced by policy makers and the press
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in discussions of what NPIs aremost appropriate at the state and

local levels. However, no studies have evaluated the performance

of epidemiological models against historical data, nor have any

studies investigated the relative performances of these models.

Covid Act Now (CAN) is an independent 501c3 non-profit or-

ganization. Since March 20th, 2020, the model developed by

CAN has provided COVID-19 case and mortality projections

for all 50 US states. This model was developed with an impact-

oriented approach, taking into account factors such as usability,

accessibility, universality, adaptability, and actionability as out-

lined by Shah, Lai, and Wang, with the intent for it to be used

as NPI on behavior similar to meteorological models.5 The ag-

gregation of data in the weeks since its launch has provided an

opportunity to assess the efficacy of the model built by CAN

and identify areas of improvement.

The objectives in this manuscript are as follows:

1. to detail the mechanisms of the model developed by CAN,

which formulates hospitalization and death projections

given four different scenarios of policy interventions and

public responses;

2. to retroactively back-test the predictions made by the

model built by CAN against actual data to determine de-

grees of error;

3. to retroactively back-test the predictions of other models

against actual data to determine degrees of error.
RESULTS

A model capable of forecasting the differential possible trajec-

tories of the COVID-19 outbreak was developed given different

policy interventions and public behaviors. Additional information

is provided in supplemental information. This study complies

with the Guidelines for Accurate and Transparent Health Esti-

mates Reporting (GATHER) statement.6
Model
The model by CAN was adapted from a pre-existing model by

Hill et al. (pictured in Figure S1).7 The model developed by

CAN predicted the progression of COVID-19 in a given popula-

tion by categorizing all individuals into one of four states relative

to COVID-19 by the Susceptible, Exposed, Infected, and Recov-

ered (SEIR) model:

d Susceptible (S): Since immunity is not hereditary, SEIR

models assume that all individuals in a population are sus-

ceptible to the disease by birth and all individuals begin in

the ‘‘susceptible’’ state, except for the already infected in-

dividual who introduces the COVID-19 into the population.

d Exposed (E): Individualsmove to the ‘‘exposed’’ state upon

coming into contact with COVID-19. Exposed individuals

have been infected, but they are not yet capable of infect-

ing others, nor do they have symptoms. The disease is also

assumed to be transmitted to the individual by horizontal

incidence; i.e., a susceptible individual becomes infected

when in contact with infectious individuals. This contact

may be direct (touching or biting) or indirect (air, cough,

or sneeze).8
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d Infected (I): Individuals are further sub-categorized in the

‘‘infected’’ state into four sub-states:

B Infected 1: Asymptomatic + Infectedmild: This state en-

capsulates mild cases. After 7 days, 4% of the individ-

uals in this state require hospitalization and progress

to the sub-state ‘‘infected 2.’’ The remaining 96%of in-

dividuals progress to ‘‘recovered’’ state.9–11

B Infected 2: Infectedhospital: This state encapsulates

hospitalized cases requiring non-ICU treatment. After

7 days, 30% of the individuals in this state require

ICU and/or ventilation and progress to the sub-state

‘‘infected 3.’’ The remaining 70% progress to the

‘‘recovered’’ state.

B Infected 3: InfectedICU + ventilator: This state encapsu-

lates critical cases requiring ICU and/or ventilator

treatment. The model by CAN assumes all deaths

must first pass through this category. After 7 days,

40% of individuals in this state progress to the

‘‘deceased’’ state. The remaining 60% progress to

the ‘‘recovered’’ state.

d Recovered (R): Individuals who recover from infection

move to the ‘‘recovered’’ state. It was assumed that indi-

viduals in this state are immune to further infection, though

knowledge on immunity remains uncertain.12

B Deceased (D): Those individuals who have died from

the disease. All of these come from ICU cases.

Additional information on the model (scenario definitions, pa-

rameters, inputs, etc.) can be found in the experimental proced-

ures section.

Back-testing
There were 21 iterations of the model developed by CAN

released between March 19th and June 7th, 2020. Moreover, it

produced projections for all 50 states. Back-testing analysis

thus made the following considerations:

d Model version: Which version of the model by CAN is to

be back-tested?

d Region: What region is back-tested for? The model built

by CAN produced projections for all 50 US states and their

respective counties.

d Scenarios: Which scenario’s projections are back-tested

for? The model by CAN produced projections for four sce-

narios: ‘‘No Action,’’ ‘‘Lax Shelter in Place,’’ and ‘‘Strict

Shelter in Place’’ and ‘‘Projections Based on Current

Trends.’’ In particular, accurate back-testing should

compare the model scenario with the actual scenario in a

particular region.

d Time period: What time period is back-tested against?

To limit the scope of this study, it was decided to test the four

key versions of the model representing the most significant

changes, released on March 19th, March 31st, April 9th, and

April 14th, 2020. It was decided to test California, which was

the first state in the nation to order all residents to stay at

home, beginning on March 19th, and began limited reopening

on May 12th, starting with restaurants and shopping centers

in counties that met certain criteria.13,14 These projections

were compared against actual data from the model’s launch



Table 1. Performance of successive CAN models

Model

RMSE for

hospitalizations

RMSE for

deaths

2-week RMSE for

hospitalizations

2-week RMSE

for deaths

3.19 44.65 72.55 27.98 25.22

3.31 85.93 51.22 54.90 24.54

4.09 73.07 51.74 82.91 47.47

4.14 10.30 17.61 17.15 24.35

Successive iterations of the CAN epidemiological model were evaluated

for performance for comparison purposes between both consecutive

models and 2-week performance. Analysis shows the improvement of

performance with newer models, evidenced by decreasing RMSE

(root-mean-square error) of hospitalizations and deaths of successive it-

erations. RMSE compares a predicted value and a known value, with

smaller RMSE values indicating closeness of predicted and observed

values. RMSE was calculated with model iteration predictions in

3-week intervals starting from March 5th, March 25th, April 14th, and

May 4th, respectively.

Table 2. Comparison of model predictions of California COVID-

19 hospitalizations

CAN

iteration

RMSE of

predictions

IHME

iteration

RMSE of

predictions

05.20 1,528.02 05.20 1,764.53

05.29 1,518.35 05.29 2,241.23

06.06 1,326.82 06.06 2,667.21

06.15 1,145.39 06.13 2,633.40

06.27 4,299.12 06.27 2,791.76

The CAN and IHME models were the only models to predict COVID-19

hospitalizations, and their respective performances are displayed above

for comparison purposes. The superior performance of the CAN model

can be seen in the lower RMSEs (root-mean-square errors) compared

with that of IHME. RMSE compares a predicted value and a known value,

with smaller RMSE values indicating closeness of predicted and

observed values. Predictions of successive iterations of each model

were evaluated against historical data fromMarch 4th to July 19th, 2020.
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date, to June 3rd, 2020. These projections were then compared

against actual data for the 14-day period following the model’s

launch date. State-level projections made by the model by CAN

were back-tested against actual data for the state of California

at 3-week intervals for the dates of March 5th, March 25th, April

14th, and May 4th, 2020. See Table 1 for the results of the

back-testing.

In keeping with the aforementioned considerations, retro-

spective back-testing of other epidemiological models was

performed in an effort to evaluate the performance of the

model by CAN compared to other available models. Back-

testing was performed for the state of California for uniformity

purposes and across multiple time spans to evaluate for con-

sistency of the models over time. The following models were

back-tested against historical data and compared to the

model built by CAN: Institute for Health Metrics and Evalua-

tion (IHME),15 Massachusetts Institute of Technology,16

UCLA,17 University of Texas,18 and Youyang Gu.19 Only the

IHME model predicted hospitalizations along with deaths,

so two separate analyses of back-testing were done: one be-

tween the model by CAN and the IHME model15 (for hospital-

izations) and another between the model developed by CAN

model and all other models16–19 (for deaths). The former

back-testing comparison was done for various iterations of

both models across March 4th to July 19th, 2020, and the

latter comparison was done across five different time spans

that were oriented on the models’ respective performances

within their particular iterations. The results of the back-

testing of COVID-19 hospitalizations for the state of California

between the model built by CAN and IHME models are given

in Table 2. See Figure 1 for relative performances of the

various epidemiological models from June 16th to July

13th, 2020.

Statistical analysis of the various models’ predictions for

COVID-19 deaths in the state of California between May 19th

to July 19th, 2020, was performed. Themodel by CANwas found

to have a higher root-mean-square error (RMSE) for deaths than

the remainder of the models, with none of the other models hav-

ing significantly different RMSEs for deaths, respectively

(p < 0.05); see visualization in Figure 2.
DISCUSSION

Implications
Overall, the model developed by CAN appears to have overesti-

mated hospitalizations and deaths. This is due in part to under-

estimation of the efficacy of NPIs. Hospitalization projections

were made with a certain pessimism, and it has since been

observed that shelter in place can be highly effective, more so

than initially anticipated. The shelter-in-place intervention

reduced infection growth rates by as much as 70%.

The comparison of other epidemiological models to the model

developed by CAN showed a consistent overestimation of both

hospitalizations and deaths for the model by CAN compared to

other models. The model developed by Youyang Gu19 showed

to be both the most accurate and precise model with regard to

predicting deaths from COVID-19. Though other models more

accurately predicted the real-world numbers, it is worth noting

that themodel built by CANwas themost accurate epidemiolog-

ical model to forecast both hospitalizations and deaths (over the

IHMEmodel)15 and providedmuchmore extensive predictions in

terms of time than any of the compared models. The longer time

period of projections offered by the model developed by CAN

was not accompanied by comparable accuracy in predicting

deaths, though it wasmore accurate than the IHMEmodel in pre-

dicting hospitalizationswhile also providing longer projection pe-

riods. Although all of the models evaluated besides the model by

CAN did not vary significantly from one another and were largely

consistent in prediction performance, certain variances in perfor-

mance (which can be observed in Figure 2) can be explained by

the reality of inconsistency and variation in viral propagation or

case reporting. This reveals a potential advantage of models

that provide shorter-length but more concentrated and accurate

viral propagation projections over the model built by CAN, high-

lighting the merit of sharing the mechanisms of the aforemen-

tioned models as is done with the model by CAN in this paper.

COVID-19 has shown the utility of epidemiological modeling

for large-scale, unanticipated outbreaks and is extremely useful

for predicting magnitude and directionality of the disease, so

policy makers and healthcare institutions can better prepare

and respond. The data from these models continue to inform
Patterns 3, 100492, July 8, 2022 3



Figure 1. Performance of models’ California

COVID-19 death predictions

Pictured are the performances of predictions by

epidemiological models evaluated against historical

data for COVID-19 deaths in the state of California

from June 16th to July 13th, 2020. Dates in paren-

theses to the right of models’ abbreviations in the

figure legend correspond to the date of the model’s

predictions in the year 2020.

ll
OPEN ACCESS Article
federal, state, and local responses to the ongoing COVID-19

pandemic.

Limitations
To date, COVID-19 has infected only a fraction of the world’s

population. Variables in the model by CAN will almost certainly

change over time. Due to the absence of historical precedent,

infection rates in the case of interventions are best guesses

informed by data. As well, it is the assumption of this model

that individuals who are infected cannot be infected again,

though as the pandemic progress, this is coming into question

as a valid assumption. Many of the data inputs, e.g., hospitaliza-

tion rate and fatality rate, are based on early estimates that are

likely to be imperfect and will likely change. Data sources that

were utilized may be unreliable in unexpected and unknown

ways. Given the abundance of challenges and limitations

encountered in the work described, an additional, non-compre-

hensive list of limitations can be found in Table S6. All users

should err on the side of caution and interpret the results of the

model conservatively.
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The model by CAN, and other epidemiological models, do not

take vaccinations into account, and are thus limited in utility upon

vaccine development and dissemination; however, such

models, including the model developed by CAN, have merit as

valuable tools in future viral outbreaks prior to vaccine develop-

ment when NPIs predominate as the vital means of controlling

viral spread and promoting public health.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Shuhan He, MD, she@mgh.harvard.edu

Materials availability

There were no new unique reagents or materials generated in this study.

Data and code availability

Supplemental information regarding data inputs for the model by CAN

(Table S5) is available at https://doi.org/10.17632/hh4wngxcd5.1 [https://

doi.org/10.17632/hh4wngxcd5.1]. All back-testing data reported in this paper

will be shared by the lead contact upon request. This paper does not report

original code. Data reported in this paper will be shared by the lead contact

upon request.
Figure 2. RMSEs of models’ California

COVID-19 death predictions tables

Pictured are the RMSEs (root mean square error) of

epidemiological models’ predictions of COVID-19

deaths from May 19th to July 19th, 2020. RMSE

compares a predicted value and a known value,

with smaller RMSE values indicating closeness of

predicted and observed values. The x axis aggre-

gates the five back-testing periods of evaluation of

the models in addition to the overall average

RMSE of each model for COVID-19 deaths.

mailto:she@mgh.harvard.edu
https://doi.org/10.17632/hh4wngxcd5.1
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Inferred parameters

Rather than use identical values across all geographies, themodel by CANwas

informed with actual local data as much as possible. The developed SEIR

model and corresponding intervention model are fit to available incident hos-

pitalization, mortality, and case rates using a multivariate maximum likelihood

formalism. The intervention model assumes an unmitigated growth rate until a

time t_break, at which point the reproduction number falls, over the course of

2 weeks, to a final value Reff = R0 * epsilon, where epsilon is a percentage

reduction. Inferred parameters are listed in Table S1, and for each geography,

seven model parameters were fit (Table S2); input parameters are also listed in

the supplemental information in Table S3.

Interventions and responses

Four scenarios were modeled: (1) a baseline scenario in which no action is

taken, (2) a Wuhan-style scenario observing a contact rate reduction of

92% based upon actual outcomes in Wuhan, (3) a ‘‘strict’’ scenario resulting

in a reduced contact rate reduction of 70%, and (4) a ‘‘lax’’ scenario resulting

in a further reduced contact rate reduction of 50%.20 It was not within the

scope of the model developers at the time to model additional scenarios

due to considerations of simplicity and usability, though this scope may be

expanded in the future. Each of these scenarios were modeled assuming

measures and behaviors are held consistently for 12 consecutive weeks.21

A full list of definitions can be found in the supplemental information in

Table S4.

Effective reproduction number R(t)

The method for inferring R(t) was an adaptation of a pre-existing methodology

by Systrom and Vladeck.22,23 Several modifications were made, including

incorporating mortality data to alleviate some of the systematic uncertainties

associated with new COVID-19 case tracking.24

This basic method assumes that the number of new cases and mortalities is

modeled by a Poisson process whose underlying rate is generated by an un-

derlying inferred time varying rate:25,26

RðtÞ = Mean
�
RðtÞNew cases;Rðt � tshiftÞNew deaths

�

The steps for inferring this are as follows:

1. Noise in case andmortality data is smoothed using aGaussian kernel of

width 5 days (out to a 14-day window) to produce a trade-off between

providing leading information and reducing spurious signals such as

clearance of testing backlogs.

2. A prior distribution is derived using the posterior estimate for R(t-1),

where the initial prior at t0 is given by Gamma(3) distribution.

3. A Bayesian update rule is applied at each new time step, where a serial

period of 6 days is applied, and a likelihood on the Poisson rate is multi-

plied by the previous day’s posterior. An additional Gaussian process

prior is applied on R_t so that day over day drift is penalized with a

SD of 0.05. This helps to further reduce drift day to day and can be phys-

ically justified. Results are weekly sensitive to this choice, but clear ar-

tifacts are present with larger values.

4. 90% CIs are computed using the resulting posterior estimates.

5. Reported numbers of new cases, hospitalizations, and mortalities all

suffer from systematic lags and lags from the disease itself. This lag

is accounted for by matching the curvature of each source’s R(t)

sequence against new cases. Specifically, the time lag between

[–21, +5] days that maximizes the cross-correlation (Pearson R) of the

first derivatives is identified using the most recent 30 days. This leads

to a distribution of lags across states between mortalities and cases

that suggests strongly that, for most states, cases and deaths have

approximately the same level of ‘‘indicator lag,’’ where the values based

on the inferred lag are shifted. The distinct fit for each state and county

is utilized to calculate the composite indicator using deaths and cases

only, as hospitalization reporting has not yet stabilized in many loca-

tions.27–29

6. Test capacity increase is accounted for by simply rescaling the number

of new cases as 1/new tests, where new tests are smoothed by the

same process as cases and deaths.
Data inputs

The full list of data inputs utilized can be found in Table S5. In selecting data

inputs, the model development team prioritized the following:

Availability: Sources that make available the data required at the granularity

required are utilized. Given the novel nature of COVID-19, there is a limited se-

lection of such data. When possible, the model developed by CAN is validated

against multiple sources.

Authoritativeness: Data sources that were credible and transparent were

prioritized. The model development team conducts quality assurances.

Timeliness: Given the fast-changing nature of COVID-19, data sources that

are consistently updated were prioritized to most closely capture the current

state of the pandemic.

Openness: Where possible, open-source data sources were utilized.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100492.
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