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Abstract

Dengue virus (DENV) infection, the most common mosquito-transmitted viral infection, can

cause a range of diseases from self-limiting dengue fever to life-threatening dengue hemor-

rhagic fever and shock syndrome. Thrombocytopenia is a major characteristic observed in

both mild and severe dengue disease and is significantly correlated with the progression of

dengue severity. Previous studies have shown that DENV nonstructural protein 1 (NS1),

which can be secreted into patients’ blood, can stimulate immune cells via Toll-like receptor

4 (TLR4) and can cause endothelial leakage. However, it is unclear whether DENV NS1 can

directly induce platelet activation or cause thrombocytopenia during DENV infection. In this

study, we first demonstrated that DENV but not Zika virus cell culture supernatant could

induce P-selectin expression and phosphatidylserine (PS) exposure in human platelets,

both of which were abolished when NS1 was depleted from the DENV supernatant. Similar

results were found using recombinant NS1 from all four serotypes of DENV, and those

effects were blocked in the presence of anti-NS1 F(ab’)2, anti-TLR4 antibody, a TLR4 antag-

onist (Rhodobacter sphaeroides lipopolysaccharide, LPS-Rs) and a TLR4 signaling inhibitor

(TAK242), but not polymyxin B (an LPS inhibitor). Moreover, the activation of platelets by

DENV NS1 promoted subthreshold concentrations of adenosine diphosphate (ADP)-

induced platelet aggregation and enhanced platelet adhesion to endothelial cells and

phagocytosis by macrophages. Finally, we demonstrated that DENV-induced thrombocyto-

penia and hemorrhage were attenuated in TLR4 knockout and wild-type mice when NS1

was depleted from DENV supernatant. Taken together, these results suggest that the bind-

ing of DENV NS1 to TLR4 on platelets can trigger its activation, which may contribute to

thrombocytopenia and hemorrhage during dengue infection.
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Author summary

Over the past 50 years, dengue has been a continuing global threat, with no effective vac-

cine or specific antiviral drug. Dengue infection causes a wide range of outcomes, from

fever-like symptoms to severe dengue hemorrhagic fever. Thrombocytopenia, a reduction

in platelet count, is a common feature observed in both mild and severe dengue and is

correlated with disease severity. In this study, we used dengue viral supernatant or DENV

recombinant NS1 protein to stimulate human-isolated platelets. We found that DENV

NS1 could directly activate platelets through TLR4 and could further enhance platelet

aggregation, adhesion to endothelial cells and phagocytosis by macrophages, which could

lead to thrombocytopenia. We also proved that both NS1 and TLR4 are critical for

DENV-induced thrombocytopenia and hemorrhage using a DENV-induced hemorrhagic

mouse model. Our study reveals a new pathogenic role of NS1 during dengue infection

and highlights that NS1 should be a topic of attention in the development of therapeutic

drugs and vaccines against dengue infection.

Introduction

Dengue is the most widespread mosquito-borne viral infection, infecting approximately 390

million people and causing 500,000 hospitalizations every year [1, 2]. Most infected patients

have a mild, self-limited disease known as dengue without warning signs, but some can

develop severe dengue, which is characterized by plasma leakage, fluid accumulation, severe

bleeding, and organ impairment [3]. The underlying mechanisms by which mild dengue pro-

gresses to severe dengue are still unclear [4–6]. Thrombocytopenia, a common feature

observed in both mild and severe dengue disease, is correlated with disease severity and is con-

sidered a predictive biomarker of severe dengue [7, 8]. However, the mechanisms that cause

thrombocytopenia during dengue infection are not fully understood.

Previous studies have demonstrated that elevated surface P-selectin and increased phospha-

tidylserine (PS) exposure among platelets are correlated with thrombocytopenia in dengue

patients [9, 10]. The underlying mechanism of platelet activation has been analyzed by proteo-

mic analysis of dengue patients’ platelets, and circulating histones in dengue patients’ plasma

have been suggested to activate platelets [9]. In addition, dengue virus (DENV) infection can

induce platelet activation and apoptosis [10]. However, it remains unclear which viral compo-

nent, if any, participates in platelet activation and apoptosis.

Dengue nonstructural protein 1 (NS1) is a 48 kDa glycoprotein that can be expressed on

the DENV-infected cell surface as a dimer and is the only viral protein secreted into the blood

circulation, as a hexamer, in dengue patients [11]. The concentration of NS1 in the sera of

DHF/DSS patients ranges from 0.01–50 μg/ml, which correlates with disease severity [5, 12].

Recently, an increasing number of studies have shown that NS1 plays a critical role in dengue

pathogenesis both in vitro and in vivo, which includes enhancing DENV replication/infection,

directly inducing vascular leakage, and causing cytokine release from immune cells [13–18].

Furthermore, a previous study indicated that relative levels of NS1 antigen in dengue patients’

sera were negatively correlated with platelet count [19]. Recently, Modhiran et al. demon-

strated that Toll-like receptor 4 (TLR4), a well-known receptor of lipopolysaccharide (LPS),

acts as the receptor of NS1 in immune cells [15, 20]. It is known that LPS can induce platelet

activation and potentiate platelet aggregation via TLR4/MyD88 signal transduction [21]. Since

both NS1 and LPS can activate cells through TLR4, in this study, we propose and test the
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hypothesis that NS1 can induce platelet activation and enhance aggregation through TLR4,

leading to thrombocytopenia and hemorrhage during dengue infection.

Results

DENV NS1 contributes to DENV supernatant-induced platelet activation

and apoptosis

To verify whether NS1 is involved in DENV-induced platelet activation, we incubated iso-

lated human platelets with DENV supernatant containing different concentration of NS1 as

indicated (S1 Fig). We found that DENV supernatant containing 5 μg/ml NS1 significantly

induced the expression of a platelet activation marker (P-selectin, CD62P) and an apoptosis

marker (PS) on the surfaces of platelets. However, Zika virus (ZIKV) supernatant containing

a similar amount of NS1 did not show a significant effect on platelet activation or apoptosis

(Fig 1A and 1B, S2A and S2B Fig). We also incubated platelets with DENV or ZIKV recombi-

nant proteins; consistently, only DENV NS1, but not ZIKV NS1, could trigger platelet

activation and apoptosis (S3 Fig). To further verify that NS1 is involved in DENV superna-

tant-induced platelet activation/apoptosis, we used agarose-conjugated anti-dengue NS1

antibody to remove NS1 from DENV supernatant. As anticipated, both surface P-selectin

expression and PS exposure of platelets in response to DENV supernatant were attenuated

when NS1 was depleted from the supernatant (Fig 1C and 1D, S2C and S2D Fig). These

results indicate that DENV NS1 contributes to DENV-supernatant-induced platelet activa-

tion and apoptosis.

DENV NS1 directly induces platelet activation and apoptosis

To further confirm that NS1 could directly induce platelet activation, we incubated isolated

platelets with different concentrations of DENV NS1 recombinant proteins or bovine serum

albumin (BSA). We found that DENV NS1 induced a maximal increase in surface P-selectin

expression at 1 h after stimulation (Fig 2A and S4A Fig) and that the magnitude of the

increase depended on the dose of NS1 (1–25 μg/ml) (Fig 2B and S4B Fig). In addition, the

anti-NS1 neutralizing monoclonal antibody (mAb) 33D2, which recognizes a conserved NS1

wing domain region and is able to block the effect of DENV NS1 both in vitro and in vivo,

[22] was used to verify that the increase in P-selectin expression was indeed triggered by

DENV NS1. To avoid Fc receptor-mediated platelet activation, we used the 33D2 F(ab’)2

fragment [23]. The results showed that cotreatment of NS1 with the 33D2 F(ab’)2 fragment

attenuated the increase in platelet P-selectin expression induced by DENV NS1. However,

the isotype-matched control mouse IgG F(ab’)2 fragment, used here as a negative control, did

not block DENV NS1-induced platelet activation (Fig 2C and S4C Fig). In addition, all four

serotypes of DENV NS1 were able to induce platelet activation (Fig 2D and S4D Fig). Fur-

thermore, the apoptosis marker of interest (PS exposure on platelets) was also increased after

0.5 h of incubation with DENV NS1, reaching a maximum at 1 h after stimulation (Fig 3A

and S5A Fig) in a dose-dependent manner (Fig 3B and S5B Fig). In addition, cleaved caspase

3, another apoptosis marker, was also increased after 0.5 h of DENV NS1 treatment (S6 Fig).

The increased PS exposure induced by DENV NS1 was significantly inhibited by the 33D2 F

(ab’)2 fragment but not by the isotype-matched control mouse IgG F(ab’)2 fragment (Fig 3C

and S5C Fig). All four serotypes of DENV NS1 also increased PS exposure on platelets (Fig

3D and S5D Fig). These results suggest that DENV NS1 can directly trigger platelet activation

and apoptosis.

DENV NS1 induces platelet activation
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DENV NS1 binds to platelets and activates platelets through TLR4 signal

transduction

Previous studies have shown that DENV NS1, acting through TLR4, induces the secretion of

proinflammatory cytokines by immune cells [15, 20]. Accordingly, we investigated whether

DENV NS1-triggered platelet activation is also mediated by TLR4. To assess the binding of

NS1 on the platelet surface, we exposed platelets to DENV NS1 in buffer containing 0.01%

NaN3 for 1 h at 4˚C before fixation. The binding of NS1 was detected by anti-NS1 mAb 33D2

using both immunofluorescence assays and flow cytometry (S7 Fig). To study the role of TLR4

in NS1-induced platelet activation, we first confirmed the expression of TLR4 on human plate-

lets (Fig 4A). Next, we used two approaches to verify the binding of NS1 to TLR4: using an

anti-TLR4 antibody (αTLR4) to block the binding of NS1 to human-isolated platelets, and

comparing the binding of NS1 between platelets from TLR4 knockout and wild-type mice.

The results showed that the binding of NS1 to platelets was decreased in the presence of

αTLR4 or in TLR4 knockout mice (Fig 4B and 4C, S8A and S8B Fig). Nevertheless, a previous

study showed that DENV NS1 can also activate human immune cells via TLR2 and TLR6 [24].

Since TLR2 is also expressed on platelets, a direct enzyme-linked immunosorbent assay

Fig 1. DENV NS1 is critical for DENV-induced P-selectin expression and PS exposure in platelets. (A) (B) Platelets were

incubated for 1 h with DENV or ZIKV supernatant that contained different concentrations of NS1 as indicated (n = 4). (C) (D)

Platelets were incubated with medium, 10 μg/ml NS1-containing DENV supernatant or NS1-depleted DENV supernatant (NS1Δ)

for 1 h (n = 3). The percent fluorescence of P-selectin surface expression on platelets and annexin V binding to platelets were

analyzed by FACSCalibur flow cytometry. �P<0.05, ���P<0.001; unpaired t-test (panels A and B), Kruskal-Wallis ANOVA (panels C

and D).

https://doi.org/10.1371/journal.ppat.1007625.g001
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(ELISA) was performed to clarify whether NS1 can also bind to TLR2. Indeed, we found that

NS1 could bind to both TLR4 and TLR2 but not BSA or an unrelated His-tag protein. How-

ever, the binding capacity of NS1 to TLR4 was stronger than that to TLR2 (S9 Fig). In addition,

the involvement of TLR4 in NS1-induced platelet activation was confirmed by a TLR4 antago-

nist (Rhodobacter sphaeroides LPS, LPS-Rs) and a TLR4 signaling inhibitor (TAK242). Pre-

treatment of platelets with αTLR4, LPS-Rs or TAK242 attenuated NS1-induced surface P-

selectin expression (Fig 4D, 4E and 4F, S8C, S8D and S8E Fig). Because all the NS1 recombi-

nant proteins we used in this study contained very low LPS or endotoxin (0.036 EU/ml was

found in 20 μg/ml NS1 recombinant protein), the result is unlikely to be due to bacterial LPS

contamination in NS1 recombinant proteins [17]. In addition, to rule out the possibility of

residual LPS in NS1 recombinant protein-induced activation of TLR4 signaling, we included

an additional negative control group using DENV NS1 cotreated with the LPS-binding antibi-

otic polymyxin B (PMB). The results showed that PMB had no inhibitory effect on NS1-in-

duced P-selection expression (Fig 4E and 4F, S8F Fig), even though all these inhibitors and

αTLR4 could inhibit LPS-induced macrophage migration inhibitory factor (MIF) secretion in

Fig 2. DENV NS1 directly induces platelet activation in a dose- and time-dependent manner. (A) Platelets were treated with

BSA or DENV NS1 recombinant proteins (10 μg/ml) for the indicated time (n = 3). (B) Platelets were treated with different

concentrations of DENV NS1 recombinant proteins for 1 h (n = 3). (C) Platelets were treated with BSA or DENV NS1 (10 μg/ml)

(cotreated with or without 25 μg/ml anti-NS1 specific antibodies F(ab’)2 fragment, 33D2 F(ab’)2, or the isotype-matched mouse

antibodies F(ab’)2 and cmIgG F(ab’)2) for 1 h (n = 3). (D) Platelets were treated with BSA or DENV1-4 NS1 (10 μg/ml) for 1 h

(n = 3). The percent fluorescence of P-selectin surface expression on platelets was analyzed by FACSCalibur flow cytometry.
���P<0.001; unpaired t-test (panels A and B), Kruskal-Wallis ANOVA (panels C and D).

https://doi.org/10.1371/journal.ppat.1007625.g002
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phorbol 12-myristate 13-acetate (PMA)-activated THP-1 cells (S8G Fig). Finally, we also com-

pared the capacity of NS1 and LPS to induce P-selectin expression of platelets. Consistent with

a previous study, LPS could induce P-selectin expression of platelets from 20% to approxi-

mately 40% when the concentration of LPS reached 50 μg/ml (S10 Fig) [25]. However, the

presence of 10 μg/ml of NS1 was sufficient to increase the expression of P-selectin to approxi-

mately 80%. Taken together, these results suggest that DENV NS1 is much more potent than

LPS for inducing platelet activation through TLR4 signal transduction.

DENV NS1 enhances platelet aggregation in the presence of a subthreshold

dose of adenosine diphosphate (ADP)

We found that NS1 could trigger platelet activation through TLR4, and it is known that LPS

could induce platelet activation and potentiate platelet aggregation via TLR4/MyD88 signal

transduction. Accordingly, we decided to investigate whether NS1 could enhance platelet

aggregation as well. As shown in Fig 5A, platelets assumed a cluster-like morphology after NS1

stimulation. However, unlike the platelet agonist ADP, NS1 alone failed to induce platelet

aggregation even at concentrations up to 25 μg/ml (Fig 5B). Nevertheless, when a subthreshold

Fig 3. DENV NS1 directly induces platelet apoptosis in a dose- and time-dependent manner. (A) Platelets were treated with BSA

or DENV NS1 recombinant protein (10 μg/ml) for the indicated time (n = 3). (B) Platelets were treated with different concentrations

of DENV NS1 recombinant protein for 1 h (n = 3). (C) Platelets were treated with BSA or DENV NS1 (10 μg/ml) (cotreated with or

without 25 μg/ml 33D2 F(ab’)2, or cmIgG F(ab’)2) for 1 h (n = 3). (D) Platelets were treated with BSA or DENV1-4 NS1 (10 μg/ml)

for 1 h (n = 3). The percent fluorescence of annexin V binding to platelets was analyzed by FACSCalibur flow cytometry. �P<0.05,
��P<0.01, ���P<0.001; unpaired t-test (panels A and B), Kruskal-Wallis ANOVA (panels C and D).

https://doi.org/10.1371/journal.ppat.1007625.g003
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concentration of ADP (2.5 μM) was added to the NS1-incubated platelet-rich plasma (PRP), a

significant enhancement of platelet aggregation was found; this increase could be rescued by

the 33D2 F(ab’)2 fragment but not by the isotype-matched control mouse IgG F(ab’)2 fragment

(Fig 5C and 5D). Since activated platelets can secrete ADP, we also measured the ADP secre-

tion of platelets after NS1 stimulation. The results showed that NS1 could induce the ADP

secretion of platelets in a time-dependent manner, and the enhancement of platelet aggrega-

tion induced by NS1 could be blocked by inhibitors of ADP receptors, such as BPTU (a P2Y1

inhibitor) and Clopidogrel (a P2Y12 inhibitor) (S11 Fig). These results may explain why NS1

activation can enhance platelet aggregation in the presence of a subthreshold dose of ADP.

DENV NS1 increases platelet adherence to endothelial cells and

phagocytosis by macrophages

Previous studies have indicated that the expression of P-selection on activated platelet surfaces

increases the ability of platelets to bind to endothelial cells and leukocytes, and PS exposure on

platelets designates them for phagocytosis by leukocytes [26–28]. To further investigate the

fate of platelets after NS1 stimulation, we cocultured NS1-activated platelets with primary

endothelial cells, human umbilical vein endothelial cells (HUVECs), and PMA-activated THP-

1 cells. To exclude the effect of residual NS1 in platelet supernatant, we washed the platelets

with Tyrode’s buffer before incubation with HUVECs. As shown in Fig 6A, we found an

increase in the number of platelets adhering to HUVECs after NS1 stimulation compared with

the BSA control group. The quantification of the mean fluorescence intensity (MFI) of CD61

Fig 4. DENV NS1 binds to platelets and induces activation through TLR4 signal transduction. (A) The protein expression levels

of TLR4 and β actin, an internal control, in human-isolated platelets from 3 different donors were detected using Western blotting

(50 μg protein/lane). (B) Human-isolated platelets were preincubated with αTLR4 or a control Rabbit IgG for 1 h, and the binding of

NS1 on platelet surfaces was determined by flow cytometry using FITC-conjugated anti-NS1 monoclonal antibodies (33D2-FITC)

(n = 3). (C) The binding of NS1 on platelets isolated from wild-type or TLR4 knockout mice was determined by flow cytometry

(n = 4). Platelets were preincubated with or without different concentrations of (D) αTLR4 (E) the TLR4 antagonist LPS-Rs, (F) the

TLR4 signaling inhibitor TAK242, or the LPS inhibitor polymyxin B (10 μg/ml) for 30 min, followed by BSA or NS1 (10 μg/ml)

stimulation for 1 h (n = 4). The percent fluorescence of NS1 binding and the P-selectin surface expression on platelets were analyzed

by FACSCalibur flow cytometry. �P<0.05, ��P<0.01; Kruskal-Wallis ANOVA (panels B to panel F).

https://doi.org/10.1371/journal.ppat.1007625.g004
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expression of platelets per HUVECs was significantly increased, and the effect was significantly

inhibited by the 33D2 F(ab’)2 fragment but not by the isotype-matched control mouse IgG F

(ab’)2 fragment (Fig 6B). We also tested the endothelial permeability in the platelets-HUVECs

coculture system. The endothelial permeability was increased 1 h after coincubation with

washed NS1-treated platelets, but not BSA-treated platelets (S12 Fig). In the phagocytosis

assay, the number of phagocytosed platelets (yellow dot) was also increased in the NS1-acti-

vated platelets compared with the BSA control group (Fig 6C) To quantify the results, we cal-

culated the number of engulfed platelets per PMA-activated THP-1 cell. The number of

engulfed platelets was significantly increased in the NS1-activation group, and cotreatment

with the 33D2 F(ab’)2 fragment during NS1 stimulation prevented platelets from being phago-

cytosed by PMA-activated THP-1 (Fig 6D). In contrast, the isotype-matched control mouse

IgG F(ab’)2 fragment did not significantly inhibit the phagocytosis of platelets by THP-1 cells

(Fig 6D). In addition, NS1-activated platelets could also be engulfed by THP-1 cells without

PMA activation (S13A Fig). This result suggests that NS1-activated platelets could trigger

THP-1 activation. Therefore, we first tested the THP-1 differential profiles, and the results

showed that coincubation of NS1-activated platelets could trigger the upregulation of mono-

cyte chemoattractant protein 1 (MCP-1) mRNA expression in THP-1 cells but could not

Fig 5. DENV NS1 enhances platelet aggregation ability after activation. (A) Platelets were plated on poly-L-lysine-coated

coverslips and treated with BSA or DENV NS1 (10 μg/ml) for 1 h. After fixation and permeabilization, platelets were stained with

anti-CD61 polyclonal antibody and an anti-rabbit Alexa 594-conjugated antibody. (B) The light transmission of platelet-rich plasma

(PRP) was measured in a Chrono-log aggregometer for 5 min after ADP (10 μM) or DENV NS1 (10 μg/ml) was added. (C) PRP was

treated with BSA or DENV NS1 (10 μg/ml) (cotreated with or without 25 μg/ml 33D2 F(ab’)2, or cmIgG F(ab’)2) for 1 h and

stimulated with ADP (2.5 μM). The light transmission of PRP was measured in a Chrono-log aggregometer, and (D) the maximum

percentage of platelet aggregation was calculated by an AggRAM™ platelet aggregation analyzer (n = 3). ��P<0.01; Kruskal-Wallis

ANOVA (panel D).

https://doi.org/10.1371/journal.ppat.1007625.g005
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induce THP-1 cells to express the hallmarks of macrophages, such as cell adhesion and spread

(S13B and S13C Fig) [29].

DENV NS1 causes aggregated complex formation and cell death in the

coculture system

To imitate the biological environment in a vessel, we established an in vitro coculture model

containing isolated platelets from healthy donors, PMA-activated THP-1 cells, and a HUVEC

monolayer. NS1 was added to the cocultured cells for 1 h, and the morphology and interaction

of cells were observed. As expected, treatment with DENV NS1 induced both platelets and

THP-1 cells to adhere to the HUVEC monolayer and triggered platelets to form clusters,

which were inhibited in the presence of the 33D2 F(ab’)2 fragment but not the isotype-

matched control mouse IgG F(ab’)2 fragment (Fig 7A and 7B). We also measured cell death

with an LDH assay in the coculture system. Interestingly, NS1-induced LDH release could

Fig 6. DENV NS1 increases platelet adherence to endothelial cells and phagocytosis by macrophages. (A) DENV-NS1-activated

platelets were cultured with confluent HUVEC monolayers for 1 h, followed by washing and fixation. The adherent platelets were

examined by confocal microscopy. CD61, a platelet marker, is stained in green, and HUVEC nuclei are stained with Hoechst (blue).

(B) The adherent platelets on HUVEC monolayers in (A) were quantified in 100 HUVECs from three independent experiments and

expressed as the mean fluorescence intensity (MFI) with ImageJ. (C) For the phagocytosis assay, DENV-NS1-activated platelets were

cultured with PMA-activated THP-1 cells for 4 h. After fixation and permeabilization, the cells were stained with CD61 (green, a

marker of platelets) and CD14 (red, a marker of monocytes/macrophages) and examined by confocal microscopy. The yellow dots

represent the engulfed platelets, and the green dots represent the adherent platelets. (D) The average number of engulfed platelets

per THP-1 cell was determined by counting 100 THP-1 cells per sample. The images were further acquired by confocal microscopy.
�P<0.05; Kruskal-Wallis ANOVA (panels B and D).

https://doi.org/10.1371/journal.ppat.1007625.g006
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only occur when THP-1 cells were present (Fig 7C), indicating that NS1 stimulation can cause

some THP-1 cells to die.

NS1 and TLR4 play a crucial role in DENV-induced thrombocytopenia and

hemorrhage in mice

To test whether NS1 is involved in the pathogenesis of DENV-induced thrombocytopenia and

hemorrhage in vivo, we used a previously established DENV-induced hemorrhagic C3H/HeN

Fig 7. DENV NS1 causes the formation of aggregated complexes and cell death in a coculture system. (A) PMA-activated

THP-1 cells and isolated platelets were added to confluent HUVECs on coverslips in 24-well plates with different treatments.

After 1 h of incubation, unbound cells were washed out, and images were obtained by optical microscopy. (B) After fixation and

permeabilization, monolayers were stained for CD61 (green), CD14 (red) and nuclei (blue). (C) Supernatants from different

coculture conditions were collected, and cell death was determined using an LDH release assay. The images were further acquired by

confocal microscopy. �P<0.05; ��P<0.01; unpaired t-test (panels C).

https://doi.org/10.1371/journal.ppat.1007625.g007
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mouse model [30]. Inoculation of mice with high-titer DENV (2×108 PFU/mouse) induced

thrombocytopenia, prolonged bleeding time, and local hemorrhage in the skin of mice (Fig 8).

To investigate the role of NS1 in the pathogenesis of thrombocytopenia and hemorrhage in

mice, we compared the pathogenic outcomes after injecting mice with DENV, UV-inactivated

DENV (UV-DENV), and NS1-depleted DENV (NS1Δ) supernatants. The viral titer and NS1

concentration in each DENV supernatant group are shown in S14 Fig. The clinical skin hem-

orrhage score was determined by the severity of hemorrhage, as shown in S15 Fig. Interest-

ingly, we found that thrombocytopenia, prolonged bleeding time, and local skin hemorrhage

induced by DENV were all significantly inhibited in mice inoculated with NS1-depleted

DENV supernatant. Furthermore, these pathological changes were only partially prevented in

mice inoculated with UV-DENV supernatant, which had no detectable viral titer but still con-

tained 4.3 μg/ml NS1 (S14 Fig) (Fig 8). Since the secreted NS1 from infected mouse cells may

also contribute to the thrombocytopenia-related pathogenesis, we collected mouse sera before

sacrifice and measured the NS1 concentration using ELISA. The results showed that the circu-

lating level of NS1 reached 200–300 ng/ml in mice inoculated with DENV. However, only

Fig 8. DENV NS1 is critical for DENV-induced thrombocytopenia, prolonged bleeding time, and hemorrhage in mice. A

hemorrhagic C3H/HeN mouse model was created as described in the Methods. (A) Mouse skin samples were removed to observe

local hemorrhage on day 3 after DENV injection. The number of mice with hemorrhage divided by the total number of mice

inoculated in each group is indicated. Yellow arrows indicate local skin hemorrhage. (B) The clinical hemorrhage score was

quantified and determined as digital hemorrhage severity. (C) The tail bleeding time and (D) platelet counts were also determined

on day 3 before sacrifice. �P<0.05; Tukey’s multiple comparison test (panel B); Kruskal-Wallis ANOVA (panel C and D).

https://doi.org/10.1371/journal.ppat.1007625.g008
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5–30 ng/ml of NS1 was detected in mice inoculated with UV-inactivated DENV, and 50–150

ng/ml of NS1 was detected in mice inoculated with NS1-depleted DENV (S16 Fig). These

results indicated that the presence of NS1 in DENV supernatant may enhance DENV replica-

tion in mice, which, in turn, increases the secretion of NS1 to reach a concentration that can

cause thrombocytopenia and hemorrhage in mice.

In addition, since we found that TLR4 might be the receptor through which NS1 activates

platelets, we used TLR4 knockout mice (TLR4-/-) to investigate the role of TLR4 in DENV-

induced hemorrhage in mice. As expected, we found that high-titer DENV could induce

prolonged bleeding time, hemorrhage and thrombocytopenia in C57BL/6J wild-type mice but

not in TLR4-/- mice (Fig 9). Taken together, these results suggest that viral NS1 and host TLR4

proteins are critical for DENV-induced hemorrhage and thrombocytopenia during DENV

infection.

Fig 9. TLR4 is involved in DENV-induced prolongation of bleeding time and hemorrhage in mice. A hemorrhagic mouse model

was performed with C57BL/6J mice (WT) and TLR4-/- C57BL/6J background mice as described in the Methods. (A) Mouse skin

samples were removed to observe local hemorrhage on day 3 after DENV injection. The number of mice with hemorrhage divided

by the total number of mice inoculated in each group is indicated. Yellow arrows indicate local skin hemorrhage. (B) The clinical

score of hemorrhage was quantified and determined as digital hemorrhage severity. (C) The tail bleeding time and (D) platelet

counts were also determined on day 3 before sacrifice. �P<0.05, ��P<0.01; Tukey’s multiple comparison test (panel B); Kruskal-

Wallis ANOVA (panel C and D).

https://doi.org/10.1371/journal.ppat.1007625.g009
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Discussion

In this study, we demonstrated that DENV NS1 in the concentration, which is within the

range of NS1 in dengue patients’ sera (0.01–50 μg/ml), could activate platelets and induce apo-

ptosis in a dose-dependent manner through TLR4 signal transduction. In addition, the aggre-

gation of NS1-activated platelets in response to subthreshold concentrations of ADP was

enhanced. The adhesion of NS1-activated platelets to endothelial cells and the phagocytosis of

these platelets by THP-1 cells were also increased. Because NS1 can also bind to endothelial

cells and macrophage to cause their activation and cytokine release, all these effects induced by

NS1 may contribute to platelet activation and thrombocytopenia during DENV infection

(Fig 10)[31].

In previous studies, DENV supernatant was used to stimulate platelets, and the studies con-

cluded that DENV infection of platelets induces platelet activation [9, 10]. However, because

NS1 exists in the DENV supernatant, these results cannot exclude the possible effect of NS1 in

the DENV supernatant as a cause of platelet activation. Therefore, we compared the effects of

DENV supernatant on platelet activation with or without the presence of NS1. As shown in

Fig 1, platelet activation induced by DENV supernatant was significantly abolished when

NS1 was depleted. Furthermore, we demonstrated that the binding of NS1 to platelets was

decreased when TLR4 was blocked by αTLR4 or in TLR4 knockout mice. Consistent with

the binding results, blocking NS1 binding to TLR4 by antibodies or TLR4 antagonist also

decreased the NS1-induced platelet activation. However, the blocking of TLR4 could not

completely diminish the binding of NS1 and NS1-induced platelet activation; thus, we cannot

rule out the possibility that other proteins, such as TLR2, may also be involved in NS1 binding

to platelets [20, 24]. Next, we examined the properties of platelets after DENV NS1 stimulation.

Like LPS, a well-known TLR4 ligand, DENV NS1 could enhance platelet aggregation in the

presence of subthreshold concentrations of ADP [21]. Since NS1 could induce platelets to

release ADP (S11 Fig), it is possible that the existence of these low-level ADP can only trigger

platelet activation but not aggregation unless an extra-subthreshold concentration of ADP was

Fig 10. Proposed mechanisms of the contribution of DENV NS1 to cause thrombocytopenia and hemorrhage during DENV

infection. Circulating DENV NS1 binds to platelets via TLR4 or other molecules to induce the release of ADP, which in turn elevates

P-selectin expression and PS exposure on platelet surfaces leading to platelet activation and enhancement of the platelet aggregation.

In addition, NS1-activated platelets are prone to adhere onto endothelium or phagocytosis by macrophages. On the other hand, NS1

can also bind to endothelial cells and macrophage to cause their activation and cytokine release. All these effects induced by NS1 can

contribute to the thrombocytopenia and hemorrhage during DENV infection.

https://doi.org/10.1371/journal.ppat.1007625.g010
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added. In addition, previous studies have also shown that injecting mice with LPS induces pro-

found thrombocytopenia due to the increased adherent capacity of platelets [32, 33]. In this

study, we also found that the adhesion of NS1-activated platelets to endothelial cells and the

phagocytosis of these platelets by THP-1 cells were also increased.

Finally, we demonstrated that DENV-induced pathogenic signs, such as thrombocytopenia,

prolonged bleeding time, and local skin hemorrhage in mice, were significantly abolished in

NS1-depleted DENV supernatant, but not in UV-DENV supernatant, which had no detectable

viral titer but still contained NS1. It is worth mentioning that we also measured the NS1 in

mouse sera 3 days after infection, and the circulating NS1 levels in UV-DENV-inoculated

mice were nearly clear. This result is consistent with our previous study, which shows that the

half-life of DENV NS1 is 2 days. In addition, the results showed that the concentration of cir-

culating NS1 in NS1-depleted DENV-infected mouse sera was lower than that in DENV-

infected mouse sera, indicating that circulating NS1 is important to help DENV infection/rep-

lication [13]. These results also suggested that even when NS1 was depleted from DENV virus

supernatant, DENV could still infect mice and produce de novo NS1; however, the concentra-

tion of circulating NS1 in mouse sera was not sufficient to cause pathologic signs in mice.

Thrombocytopenia is a common feature observed in both mild and severe dengue disease

and is correlated with disease severity. There are two possible mechanisms that can cause

thrombocytopenia in dengue patients. One is increased platelet destruction and clearance

from peripheral blood. The other is decreased production of platelets in the bone marrow [34].

The inhibition of megakaryocyte development in the bone marrow has been proposed as the

key underlying mechanism causing thrombocytopenia in DENV-infected humanized mice

[35]. Because the average platelet size is increased when the production of platelets is increased,

a high mean platelet volume (MPV) generally indicates enhanced platelet destruction in

patients [36]. In dengue patients, MPV is usually either high or normal. Therefore, excessive

platelet destruction may be the main reason for thrombocytopenia in dengue patients [37, 38].

Indeed, platelets from DENV-infected patients exhibit increased activation and apoptosis pro-

files compared to healthy donors and patients with non-dengue febrile illness [10]. However,

the mechanisms that cause platelet activation and apoptosis leading to thrombocytopenia are

not fully understood. In this study, we demonstrated that platelets activated by DENV NS1

were prone to aggregation, attachment to endothelial cells, and phagocytosis by immune cells.

Therefore, we suggest that NS1 is one of the key factors that may contribute to thrombocytope-

nia during DENV infection. While previous studies have shown little difference in the pres-

ence or absence of circulating NS1 between primary and secondary infections, secondary

infections are overwhelmingly associated with more severe disease [39]. We could not exclude

the possibility that other immune-related factors, such as autoantibodies against platelets, may

also contribute to thrombocytopenia during DENV infection, especially during secondary

infection [40–42]. Nevertheless, these results may explain why prophylactic platelet transfusion

could not reduce the risk of clinical bleeding and thrombocytopenia in dengue patients

because transfused platelets will be activated and cleared due to the presence of circulating

NS1 and antiplatelet antibodies in dengue patients [43].

It is known that NS1 proteins from different flaviviruses reveal 50% to 80% homology; they

may have conserved functions as well as unique characteristics, leading to different modes of

flavivirus pathogenesis [44, 45]. Therefore, in this study, we compared the platelet-activating

effect of NS1 from DENV and another flavivirus, ZIKV. The results demonstrated that DENV

NS1 was much more potent than ZIKV NS1 at the same concentration in terms of inducing

platelet activation, which may explain why DENV is the most prevalent flavivirus infection

with clinical manifestations of thrombocytopenia.
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Vascular leakage, thrombocytopenia, and cytokine storm are thought to play important

roles in the complexity of dengue pathogenesis [45]. Previous studies have demonstrated that

DENV NS1 can also bind to endothelial cells to induce vascular leakage and stimulate immune

cells to cause a cytokine storm [45]. Thus, DENV NS1 has been considered to be a viral toxin,

which is a potential corner piece in the puzzle of dengue pathogenesis [46]. In this study, we

further demonstrated that NS1 may also contribute to thrombocytopenia, another characteris-

tic clinical feature of dengue infection. It is known that activated/apoptotic platelets could fur-

ther modulate monocyte inflammatory responses and endothelium hyperpermeability to

cause vascular leakage during DENV infection [47, 48]. Consequently, platelet activation/apo-

ptosis induced by DENV NS1 can not only cause thrombocytopenia but also enhance the

inflammatory response and vascular leakage in dengue patients. Together, these results suggest

that DENV NS1 plays a central role in the complex interplay of dengue pathogenesis. There-

fore, NS1 may represent an important target that should be a focus of attention in the develop-

ment of therapeutic drugs and vaccines against dengue infection [49].

Materials and methods

Ethics statement

All research involving healthy adult donors was approved by the National Cheng Kung Uni-

versity (NCKU) Hospital Institutional Review Board (IRB #A-ER-104-368). Informed written

consent was obtained from volunteers following the human experimentation guidelines of the

Institutional Review Board of NCKU Hospital.

All animal studies were performed in compliance with the Guide for the Care and Use of

Laboratory Animals (The Chinese-Taipei Society of Laboratory Animal Sciences, 2010) and

were approved by the Institutional Animal Care and Use Committee (IACUC) of NCKU

under the number IACUC 105018.

Platelet isolation

Platelets were isolated from human whole blood by following a platelet isolation protocol

(Abcam). Briefly, peripheral blood was collected in vacutainer containing acid-citrate-dextrose

(ACD) buffer and centrifuged at 200×g for 20 min to obtain platelet-rich plasma (PRP). PRP

was centrifuged at 800×g in the presence of 100 nM prostaglandin E1 (PGE1) for another 20

min, and the platelet pellet was suspended in Tyrode’s buffer (134 mM NaCl, 2.9 mM KCl, 12

mM NaHCO3, 0.34 mM Na2HPO4, 1 mM MgCl2, 10 mM HEPES, and 3 mg/ml of BSA, at pH

7.4) containing 100 nM PGE1. The purity of the platelet preparations (>98% CD61+) was con-

firmed by flow cytometry.

Mouse whole blood was obtained by cardiac puncture, and mouse platelets were isolated

by following a murine/mouse platelet isolation protocol. Briefly, mouse whole blood was col-

lected in a 1-ml syringe fitted with a 25G needle containing 100 μl of 3.8% sodium citrate.

After centrifuging the blood at 100×g for 20 min with no brake, PRP was obtained. The PRP

was then centrifuged at 1000×g in the presence of 1 μM PGE1 for another 15 min, and the

platelet pellet was suspended in 1 μM PGE1 containing Tyrode’s buffer.

Cells

HUVECs (Bioresource Collection and Research Center, Taiwan) were cultured in EGM-2

(Lonza, Basel, Switzerland), and the human monocytic cell line THP-1 (Bioresource Collection

and Research Center, Taiwan) was cultured in Roswell Park Memorial Institute 1640 Medium

(RPMI 1640; Thermo Fisher Scientific, Waltham, MA, USA). The baby hamster kidney cell

DENV NS1 induces platelet activation

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007625 April 22, 2019 15 / 26

https://doi.org/10.1371/journal.ppat.1007625


line BHK-21 and Aedes albopictus cell line C6/36, purchased from the Japanese Collection of

Research Bioresources (JCRB Cell Bank, Japan) and the American Type Culture Collection

(ATCC, Manassas, Virginia, USA), were maintained in Dulbecco’s modified Eagle’s medium

(DMEM). The medium used to grow all cell types was supplemented with 10% fetal bovine

serum (FBS; HyClone Laboratory, Logan, UT, USA). All cells were cultured at 37˚C in a 5%

CO2 atmosphere except for C6/36 cells, which were cultured at 28˚C.

Recombinant NS1 proteins and anti-NS1 neutralizing Abs

Recombinant DENV1-4 serotype NS1 proteins used in all experiments were produced by CTK

Biotech (San Diego, CA, USA) in Drosophila S2 cells. Recombinant NS1 proteins were tested

for endotoxin concentrations by a Limulus amebocyte lysate (LAL) assay using the LAL Chro-

mogenic Endotoxin Kit (Thermo Fisher Scientific) and were shown to be endotoxin-free

(<0.1 EU/ml). Recombinant ZIKV proteins used for platelet activation/apoptosis tests were

produced by Sino Biological (Beijing, China) with the baculovirus-insect system. For the quan-

tification of DENV NS1 in virus supernatant, an NS1 ELISA was carried out using paired anti-

NS1 antibodies prepared in our laboratory, as described in our previous study [50]. For the

quantification of ZIKV NS1 in the ZIKV supernatant, different concentrations of ZIKV

recombinant NS1 protein (The Native Antigen Company, Oxfordshire, UK) were used as a

standard, and an anti-ZIKV NS1 monoclonal antibody 111–5 (Leadgene, Taiwan) was used to

detect NS1 by Western blotting. The image was analyzed and quantified by ImageJ (S1 Fig).

Anti-NS1 neutralizing Abs (33D2) were generated in our laboratory as previously described

[22], and the 33D2 F(ab’)2 fragment was obtained using a Pierce™ F(ab’)2 Preparation Kit

(Thermo Fisher Scientific). An isotype-matched mouse IgG F(ab’)2 fragment (Thermo Fisher

Scientific) was used to control for nonspecific binding of antibodies.

In vitro platelet stimulation

A total of 1×107 washed platelets (1×108 per ml) were incubated with different stimulators:

DENV NS1 (DENV2 NS1 was used if not described otherwise), ZIKV NS1 or LPS (L4391,

Sigma-Aldrich, St. Louis, MO, USA) for the indicated times at 37˚C. The activation of platelets

was further confirmed by P-selectin (CD62P) surface expression and PS exposure with flow

cytometry analysis.

To study the involvement of TLR4 in DENV NS1-induced platelet activation, we preincu-

bated platelets with an anti-TLR4 antibody (GTX31675, Genetex, Irvine, CA, USA), the TLR4

antagonist LPS-Rs from the photosynthetic bacterium Rhodobacter sphaeroides (InvivoGen,

San Diego, CA, USA) or the TLR4 signaling inhibitor TAK242 (Sigma-Aldrich) for 30 min

and then treated them with DENV NS1 for 1 h. To exclude the possibility of LPS-induced

platelet activation, we used the LPS inhibitor polymyxin B (PMB) (Sigma-Aldrich) (10 μg/ml).

The inhibitory functions of these inhibitors and anti-TLR4 antibody were confirmed by inhib-

iting LPS-induced MIF secretion in PMA-activated THP-1 cells. Briefly, PMA-activated THP-

1 cells were stimulated with LPS (1 μg/ml) for 24 h. The concentration of human MIF in the

cell culture medium was measured using human MIF ELISA kits (R&D Systems, Minneapolis,

MN, USA) following the manufacturers’ instructions.

Flow cytometry

To confirm the purity of isolated platelets, the surface expression of the platelet marker CD61

was determined using a specific antibody. Briefly, 1×107 washed platelets were incubated with

anti-CD61 monoclonal antibody (GTX61848, Genetex, Irvine, CA, USA) in 0.01% NaN3 and

1% BSA containing Tyrode’s buffer at 4˚C for 1 h, followed by Alexa 594-conjugated goat anti-
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rabbit IgG secondary antibody (1:500; Thermo Fisher Scientific) incubation for another 30

min.

P-selectin (CD62P) surface expression was determined using FITC-conjugated anti-human

CD62P (BD Bioscience, San Diego, CA). Platelets (1×107) were incubated with FITC-conju-

gated anti-human CD62P (1:10) or FITC-conjugated isotype-matched antibodies (BD Biosci-

ence). PS exposure was detected by staining with a fluorescent conjugate of Annexin V, a

protein that has a high affinity for PS, using an Alexa Fluor 594 Annexin V/Dead Cell Apopto-

sis Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions.

To quantify the binding of NS1 on platelet surfaces, a quantity of 1×107 washed platelets

was preincubated with or without an anti-TLR4 antibody (5 μg/ml, Genetex) in 0.1% NaN3

and 1 μM PGE1 containing Tyrode’s buffer at 4˚C for 1 h. NS1 (5 μg/ml) and FITC-conjugated

anti-NS1 monoclonal antibodies (33D2-FITC) were added and then incubated at 4˚C for

another 3 h. The percent fluorescence signal on the platelet surface was analyzed by FACSCali-

bur flow cytometry. Data were analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Light transmission aggregometry

Human whole blood was collected in vacutainers containing sodium citrate buffer and centri-

fuged at 1000 rpm for 15 min to obtain PRP. Platelet-poor plasma (PPP), used as a blank con-

trol, was obtained by centrifuging at 3000 rpm for 15 min. A total of 450 μl of PRP or PPP was

pipetted into an aggregometry cuvette, which was preheated to 37˚C for 5 min. The light trans-

mission was measured in a Chrono-log aggregometer (Helena Laboratories, Beaumont, Texas,

USA) for 5 min after ADP (10 μM) or NS1 was added.

For the platelet aggregation enhancement assay, PRP was preincubated with BSA or NS1

(with or without the F(ab’)2 antibody fragment) at 37˚C for 1 h. To investigate whether the

NS1-induced enhancement of platelet aggregation was mediated by ADP receptors, PRP was

preincubated with BSA or NS1 (with or without ADP receptors inhibitors, BMS-646786

(BM0020, Sigma-Aldrich) or Clopidogrel hydrogen sulfate (SML0004, Sigma-Aldrich)) at

37˚C for 1 h. The light transmission was measured for 5 min after low-dose ADP (2.5 μM) was

added.

Indirect immunofluorescence assay

To visualize the binding of NS1 on platelet surfaces, 2×106 washed platelets were plated on

0.01% poly-L-lysine-coated coverslips in 24-well plates and treated with BSA or NS1 (1 μg/ml)

at 4˚C for 1 h. Subsequently, platelets were fixed with 1% paraformaldehyde with no further

permeabilization. After blocking with SuperBlock™ (PBS) Blocking Buffer (Thermo Fisher Sci-

entific) for 1 h, platelets were incubated overnight at 4˚C with anti-NS1 monoclonal antibodies

(33D2) and anti-CD61 monoclonal antibody (Genetex). After being washed with PBS, platelets

were incubated with Alexa 488-conjugated goat anti-mouse IgG secondary antibody and

Alexa 594-conjugated goat anti-rabbit IgG secondary antibody (1:500; Thermo Fisher Scien-

tific) for 1 h. The coverslips were mounted with VECTASHIELD Antifade Mounting Medium

(Vector Laboratories, Burlingame, CA, USA). The images were acquired using a confocal

microscope (Olympus FluoView FV1000).

Western blotting

The protein expression levels of TLR4, caspase-3 and β actin in human-isolated platelets were

detected using an anti-TLR4 antibody (GTX31675, Genetex), an anti-caspase-3 antibody

(IMG-144A, Novus Biologicals, Centennial, CO, USA) and an anti-β actin antibody (Arigo,

Taiwan). The amount of NS1 in concentrated viral supernatant was detected using an anti-
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DENV NS1 antibody (33D2). After overnight incubation, the membranes were incubated with

a 1:10,000 dilution of horseradish peroxidase (HRP)-conjugated anti-mouse or anti-rabbit

immunoglobulin antibody (Leadgene). The bound HRP-conjugated antibodies were detected

using WesternBright ECL (Advansta, San Jose, CA, USA).

Enzyme-linked immunosorbent assay (ELISA)

To examine the direct interaction between DENV NS1 and candidate receptors, 50 μl of TLR4

(purified from baculovirus-system, Sino Biological), TLR2 (purified from baculovirus-system,

Sino Biological), His-taq protein or BSA (5 μg/ml) in PBS (pH 7.3) was coated onto 96-well

ELISA plates at 4 ˚C overnight. After blocking at 37 ˚C for 1 h with 1% BSA in PBS, DENV

NS1 was serially diluted (from 1 μg/ml) in Diluent buffer (LG1 buffer, Leadgene) and incu-

bated in wells at 37 ˚C for 1 h. After washing three times with PBST (PBS contained 0.01%

Tween 20), the bound NS1 was detected with biotin-labeled anti-NS1 antibodies (1 μg/ml).

Next, HRP-labeled streptavidin solution (1:200) (R&D) was added to wells at 37˚C for 20 min.

After washing three times with PBST, color development with TMB was performed. The

absorbance was read following the addition of stop solution (2N H2SO4) at OD450 nm by a

VersaMax microplate reader.

Platelet adhesion assay

Platelets with or without NS1 stimulation under different conditions for 1 h were washed

twice with Tyrode’s buffer before incubation with HUVECs to exclude the effect of excessive

DENV NS1. HUVECs, which were grown to confluence on coverslips in 24-well plates, were

cultured with 1×107 platelets per well in Tyrode’s buffer for 1 h at 37˚C. The cells on the cover-

slips were washed twice with PBS/2% FBS to remove nonadhered platelets, fixed with 1% para-

formaldehyde and permeabilized with 0.1% Triton X-100. To assay adhered platelets, we

incubated the cells overnight at 4˚C with an anti-CD61 monoclonal antibody, followed by

Alexa 488-conjugated goat anti-rabbit IgG secondary antibody (1:500 diluted; Thermo Fisher

Scientific) and Hoechst 33342 (1:3,000 diluted; Thermo Fisher Scientific). After the specimens

were mounted with VECTASHIELD Antifade Mounting Medium, the images were acquired

using a confocal microscope (Olympus FluoView FV1000).

Transwell permeability assay

HUVECs (1× 105) were grown on the upper chambers of Transwell plates (0.4 μm; Corning,

The Netherlands) until a monolayer was formed. The HUVECs monolayer was coincubated

with BSA or NS1-treated washed platelets (1×107, 200 μl) along with Tyrode’s buffer. After the

indicated time point, the upper chambers were reconstituted with 300 μl serum-free media,

which contained 3 μl of streptavidin-horseradish peroxidase (HRP) (R&D Systems). Fifty

microliters of medium in the lower chamber was collected 10 min after adding streptavidin-

HRP and was assayed for HRP activity by adding 100 μl of 3,3’,5,5’-tetramethylbenzidine

(TMB) substrate (R&D Systems). The color development was detected by a VersaMax micro-

plate reader (Molecular Devices, Sunnyvale, CA) at 450 nm.

Platelet phagocytic assay

For the platelet phagocytic assay, THP-1 cells (2×106 per ml) were activated with PMA (10 ng/

ml) (Sigma-Aldrich) and plated on coverslips in 24-well plates. After 48 h, the PMA-contain-

ing medium was removed, and 1×107 washed platelets, which were subjected to different con-

ditions of NS1 stimulation, were added to the phagocyte in Tyrode’s buffer for 4 h at 37˚C.
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The phagocyte monolayer was washed twice with PBS/2% FBS, followed by fixation and per-

meabilization. To test whether NS1-activated platelets could be engulfed by non-PMA-acti-

vated THP-1 cells, 5×105 THP-1 cells were coincubated with 1×107 washed platelets in

Tyrode’s buffer at 37˚C. After 4 h, the mixed cells were concentrated and formed a monolayer

on the slide by using the cytospin method (800 rpm for 5 min with no brake), followed by fixa-

tion and permeabilization. To assay adhered/phagocytic platelets, we incubated the phagocyte

monolayer overnight with anti-CD61 monoclonal antibody and anti-CD14 monoclonal anti-

body (sc-1182, Santa Cruz, Dallas, Texas, USA) followed by Alexa 488-conjugated goat anti-

rabbit IgG secondary antibody (1:500 diluted; Thermo Fisher Scientific) and Alexa 594-conju-

gated goat anti-mouse IgG secondary antibody (1:500 diluted; Thermo Fisher Scientific). After

the specimens were mounted with VECTASHIELD Antifade Mounting Medium, the images

were acquired using a confocal microscope (Olympus FluoView FV1000).

THP-1 activation assay

To test whether NS1-activated platelets could trigger THP-1 cell activation, 5×105 THP-1 cells

were coincubated with 1×107 washed platelets in 12-well plates with Tyrode’s buffer at 37˚C

for indicated time, and THP-1 cells were treated with 10 ng/ml PMA for 48 h for the positive

control group. The cell adherence and activation-related mRNA expression levels were deter-

mined according to a previous study [29]. The mRNA expression levels of monocyte chemoat-

tractant protein-1 (MCP-1/CCL2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

a house-keeping gene, in THP-1 after incubation with washed platelets were determined by

semiquantitative RT-PCR using a PyroRTase kit and 2X Taq PCR Master Mix (Leadgene).

The cell adherence after treatment was measured by counting the suspended cells in the

supernatants.

HUVECs, THP-1 cells and platelet coculture model

A total of 5×105 PMA-activated THP-1 cells and 1×107 platelets were added to confluent

HUVECs on coverslips in 24-well plates, followed by treatment with BSA or NS1 (with or

without the F(ab’)2 antibody fragment) at 37˚C for 1 h. The supernatants from indicated

experimental groups were collected, and lactate dehydrogenase (LDH) secretion was mea-

sured by LDH release assay (Promega, Madison, WI, USA). The cells were washed twice

with PBS/2% FBS, fixed with 1% paraformaldehyde and permeabilized with 0.1% Triton X-

100. After being blocked, the cells were incubated overnight with anti-CD61 monoclonal

antibody (Genetex) and anti-CD14 monoclonal antibody (Santa Cruz) followed by Alexa

488-conjugated goat anti-rabbit IgG secondary antibody, Alexa 594-conjugated goat anti-

mouse IgG secondary antibody (1:500; Thermo Fisher Scientific), and Hoechst 33342

(Invitrogen, Carlsbad, CA, USA) (1:3,000 diluted) for 1 h. After the specimens were

mounted with VECTASHIELD Antifade Mounting Medium (Vector Laboratories, Burlin-

game, CA, USA), the images were acquired using a confocal microscope (Olympus Fluo-

View FV1000).

Viruses

DENV serotype 2 local Taiwan strain 454009 A and ZIKV Asian strain PRVABC were propa-

gated in C6/36 cells as previously described [51]. To prepare high titers of DENV, we concen-

trated DENV-containing culture supernatants with Macrosep Advance Centrifugal Devices

(molecular weight cutoff of 30 kDa; Pall Corp., Port Washington, NY, USA) at 6000×g at 4˚C

and stored below −70˚C until use. UV-inactivated DENV (UV-DENV) was obtained by

treatment with UV 100 mJ/cm2 for 100 s in a UV-crosslinker (VILBER, France). To deplete
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NS1, we incubated DENV-containing culture supernatant with mouse anti-dengue NS1

1D33-agarose (Leadgene) at 4˚C for 1 h, followed by centrifugation at 3000×g at 4˚C to obtain

NS1-depleted DENV supernatant. The virus titer and NS1 concentration in each condition

were analyzed by fluorescent focus assay and NS1 ELISA after the process.

Mouse model

C3H/HeN and C57BL/6J mice aged 6 to 8 weeks old, obtained from the National Laboratory

Animal Center, were used in a DENV-induced hemorrhage murine model [30]. The Tlr4-/-

mice, aged 6–8 weeks old, were kindly provided by Prof. Pei-Jane Tsai (NCKU) and main-

tained on a C57BL/6J genetic background. Briefly, mice were intradermally inoculated with

serotype 2 of DENV at four sites on the upper back (50 μl/site) after being anesthetized with

Zoletil 50 (Virbac, France). In some mice, mock C6/36 culture supernatant, an equivalent titer

of UV-DENV, or an equivalent titer of NS1-depleted DENV, or DENV (2×108 PFU/mouse)

were inoculated. To observe hemorrhage development, we sacrificed the mice on day 3 after

inoculation and exposed the subcutaneous tissues of the back.

Platelet count

Mouse blood was collected by orbital sinus sampling on day 3 after inoculation and immedi-

ately mixed with 0.1% EDTA. Platelets were counted using a Scil-Vet Animal Care Vet Focus 5

Hematology Analyzer (Mindray, China) through a service provided by the animal center of

NCKU.

Bleeding time

The bleeding time in mice was measured by cutting off 3–5 mm from the tips of the tails. The

blood was dropped onto filter paper every 30 s until the diameter of the blood droplet was

smaller than 0.5 mm, and the duration of bleeding was recorded.

Statistical analysis

The in vitro and in vivo data are expressed as the means ± standard deviations (SD) from more

than three independent experiments. Student’s t-test was used to analyze the significance of

differences between the test and control groups. One-way ANOVA with a Kruskal-Wallis

comparison test was used to analyze the significance of differences between multiple groups.

All data were analyzed by GraphPad Prism 5 software. P values<0.05 were considered statisti-

cally significant.

Supporting information

S1 Fig. Quantification of NS1 in DENV and ZIKV viral supernatant. (A) After 10-fold con-

centration, the viral titers of DENV and ZIKV were determined by fluorescent focus assay.

The NS1 concentration in the DENV concentrated supernatant was determined by an NS1

enzyme-linked immunosorbent assay, as described in a previous study [50]. (B)(C) The NS1

concentration of the ZIKV supernatant was analyzed and quantified by Western blotting using

ZIKV recombinant NS1 (The Native Antigen Company) as a standard, as described in the

Materials and Methods.

(DOCX)

S2 Fig. Representative plots for flow cytometry analysis of Fig 1. Human-isolated platelets

were stained with anti-P-selectin (FITC) or Annexin V (PE). The percent fluorescence of P-

selectin surface expression on platelets and annexin V binding to platelets were analyzed by
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FACSCalibur flow cytometry. Data analysis was performed with FlowJo software (FlowJo,

LLC).

(DOCX)

S3 Fig. DENV NS1, but not ZIKV NS1, induces platelet activation and apoptosis. Platelets

were treated with BSA, DENV NS1 or ZIKV NS1 recombinant proteins (10 μg/ml) for 1 h and

stained with anti-P-selectin (FITC) or Annexin V (PE) (n = 3). (A) The percent fluorescence

of P-selectin surface expression on platelets and (B) annexin V binding to platelets were ana-

lyzed by FACSCalibur flow cytometry. The representative FACS plots were constructed using

FLOWJO software. �P<0.05; Kruskal-Wallis ANOVA (panels A and B).

(DOCX)

S4 Fig. Representative plots for flow cytometry analysis of Fig 2. The percent fluorescence

of P-selectin surface expression on platelets was analyzed by FACSCalibur flow cytometry, and

the data analysis was performed with FlowJo software (FlowJo, LLC).

(DOCX)

S5 Fig. Representative plots for flow cytometry analysis of Fig 3. The percent fluorescence

of annexin V binding to platelets was analyzed by FACSCalibur flow cytometry, and the data

analysis was performed with FlowJo software (FlowJo, LLC).

(DOCX)

S6 Fig. DENV NS1 induces caspase-3 activation in platelets. Human-isolated platelets were

treated with BSA, DENV NS1 (10 μg/ml) or human thrombin (0.1 U/ml) for the indicated

time. The caspase-3 activation was analyzed by Western blotting (50 μg protein/lane). The rel-

ative values (cleaved caspase-3/β actin) are shown in the figure.

(DOCX)

S7 Fig. DENV NS1 binds to platelet surfaces. The binding of NS1 on platelet surfaces was

determined by both (A) indirect immunofluorescence assay (IFA) and (B) flow cytometry.

For IFA, platelets were plated on 0.01% poly-L-lysine-coated coverslips and incubated with

BSA or DENV NS1 (10 μg/ml) in Tyrode’s buffer (containing 0.01% NaN3 and 1 μM PGE1)

for 1 h at 4˚C before fixation. Platelets were stained with anti-CD61 and mouse anti-NS1

mAb (33D2), followed by anti-mouse Alexa 488-conjugated antibody and anti-rabbit Alexa

594-conjugated antibody. For flow cytometry, platelets were incubated with BSA, DENV NS1

(10 μg/ml), FITC-conjugated anti-NS1 monoclonal antibodies (33D2-FITC) or FITC-conju-

gated control mouse IgG (cmIgG-FITC) in Tyrode’s buffer (containing 0.01% NaN3 and

1 μM PGE1) for 3 h at 4˚C. The percent fluorescence of NS1 binding on platelets was analyzed

by FACSCalibur flow cytometry, and the data analysis was performed with FlowJo software

(FlowJo, LLC).

(DOCX)

S8 Fig. Representative plots for flow cytometry analysis of Fig 4 and the inhibitory effects

of inhibitors. (A-F) The percent fluorescence of NS1 binding and P-selectin surface expres-

sion on platelets was analyzed by FACSCalibur flow cytometry. Data analysis was performed

with FlowJo software (FlowJo, LLC). (G) PMA-activated THP-1 cells were pretreated with

TAK242 (10 μM), LPS-Rs (10 μg/ml), αTLR4 (5 μg/ml) or control rabbit IgG (5 μg/ml) for 30

min (or cotreated with PMB (10 μg/ml)), followed by LPS (1 μg/ml) stimulation for 24 h (n = 3

per group). Cell supernatants were collected, and the concentrations of MIF in the cell super-

natants were determined by human MIF ELISA kits.

(DOCX)
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S9 Fig. DENV NS1 could interact with both TLR4 and TLR2. The binding of DENV NS1 to

TLR4, TLR2, His-taq protein or BSA (5 μg/ml) was analyzed by ELISA, as described in the

Methods.

(DOCX)

S10 Fig. LPS at a high dose could induce platelet activation. Human-isolated platelets were

stimulated with different concentrations of LPS or DENV NS1 (10 μg/ml) for 1 h (n = 5). The

percent fluorescence of P-selectin surface expression on platelets was analyzed by FACSCali-

bur flow cytometry, and the data analysis was performed with FlowJo software (FlowJo, LLC).
�P<0.05, ��P<0.01; Kruskal-Wallis ANOVA (panel B).

(DOCX)

S11 Fig. DENV NS1 induces platelets to secrete ADP. (A)(B) Human-isolated platelets were

stimulated with BSA, DENV NS1 (10 μg/ml) or thrombin (0.1 U/ml) for the indicated time,

and the ADP in the supernatant was measured by ADP assay kit (ab83359, Abcam, Cam-

bridge, UK). (C) PRP was treated with BSA or DENV NS1 (10 μg/ml) (cotreated with or with-

out 1 μM BPTU or 1 μM Clopidogrel (both are ADP receptor inhibitors, Sigma-Aldrich) for 1

h and stimulated with ADP (2.5 μM). The light transmission of PRP was measured in a

Chrono-log aggregometer.

(DOCX)

S12 Fig. DENV NS1-activated platelets trigger endothelial hyperpermeability. HUVEC

monolayers were coincubated with washed NS1-activated platelets for the indicated time, and

the relative endothelial permeability was assessed by a Transwell permeability assay, as

described in the Methods.

(DOCX)

S13 Fig. THP-1 activation and phagocytosis induced by coculture with DENV NS1-acti-

vated platelets. (A) For the phagocytosis assay, washed NS1-activated platelets (1x107) were

cultured with THP-1 cells for 4 h and were concentrated onto the slide using cytospin. After

fixation and permeabilization, the cells were stained with CD61 (green, a marker of platelets)

and CD14 (red, a marker of monocytes/macrophages) and examined by confocal microscopy.

The yellow dots represent the engulfed platelets. (B)(C) THP-1 cells (5x105) were incubated

with washed NS1-activated platelets (1x107) for the indicated time (positive control: PMA-

treated THP-1 cells for 48 h). After incubation, MCP-1 mRNA expression and adherence of

THP-1 cells to plates were determined.

(DOCX)

S14 Fig. Viral titer and NS1 concentrations in different conditions of DENV supernatant.

The virus titer was determined by fluorescent focus assay, and the NS1 concentration was ana-

lyzed by (A) NS1 enzyme-linked immunosorbent assay and (B) Western blotting after the

experiment.

(DOCX)

S15 Fig. Classification of skin hemorrhage into four grades according to hemorrhage

severity.

(DOCX)

S16 Fig. NS1 secretion in sera of DENV 2-infected mice. C3H/HeN mice (n = 5) were inoc-

ulated with DENV (2x108 PFU/mouse), UV-inactivated DENV or NS1-depleted DENV on

the upper back. Mouse sera were collected at 3 days after inoculation, and the NS1 secretion
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level in mice was analyzed by NS1 quantitative ELISA. �P<0.05, ��P<0.01; Kruskal-Wallis

ANOVA.

(DOCX)
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