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regional gene expression underlie
hallucinations in Parkinson’s disease
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Visual hallucinations are common in Parkinson’s disease and are associated with poorer prognosis. Imaging studies show white

matter loss and functional connectivity changes with Parkinson’s visual hallucinations, but the biological factors underlying select-

ive vulnerability of affected parts of the brain network are unknown. Recent models for Parkinson’s disease hallucinations suggest

they arise due to a shift in the relative effects of different networks. Understanding how structural connectivity affects the interplay

between networks will provide important mechanistic insights. To address this, we investigated the structural connectivity changes

that accompany visual hallucinations in Parkinson’s disease and the organizational and gene expression characteristics of the pref-

erentially affected areas of the network. We performed diffusion-weighted imaging in 100 patients with Parkinson’s disease (81

without hallucinations, 19 with visual hallucinations) and 34 healthy age-matched controls. We used network-based statistics to

identify changes in structural connectivity in Parkinson’s disease patients with hallucinations and performed an analysis of control-

lability, an emerging technique that allows quantification of the influence a brain region has across the rest of the network. Using

these techniques, we identified a subnetwork of reduced connectivity in Parkinson’s disease hallucinations. We then used the Allen

Institute for Brain Sciences human transcriptome atlas to identify regional gene expression patterns associated with affected areas

of the network. Within this network, Parkinson’s disease patients with hallucinations showed reduced controllability (less influence

over other brain regions), than Parkinson’s disease patients without hallucinations and controls. This subnetwork appears to be

critical for overall brain integration, as even in controls, nodes with high controllability were more likely to be within the subnet-

work. Gene expression analysis of gene modules related to the affected subnetwork revealed that down-weighted genes were most

significantly enriched in genes related to mRNA and chromosome metabolic processes (with enrichment in oligodendrocytes) and

upweighted genes to protein localization (with enrichment in neuronal cells). Our findings provide insights into how hallucinations

are generated, with breakdown of a key structural subnetwork that exerts control across distributed brain regions. Expression of

genes related to mRNA metabolism and membrane localization may be implicated, providing potential therapeutic targets.
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Introduction
Complex visual hallucinations are common in Parkinson’s

disease, affecting 30–70% of patients (Fénelon et al., 2000;

Hely et al., 2008). They are frequently distressing and dis-

tracting, and are a harbinger of dementia (Hobson and

Meara, 2004; Galvin et al., 2006). Furthermore, they are

associated with increased mortality (Goetz and Stebbins,

1995), increased carer burden (Aarsland et al., 2000) and

worse quality of life (McKinlay et al., 2007). They are also

the strongest predictor of nursing home placement in

patients with Parkinson’s disease (Aarsland et al., 2000).

Despite their impact, our understanding of how visual hallu-

cinations are produced remains limited (Fénelon et al., 2000;

Weil et al., 2016).

Recent models for Parkinson’s disease hallucinations sug-

gest they arise due to a shift in the relative effects of different

networks, or a failure to integrate sensory input and prior

knowledge during visual perception (Muller et al., 2014).

Indeed, there is evidence for both impaired sensory accumu-

lation (O’Callaghan et al., 2017) and over-reliance on prior

knowledge in Parkinson’s disease hallucinations (Zarkali

et al., 2019). Aberrant default mode network (DMN) activa-

tion is seen in patients with Parkinson’s disease and halluci-

nations (Yao et al., 2014). A useful recent model is that

visual hallucinations arise due to breakdown in connectivity

of networks involved in attention and conscious perception,

with overactivity of the DMN and failure to engage the dor-

sal attention network (Shine et al., 2014, 2015; Onofrj

et al., 2017, 2019).

We recently showed that white matter connectivity is

decreased in the splenium of the corpus callosum and the

left posterior thalamic radiation in Parkinson’s disease with

visual hallucinations (PD-VH) (Zarkali et al., 2020). Broadly

reduced connectivity strength has also been reported, prefer-

entially affecting nodes of the ‘diverse club’, areas that are

proposed to integrate across more specialist modules (Hall

et al., 2019). However, these studies do not directly examine

the impact that structural connectivity changes have on func-

tional dynamics and cannot address the factors that make

specific brain regions more vulnerable to white matter loss.

Controllability is a powerful emerging analysis technique

that combines structural connectivity measures and linear

estimates of local dynamics to provide a metric of the extent

of influence of one part of the network over other parts of

the brain and in changing brain states (Gu et al., 2015).

Given the emphasis on shifts between brain networks as a

key driver of Parkinson’s disease hallucinations

(Muller et al., 2014), brain controllability is likely to provide

important insights into how hallucinations arise in

Parkinson’s disease.

The underlying biological processes that determine vulner-

ability of specific brain regions in Parkinson’s disease hallu-

cinations remain unclear but differences in regional gene

expression are likely to contribute. Regional gene expression

in health has been shown to predict white matter connectiv-

ity loss in Huntington’s disease (McColgan et al., 2018) and

schizophrenia (Romme et al., 2017) and expression of candi-

date genes has been associated with cortical atrophy in

Parkinson’s disease (Freeze et al., 2018, 2019).

Characterizing potential changes in regional gene expression

linked to connectivity loss in Parkinson’s disease hallucina-

tions may provide important insights into the underlying

biological processes that drive the interplay between

networks.

Here, we aimed to clarify the structural connectivity

changes in patients with Parkinson’s disease visual hallucina-

tions (PD-VH) and shed light on the pathological processes

that drive connectivity loss. To this end, we: (i) used net-

work-based statistics to test whether structural connectivity

is reduced in PD-VH; (ii) performed controllability analysis

at whole-network and subnetwork level to assess the effect

structural changes have on whole brain function. We

hypothesized that areas which usually exert large control

over the rest of the brain will be preferentially affected in

PD-VH; (iii) used gene expression data from the Allen

Human Brain Atlas (AHBA) to identify whether differences

in regional gene expression could explain vulnerability of

specific brain regions to connectivity loss in PD-VH; and (iv)

performed enrichment analysis on the identified gene expres-

sion patterns associated with connectivity loss in PD-VH to

clarify the biological and cell processes driving this connect-

ivity loss.

Materials and methods

Participants

We recruited 100 patients with Parkinson’s disease to our UK

centre from affiliated clinics and 34 unaffected controls from

spouses as well as volunteer databases. All consecutive partici-

pants that were referred and were eligible for the study were

recruited (no history of traumatic brain injury or other major

psychiatric or neurological disorder and no contraindication to

MRI and diagnosis within 10 years for Parkinson’s disease par-

ticipants). Patients with Parkinson’s disease satisfied the Queen

Square Brain Bank Criteria for Parkinson’s disease (Daniel and
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Lees, 1993). The study was approved by our ethics committee

and participants provided written informed consent.

Patients with Parkinson’s disease were classified as hallucina-

tors (PD-VH) if they scored 51 on Item 1.2 of the Movement

Disorder Society Unified Parkinson’s Disease Rating Scale

(MDS-UPDRS) [‘Over the past week have you seen, heard,

smelled or felt things that were not really there?’ (Goetz et al.,

2008)]. Further information on hallucinatory experiences was

collected using the University of Miami Hallucinations

Questionnaire (Papapetropoulos et al., 2008). Nineteen patients

with Parkinson’s disease scored 51 and were classified as

PD-VH, whilst 81 patients did not and were classified as non-

hallucinators (PD-non-VH). None of the non-hallucinators had

a history of previous hallucinations.

Participants underwent a series of clinical assessments. The

MDS-UPDRS part III was used to assess motor function (Goetz

et al., 2008). The Mini-Mental State Examination (MMSE) and

Montreal Cognitive Assessment (MoCA) were used as measures

of general cognition (Dalrymple-Alford et al., 2010; Creavin

et al., 2016). LogMAR was used to assess visual acuity (Sloan,

1959). The D15 was used to assess colour vision (Farnsworth,

1947) and the Pelli-Robson test to assess contrast sensitivity

(Pelli et al., 1988). Sniffin’ Sticks were used to assess smell

(Hummel et al., 1997). The Hospital Anxiety and Depression

Scale (HADS) was used to assess mood (Zigmond and Snaith,

1983) and the REM Sleep Behaviour Disorder Questionnaire

(RBDSQ) to assess sleep (Stiasny-Kolster et al., 2007).

Levodopa dose equivalence scores (LEDD) were calculated for

Parkinson’s disease participants using the conversion described

by Tomlinson et al. (2010).

Structural connectivity data

Data acquisition

All MRI data were acquired on a 3 T Siemens Magnetom

Prisma scanner (Siemens) with a 64-channel head coil. Diffusion-

weighted imaging (DWI) was acquired with the following

parameters: b = 50 s/mm2/17 directions, b = 300 s/mm2/8

directions, b = 1000 s/mm2/64 directions, b = 2000 s/mm2/64

directions, 2 � 2 � 2 mm isotropic voxels, echo time = 3260

ms, repetition time: 58 ms, 72 slices, 2 mm thickness, acceler-

ation factor = 2. Acquisition time for DWI was �10 min. A 3D

MPRAGE (magnetization prepared rapid acquisition gradient

echo) image (voxel size 1 � 1 � 1 mm, echo time: 3.34 ms,

repetition time: 2530 ms, flip angle = 7�) was also obtained and

was used to compute intracranial volume using SPM12.

Data processing

An overview of the study methodology is seen in Fig. 1.

Cortical regions of interest were generated by segmenting a T1-

weighted image using the Glasser atlas in FreeSurfer (Glasser

et al., 2016) and subcortical regions of interest from the built-in

Freesurfer parcellation (Fischl et al., 2002). This resulted in 360

cortical regions (180 regions from each hemisphere) and 19 sub-

cortical regions. The Glasser atlas was chosen as it is based on a

large number of participants (210 healthy young adults), which

were precisely aligned (Glasser et al., 2016), and in a recent

comparison between different parcellation methods, it showed

good performance across the board when compared with other

methods (Arslan et al., 2018).

Diffusion-weighted images underwent denoising (Veraart
et al., 2016), removal of Gibbs ringing artefacts (Kellner et al.,
2016), eddy-current and motion correction (Anderson, 2006)
and bias field correction (Tustison et al., 2010). Diffusion tensor
metrics were calculated and constrained spherical deconvolution
(CSD) performed, as implemented in MRtrix (Hollander et al.,
2016). The raw T1-weighted images were registered to the diffu-
sion weighted image using FLIRT (Greve and Fischl, 2009) and
five-tissue anatomical segmentation was performed using the
5ttgen script in MRtrix. All resulting anatomical segmentations
were visually inspected pre and post registration. Anatomically
constrained tractography was then performed with 10 million
streamlines (Smith et al., 2012) using the iFOD2 tractography
algorithm (Tournier et al., 2010) with dynamic seeding, as
implemented in MRtrix. To improve anatomically constrained
tractography (ACT) performance we used the -backtrack op-
tion, which allows tracks to be truncated and retracked in case
of poor termination and the -crop_at_gmwmi option which
crops streamline end points more precisely as they cross the
grey matter–white matter interface. We then applied the spheric-
al deconvolution informed filtering of tractograms (SIFT2) algo-
rithm (Smith et al., 2015) to reduce biases. SIFT2 uses
information from the fibre orientation distribution to determine
a cross sectional area for each streamline and generate stream-
line volume estimates between regions whilst using the whole
connectome (Smith et al., 2015). The resulting set of streamlines
was used to construct the structural brain network.

Structural connectome construction

For each participant, we generated a structural connectivity map
by determining whether each pair of regions of interest were
connected by a streamline; connections were weighted by
streamline count and a cross-sectional area multiplier (Smith
et al., 2015). Then, connections were combined into 379 � 379
undirected and weighted connectivity matrices. In accordance
with SIFT2 recommendations, we did not apply a threshold to
connectivity matrices (Smith et al., 2015) (Fig. 1A).

Network topology and controllability

Network control theory is an emerging analysis technique that
provides mathematically-derived predictions for the impact of
structural connectivity on brain function (Gu et al., 2015; Betzel
et al., 2016). In contrast to graph theory metrics that describe
the static organization of a network, network control theory
models the role of a specific brain region in regulating whole-
brain network function. The application of network control the-
ory in brain dynamics has been previously detailed (Gu et al.,
2015). In brief, neural states can be mathematically described as
simulated states (x) of network with k nodes over time steps t
using the following equation:

xtþ1 ¼ Axt þ But (1)

where xt is a vector of all simulated states of all nodes k at time
t, t are discrete time steps (t = 1, 2, . . .), Ake is the structural con-
nectivity matrix for the network with k nodes and e edges, B is
a matrix of the control nodes in the network and ut is the en-
ergy applied to the control nodes B at time t.

Subsequently, the influence of each region on brain function
is quantified using the metric of controllability. Average control-
lability for a control node is a measure of the node’s ability to
influence other nodes within the network, specifically to drive
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Figure 1 Overview of the study methodology. (A) Anatomically constrained tractography was used to determine white matter streamlines

from diffusion weighted imaging data for each participant. Diffusion data were combined with an anatomical parcellation of 379 brain regions

(360 cortical, 19 subcortical) using the Glasser atlas to generate a connectivity matrix for each participant. (B) Structural connectomes were

compared between groups. First, global topology metrics (degree strength, path length, clustering coefficient) and controllability were calculated

for each participant and compared between Parkinson’s disease (PD) and controls, and PD-VH and PD-non-VH. Second, network-based statistics
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the network into different states. It is calculated as the average
energy, or effort, required to reach all possible states of the sys-
tem. Regions with high average controllability can therefore
drive the brain network to many easily reachable states.

We assessed average controllability at node- and network-
level in PD-VH, PD-non-VH and controls, using code
available at: https://complexsystemsupenn.com/s/controllability_
code-smb8.zip.

Finally, we calculated connectome density and global network
metrics of segregation and integration using the Brain
Connectivity Toolbox (Bullmore and Sporns, 2009). These
included: clustering coefficient a metric of segregation, and char-
acteristic path length, computed as the average of the shortest
path length across all nodes (Fig. 1B).

Mapping gene expression data to
MRI space

We extracted gene expression microarray data from the Allen
Institute for Brain Science (AIBS) transcriptome atlas
(Hawrylycz et al., 2015). This atlas contains a database of ex-
pression levels of 20 737 genes represented by 58 692 probes
across the complete cortical mantle and is constructed post-mor-
tem from the brains of six human donors with no history of
psychiatric or neuropathological disorders. These data, and
details on the methodology of the atlas creation, are freely avail-
able to download from the AIBS (http://human.brain-map.org/
static/download). Data from all six donors are available for the
left hemisphere but only data from two donors are available for
the right hemisphere; therefore, only samples of the left hemi-
sphere were included for analysis (180 regions), in accordance
with other studies using the AHBA (Romme et al., 2017;
McColgan et al., 2018). We used the recently described rigorous
method of preprocessing by Arnatkevic̆i�ut_e et al. (2019) to ex-
tract gene expression data from the AHBA and map them to the
180 cortical regions of the Glasser atlas, using code freely avail-
able at https://github.com/BMHLab/AHBAprocessing. The
methodology of processing steps has been extensively described
(Arnatkevic̆i�ut_e et al., 2019). In brief, each tissue sample was
assigned to an anatomical structure of the 180 left cortical
regions of the Glasser atlas, using the AHBA MRI data for each
donor. Distances between samples were evaluated on the cor-
tical surface of the left hemisphere, using a 2-mm distance
threshold. Probe to gene annotations were updated in Re-
Annotator package (Arloth et al., 2015). Only probes where ex-
pression measures were above a background threshold in more
than 50% of samples were selected. A representative probe for

a gene was selected based on highest intensity. Gene expression
data were normalized across the left cortex using scaled, outlier-
robust sigmoid normalization. Regional expression levels for
each gene were compiled to form a 180 � 15745 regional tran-
scription matrix (Arnatkevic̆i�ut_e et al., 2019). (Fig. 1C).

Statistical analysis

Demographic, clinical assessments and individual

network metrics

Demographics, clinical characteristics and network metrics were
compared between the three clinical groups using ANOVA with
post hoc Tukey for normally distributed and Kruskal-Wallis for
non-normally distributed variables. We assessed normality using
the Shapiro-Wilk test. For comparisons between PD-VH and
PD-non-VH we performed t-tests for normally distributed, and
Mann-Whitney for non-normally distributed variables.
Statistical significance was defined as P50.05. Analyses were
performed in Python 3 (Jupyter Lab v1.0.2).

Network based statistics

We performed a network-based statistic analysis to investigate
whether the presence of visual hallucinations was associated
with altered connectivity strength in a subnetwork of the brain
(Zalesky et al., 2010). Network-based statistics is a non-para-
metric connectome-wide analysis used to identify connections
and networks comprising the human connectome that are asso-
ciated with an experimental effect or a between-group difference
(Zalesky et al., 2010). A general linear model was used with
contrast of interest including PD-VH versus PD-non-VH and
Parkinson’s disease versus controls; age and total intracranial
volume were included as covariates. Results were replicated for
the PD-VH versus PD-non-VH comparison using age, gender
and total intracranial volume as covariates as well as correcting
for LEDD. Permutation testing with unpaired t-tests was per-
formed with 5000 permutations, calculating a test statistic for
each connection. A threshold of t = 3.1 as well as family-wise
error rate (FWE) of P50.05 was applied (Fig. 1B).

Gene co-expression analysis

Co-expression analysis identifies modules of highly co-expressed
genes that form a gene co-expression network; co-expressed
genes can be thought of as part of the same functional subsys-
tem (Carpenter and Sabatini, 2004; Oldham et al., 2008). Gene
co-expression networks are powerful tools in understanding
complex genetic interactions in a specific condition, moving
from a single gene to a wider molecular pathway or biological

Figure 1 Continued

was performed (contrasts of interest Parkinson’s disease versus controls and PD-VH versus PD-non-VH, age and total intracranial volume

included as covariates) resulting to the identification of a VH-subnetwork of reduced connectivity strength. (C) Gene expression data were

extracted from the AHBA and mapped into the 180 cortical regions from the left hemisphere according to our anatomical parcellation and an aver-

age regional gene expression was calculated for each gene for each cortical region. Gene co-expression network analysis was then performed for

the 180 regions resulting to a network of 27 modules. (D) The modules of the resulting gene co-expression network were further examined to iden-

tify the modules associated with the VH subnetwork: the summary profile (eigengene) for each module was correlated with presence in the VH sub-

network. Two modules were significantly associated after correction for multiple comparisons, one down-weighted (cyan module) and one up-

weighted (greenyellow module). Gene significance (the absolute value) of correlation between the gene and the trait (region’s presence in the VH

subnetwork) was then calculated for each gene of the two VH-associated module. Enrichment analyses were then performed using the gene lists for

these two modules, ranked by gene significance. F = frontal; L = limbic; O = occipital; P = parietal; S = subcortical; T = temporal.
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process approach; co-expression analyses have already provided
significant insights in neurodegeneration (Forabosco et al.,
2013; Miller et al., 2013; Bettencourt et al., 2014). Weighted
gene co-expression network analysis (WGCNA) is one of the
most widely used and validated methods of constructing gene
co-expression networks and has been previously described in de-
tail (Langfelder and Horvath, 2008; Langfelder et al., 2011;
Botı́a et al., 2017). In brief, WGCNA uses measures of gene
co-expression similarity to construct a network of gene-to-gene
co-expression; this can be represented as an nxn matrix for n
number of genes, where each connection between two genes
represents the interaction strength between them. This matrix is
then transformed using topological overlap into a proximity ma-
trix where a pair of genes has a high proximity if it is closely
interconnected; this way clusters or modules of highly intercon-
nected genes that are co-expressed can be identified.

We performed weighted gene co-expression analysis, using
the WGCNA package in R (Zhang and Horvath, 2005;
Langfelder and Horvath, 2008) and post-processing with k-
means (Botı́a et al., 2017). Only left hemisphere cortical regions
were included in this analysis (180 regions/nodes). We used
gene expression data of the left hemisphere from the AHBA for
each left cortical brain region of our brain parcellation (180
nodes) (Hawrylycz et al., 2015) with each region or node repre-
senting a different sample to construct a gene co-expression net-
work of the healthy brain for our brain parcellation. The nodes/
samples that participated in the VH subnetwork were classified
as nodes/samples that had the trait of VH whilst the others were
classified as non-VH nodes/samples. We assessed for outliers
using distance-based networks (Zhang and Horvath, 2005) and,
as suggested by the WGCNA authors (Langfelder and Horvath,
2008), we assessed individual genes for expression variance and
samples (nodes) for missing entries; three nodes had 450%
missing entries and were excluded from further analysis.

Following module identification, we calculated the module
membership for each gene within a given module. This is
defined as the Pearson’s correlation coefficient between gene ex-
pression values and the module eigengene and has values be-
tween 0 and 1. A value of 1 indicates that a gene’s expression is
highly correlated with the module eigengene (or first principal
component of a module). Genes with higher module member-
ships are more representative of the module’s overall function
and more likely to be critical components (Fig. 1C).

We then correlated the summary profile (eigengene) for each
module to the VH trait using biweight midcorrelation to identify
modules significantly associated with the VH subnetwork. For
those modules significantly associated following FDR correction
(VH-associated modules), we calculated gene significance for the
VH trait for each gene of each module. Gene significance is
defined as the absolute value of the correlation between the
gene and the trait and can be considered as the association of in-
dividual genes with clinical information, in our case reduced
connectivity in PD-VH. We performed enrichment analysis of
the VH-associated modules by ranking the genes of these mod-
ules according to their gene significance (Fig. 1D).

Gene ontology enrichment analysis

We performed enrichment analysis for gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
terms for VH-associated modules on g:Profiler (Raudvere et al.,
2019) using Benjamini-Hochberg correction for multiple

comparisons and significance threshold 0.01. We used the reduce
and visualize gene ontology tool (REVIGO) to visualize significant
GO terms using semantic similarity (Supek et al., 2011) (Fig. 1D).

Expression-weighted cell-type enrichment analysis

We performed expression-weighted cell-type enrichment analysis
(EWCE) to determine whether genes within the VH-associated
modules have higher expression within a particular cell type
than expected by chance (Skene and Grant, 2016). Target lists
comprised the genes of VH-associated modules significantly
associated with node’s presence in the VH subnetwork
(q50.05, ranked according to gene significance). Each was run
with 100 000 bootstrap lists, controlling for transcript length
and content with Benjamini-Hochberg correction for multiple
comparisons. Single-cell transcription data were used from the
AIBS (https://portal.brain-map.org/atlases-and-data/rnaseq) con-
taining data from the middle temporal gyrus (Hawrylycz et al.,
2015). To ensure that our results were not dependent on the
dataset used, we replicated our EWCE analysis, with the same
parameters (100 000 bootstrap lists, Benjamini-Hochberg cor-
rection), using a different human derived dataset from the
Regev group (Habib et al., 2017); this is a comprehensive
human derived post-mortem datasets, containing data from five
donors and 19 550 cells from both the hippocampus and the
prefrontal cortex. The EWCE package is freely available here:
https://github.com/NathanSkene/EWCE.

Data availability

Analyses performed in this study used publicly available pack-
ages and code (see Supplementary material for details). All data
generated from this study are presented in the Supplementary
material. Patient-level data will be made available upon request
from the authors.

Results
The study comprised 134 participants: 100 patients with

Parkinson’s disease and 34 controls. Of the patients with

Parkinson’s disease, 19 were hallucinators (PD-VH) and 81

were not (PD-non-VH). There was no difference in the use of

dopamine agonists or amantadine nor in the LEDD between

PD-VH and PD-non-VH participants. No participants were

receiving antipsychotic medications, acetylcholinesterase inhib-

itors or anticholinergics at the time of the study. Demographic

and clinical details are provided in Table 1. Details on the expe-

rienced hallucinatory phenomena are provided in Table 2.

Regional but not global network
topology differs in patients with
Parkinson’s disease and visual
hallucinations

Global network metrics (clustering coefficient and character-

istic path length, and density) did not significantly differ be-

tween Parkinson’s disease and controls, or PD-VH and PD-

non-VH. However, at a regional level, network-based statis-

tics revealed a subnetwork of reduced structural connectivity

strength in PD-VH compared to PD-non-VH participants

3440 | BRAIN 2020: 143; 3435–3448 A. Zarkali et al.

https://portal.brain-map.org/atlases-and-data/rnaseq
https://github.com/NathanSkene/EWCE
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa270#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa270#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa270#supplementary-data


(VH-subnetwork). The subnetwork comprised 92 edges and

82 nodes, controlling for age and total intracranial volume,

P50.05. The identified subnetwork with reduced connect-

ivity strength in PD-VH is shown in Fig. 2. A list of all sig-

nificant connections within the subnetwork is seen in

Supplementary Table 1.

No significant subnetwork was identified in the opposite dir-

ection (positive correlation between hallucinations and connect-

ivity strength). Importantly our findings cannot be purely

attributed to higher disease severity, as no significant subnet-

work was identified in Parkinson’s disease compared to con-

trols in either direction nor in Parkinson’s disease participants

in relation to total UPDRS, motor UPDRS or MoCA.

Reduced average controllability is

correlated with the presence of

hallucinations in Parkinson’s disease

First, we assessed average controllability in healthy controls.

As previously described (Bernhardt et al., 2019), the thalamus

and temporal and prefrontal regions bilaterally were the high-

est in controllability rank (Fig. 3A; see Supplementary Table 1

for a list of rankings). There was a significant correlation be-

tween average controllability and degree strength for each

node (U = 568, P5 0.001), as previously described (Gu et al.,

2015; Bernhardt et al., 2019) (Supplementary Fig. 1).

Within the VH-subnetwork, average controllability was

significantly reduced in PD-VH compared to both controls

(Mann-Whitney: U = 176.5, P = 0.003) and PD-non-VH

(U = 526, P = 0.014) (Fig. 3C). In contrast, when assessing

average controllability across the whole brain network, dif-

ferences in controllability in PD-VH were less pronounced

(PD-VH versus controls U = 233.5, P = 0.049; PD-VH versus

PD-non-VH (U = 625, P = 0.091) (Fig. 3B). Finally, nodes

with higher average controllability in healthy controls were

significantly more likely to be within the VH subnetwork

(U = 572.5, P5 0.001) (Supplementary material and

Supplementary Fig. 2).

Gene co-expression patterns linked
with presence of hallucinations in
Parkinson’s disease

Next, we assessed whether gene co-expression patterns dif-

fered in nodes of the VH-subnetwork from the rest of the

Table 1 Demographics and clinical assessments in patients with PD-VH and PD-non-VH patients

Attribute Controls n = 34 PD-non-VH n = 81 PD-VH n = 19 Statistic P-value

Demographics

Age, years 66.4 (9.3) 64.4 (7.8) 64.6 (8.2) r2 = 0.003 0.459

Male (%) 16 (47.1) 47 (58.0) 6 (31.6) r2 = 0.022 0.086

Years in education 17.6 (2.3) 16.9 (2.7) 17.1 (3.5) r2 = 0.004 0.490

Total intracranial volume, ml 1397.3 (106.4) 1476.4 (130.8) 1409.9 (106.7) r2 = 0.070 0.003*,***

Mood (HADS)

Depression score 1.6 (2.0) 3.8 (2.9) 4.8 (3.2) r2 = 0.120 50.001***

Anxiety score 3.8 (3.5) 5.6 (3.8) 7.7 (4.9) r2 = 0.071 0.0031*,**,***

Vision

LogMAR, besta –0.08 (0.23) –0.08 (0.16) –0.06 (0.15) r2 = 0.013 0.854

Pelli Robson, besta 1.79 (0.2) 1.79 (0.2) 1.70 (0.2) r2 = 0.016 0.127

D15, total error score 1.29 (1.2) 1.28 (1.1) 1.56 (1.6) r2 = 0.010 0.689

Cognition

MMSE 29.0 (1.0) 28.9 (1.1) 28.6 (1.8) r2 = 0.004 0.485

MoCA 28.8 (1.3) 28.0 (2.1) 26.9 (3.1) r2 = 0.051 0.011***

Disease specific measures

UPDRS – 42.4 (20.2) 63.5 (35.6) U = 444 0.004

UPDRS part 3 (motor score) – 21.8 (11.2) 29.2 (20.8) U = 604 0.129

UM-PDHQ (hallucination severity score) – 0 4.4 (2.3) – –

LEDD, mg – 456.9 (265.0) 434.9 (210.3) U = 787 0.948

Dopamine agonist use (%) – 48 (59.3) 9 (47.4) v2 = 39.59 0.999

Amantadine use (%) – 8 (9.8) 1 (5.3) v2 = 57.09 0.998

Disease duration – 4.0 (2.5) 4.8 (3.4) U = 669.5 0.339

Sniffin’ sticks – 7.8 (3.1) 6.1 (3.4) U = 940.5 0.159

RBDSQ – 4.0 (2.5) 5.6 (2.5) U = 486 0.010

All data shown are mean (SD) except where stated otherwise. Characteristics that significantly differed between the PD-VH and PD-non-VH are highlighted in bold.

*Significant difference between PD-VH and PD-non-VH.

**Significant difference between PD-non-VH and controls.

***Significant difference between PD-VH and controls.
aBest binocular score used; LogMAR: lower score implies better performance, Pelli Robson: higher score implies better performance.

HADS = Hospital Anxiety and Depression Scale; LEDD = total levodopa equivalent dose; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment;

RBDSQ = REM Sleep Behaviour Disorder Screening Questionnaire; UM-PDHQ = University of Miami Hallucinations Questionnaire (max score = 14); UPDRS = Unified

Parkinson’s Disease Rating Scale.
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brain. Gene co-expression networks of the left hemisphere of

the healthy adult brain were constructed from the AHBA

(Hawrylycz et al., 2015). This resulted in a gene network of

27 modules with gene size ranging from 56 to 1735 (mean

= 583, standard deviation = 564). We correlated the identi-

fied modules to the presence of the node in the VH-subnet-

work (Supplementary Fig. 3). Two modules were

significantly correlated (VH-associated modules): the ‘cyan’

module had a negative correlation with the VH-subnetwork

(r = –0.183, FDR corrected P-value: q = 0.014) and the

‘greenyellow’ module had a positive correlation (r = 0.161,

q = 0.032). The two modules had gene sizes of 284 and 601,

respectively. See the Supplementary material for a complete

list of genes included in the two modules.

For both the VH-associated modules, gene module mem-

bership was highly correlated with gene significance for the

VH-subnetwork (Supplementary Fig. 3); this allowed the

ranking of these genes according to gene module member-

ships for the two modules in subsequent enrichment

analyses.

Functional properties of the visual
hallucination-associated modules

We performed GO analysis for genes within the VH-associ-

ated modules. For the ‘cyan’ module, which had a negative

correlation with VH (down-weighted), most significant GO

terms included mRNA processing and metabolism, chromo-

some organization, and histone lysine methylation. In con-

trast, for the ‘greenyellow’ module that had a positive

association with VH (up-weighted), the most significant GO

terms included protein localization to membrane and organ-

elle, protein targeting, mRNA catabolism and viral transcrip-

tion. Enrichment analysis using the KEGG database showed

that the ‘greenyellow’ module was significantly enriched in

terms related to ribosome (KEGG:03010, q50.000,

B = 134, n = 522, b = 27); there were no statistically signifi-

cant KEGG terms for the ‘cyan’ module. The five most sig-

nificantly enriched GO terms for VH-associated modules are

provided in Fig. 4A and Supplementary Table 2), whilst the

full list of significant GO terms are provided in

Supplementary Table 4.

We then investigated whether the genes (ranked by gene

significance) within the VH-associated modules were

enriched in specific cell types. For the down-weighted ‘cyan’

module, we saw an enrichment in oligodendrocytes

(Fig. 4B). In contrast, up-weighted genes within the ‘green-

yellow’ module were enriched in glutamatergic neurons and

GABAergic interneurons (Fig. 4B). To ensure that cell type

enrichment results were not influenced by the dataset used,

we replicated our results using data from the Regev group

(Habib et al., 2017). We saw a similar enrichment pattern:

top genes of the down-weighted ‘cyan’ module were

enriched for oligodendrocyte markers and genes of the

upweighted ‘greenyellow’ module were enriched for neuron-

al cells and GABAergic interneurons (Supplementary Fig. 4).

Discussion
We used controllability analysis to show that Parkinson’s

disease hallucinations are associated with structural connect-

ivity changes in brain regions that exert the greatest control

over the whole brain network, and linked these changes

Table 2 Characteristics of hallucinations experienced

by PD-VH patients

Hallucination characteristics PD-VH

(n = 19)

Phenotype

Complex hallucinations 11 (57.9%)

Minor hallucinations 8 (42.1%)

Frequency

51 a week 11 (57.9%)

41 a week 8 (42.1%)

Duration

51 s 8 (42.1%)

510 s 6 (31.6%)

410 s 5 (26.3%)

Insight

Always preserved 13 (68.4%)

Sometimes preserved 4 (21.1%)

No insight 2 (10.5%)

Number of experienced images mean (SD) 1 (0.67)

Distress

No distress 14 (73.7%)

Mild to moderate distress 5 (26.3%)

Participants were asked to reflect on all hallucinatory phenomena experienced within

the previous month. Complex hallucinations included well form imagery (people, ani-

mals, etc), stationary or animate Minor hallucinations included passage hallucinations

as well as non-formed images (shadows etc).

Figure 2 The VH subnetwork. Network based statistical ana-

lysis revealed a subnetwork of reduced connectivity strength in PD

= VH patients, which comprised 92 edges and 82 nodes. The sub-

network was visualized using BrainNetViewer (Xia et al., 2013).
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with different underlying patterns of regional gene expres-

sion. Specifically: (i) we identify a subnetwork of reduced

structural connectivity in PD-VH; (ii) this subnetwork is crit-

ical for brain integration and hallucinations, as nodes with

high controllability in controls are more likely to participate

in this subnetwork and controllability is reduced within this

subnetwork in patients with hallucinations; (iii) we show

that regional gene expression in areas within the affected

subnetwork have a characteristic pattern with down-

weighted genes related to mRNA metabolism, chromosome

Figure 3 Reduced controllability in patients with Parkinson’s and hallucinations. (A) Controllability ranking across control partici-

pants, visualized using PySurfer (https://pysurfer.github.io/). (B) Average controllability in the whole brain network in control participants, PD-

non-VH patients PD-VH patients. (C) Average controllability in the VH-subnetwork in control participants, PD-non-VH and PD-VH.
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organization and histone lysine methylation and up-

weighted genes related to protein targeting and localization;

and (iv) down-weighted genes are enriched in oligodendro-

cyte markers, and up-weighted genes in glutamatergic neu-

rons and GABAergic interneurons.

Our finding that regions with high controllability are

particularly affected in Parkinson’s disease hallucinations is

consistent with current models that implicate shifts in inte-

gration of different brain networks, specifically dysfunction

in attentional brain networks (Muller et al., 2014), with

overactivity of the DMN and impaired dorsal attention net-

work involvement (Shine et al., 2014, 2015; Yao et al.,

2014; Baggio et al., 2015). By showing loss of a structural

network with normally high controllability, we provide

structural evidence to support this model.

Loss of structural connectivity was recently shown in

patients with Parkinson’s disease susceptible to visual illu-

sions, preferentially involving highly connecting nodes (Hall

et al., 2019). Our findings extend that work by showing

that the affected subnetwork exerts high levels of control

Figure 4 Gene expression patterns associated with the VH subnetwork. (A) Significant GO terms for biological processes plotted in

semantic space, where similar terms are clustered together. The top five most significant GO terms are labelled for each analysis. Redundant GO

terms have been excluded. Markers are scaled based on the log10 q-value for the significance of each GO term. Large blue circles are highly sig-

nificant, while red circles are less significant (see colour bar). (B) EWCE for the VH-associated modules using the AIBS dataset. Data are pre-

sented as standard deviations from the mean. *Statistically significant (FDR corrected) results.
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across the brain, and a selective vulnerability underlies white

matter connectivity loss in Parkinson’s disease.

Other recent models for hallucinations in Parkinson’s dis-

ease strongly implicate thalamic regions, potentially as driv-

ers of these shifts in network control (Onofrj et al., 2017,

2019), with converging evidence for thalamic involvement,

especially lateral geniculate networks, identified using recent

network localization techniques (Kim et al., 2019; Weil

et al., 2019). Indeed, in the analysis presented here, both the

right and left thalamus participate in the VH-subnetwork,

and is amongst the areas with the highest controllability

ranking, suggesting that this region has significant influence

over whole brain function.

Our observation that white matter connectivity loss in PD-

VH is linked to specific regional gene expression patterns

provides mechanistic insights into the observed structural

connectivity changes in Parkinson’s disease hallucinations.

We found a pattern of downweighted histone lysine methy-

lation and genes related to mRNA processing associated

with the subnetwork affected in Parkinson’s disease halluci-

nations. Histone methylation is important for transcriptional

control (Greer and Shi, 2012) and closely related to DNA

methylation (Cedar and Bergman, 2009), which is a hall-

mark of ageing, predicting lifespan (Hannum et al., 2013;

Marioni et al., 2015; Michalak et al., 2019). RNA segments

have also been shown to accumulate in ageing neurons

(Sudmant et al., 2018; Butler et al., 2019) whilst, recently,

impaired nucleic acids repair has been implicated as an age-

related modifier of Parkinson’s disease (Sepe et al., 2016).

Brain regions with reduced expression of genes related to

histone methylation and RNA processing could be more vul-

nerable to such ageing-related changes.

We also found that genes of the up-weighted greenyellow

module were enriched in genes related to protein localiza-

tion, both intracellularly and at the cell membrane in regions

of connectivity loss in PD-VH. An important mechanism for

degeneration in Parkinson’s disease is thought to be dysfunc-

tion in the autophagy-lysosome pathway (ALP) (Pan et al.,

2008), particularly within its subpathway, chaperone-medi-

ated autophagy (Alvarez-Erviti et al., 2011), with lysosomal

malfunction leading to accumulation of alpha-synuclein

(Cuervo et al., 2010; Lawrence and Zoncu, 2019).

Mutations in GBA are associated with a higher risk of

Parkinson’s disease whilst even in sporadic Parkinson’s dis-

ease glucocerebrosidase activity is significantly decreased,

with associated impaired lysosomal chaperone-mediated

authophagy (Murphy et al., 2014). Patients with GBA-

related Parkinson’s disease also have a higher rate of halluci-

nations (Neumann et al., 2009; Brockmann et al., 2011),

whilst the most common GBA-mutations associated with

Parkinson’s disease (N370S and L44P; Velayati et al., 2010)

are thought to induce endoplasmic reticulum stress through

activation of the unfolded protein response (Mu et al., 2008;

Doyle et al., 2011; Sanchez-Martinez et al., 2016). Our find-

ing of higher enrichment in membrane and organelle local-

ization genes as well as the presence macro-autophagy

amongst significantly enriched GO terms of the up-weighted

module (Supplementary Table 4) provide further support to

the key role of the ALP in Parkinson’s disease, particularly

in the presence of hallucinations.

Regional changes in gene expression can be explained by

different cell populations (preferentially expressing different

genes) being expressed in different numbers across brain

regions. Thus, we assessed whether genes associated with

connectivity loss in PD-VH were preferentially enriched in

different cell types. We found that loss of structural connect-

ivity in PD-VH was associated with down-weighted genes

enriched in oligodendrocytes and up-weighted genes

enriched in neuronal cells. Oligodendrocytes have recently

been implicated in Parkinson’s disease, with heritability for

Parkinson’s disease enriched in oligodendrocyte-specific

genes (Bryois et al., 2020). The observed changes in struc-

tural connectivity in PD-VH included multiple long connec-

tions between spatially remote areas. Longer connections are

likely to rely more on myelination for signal transfer than

shorter connections, as oligodendrocytes play a key role in

myelination, myelin remodelling, regulation of conduction

velocity and axonal metabolic support (Young et al., 2013;

Pepper et al., 2018). Regions where oligodendrocytes are

less expressed, may therefore be more vulnerable to connect-

ivity loss.

Several methodological considerations should be taken

into account when interpreting the results of our study. Our

findings are built on structural data determined with diffu-

sion tractography. Limitations of this method include uncer-

tainty for crossing fibres. We used multi-shell data, and

improving post-processing techniques [including constrained

spherical deconvolution (Tournier et al., 2007) and the

SIFT2 algorithm (Smith et al., 2015)], in order to provide

the best possible estimate of underlying structural connectiv-

ity. Using gene expression data from healthy human brains

to understand transcription changes in Parkinson’s disease

could be limited if transcription in Parkinson’s disease was

different from healthy brains. Our main comparison of inter-

est was between PD-VH and PD-non-VH; so that even if

cortical gene expression differed significantly in Parkinson’s

disease compared to healthy brains, we would expect these

Parkinson’s disease-related changes to be similar in both

groups. In addition, a recent study has confirmed higher ex-

pression of known genetic risk factors for Parkinson’s dis-

ease in regions involved in Braak Lewy body stages in the

Allen donors, suggesting that data from non-neurological

adults can provide useful insights into selective vulnerability

in Parkinson’s disease (Keo et al., 2020). Nevertheless, it is

still possible that differences in cortical gene expression be-

tween Parkinson’s disease and controls have a significant in-

fluence and clarifying potential transcriptome changes in

Parkinson’s disease using brain tissue of patients with and

without hallucinations could be an area of future research.

Although comparable to other studies of Parkinson’s disease

hallucinations (Yao et al., 2014; Hepp et al., 2017; Hall

et al., 2019) the sample size for PD-VH participants remains

small and our three study groups differ in size; replication of

our results in larger cohorts as well as longitudinal
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assessment of connectivity changes in Parkinson’s disease

hallucinations would provide further insights. All partici-

pants with Parkinson’s disease were scanned on their usual

dopaminergic medications. Although we think it is unlikely

that dopaminergic medication would affect structural con-

nectivity, as corrected fractional anisotropy is not affected by

levodopa (Chung et al., 2017), further research could clarify

possible effect of dopaminergic medications in diffusion-

derived metrics.

Conclusions
We show that visual hallucinations in Parkinson’s disease

are associated with the breakdown of a structural subnet-

work that possesses distinct gene expression patterns and

cellular subtypes and exerts control across distributed brain

regions. Our findings provide insights into how hallucina-

tions develop in Parkinson’s disease and indicate potential

targets for future therapeutic trials.
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