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CODC: a Copula-based model to identify differential
coexpression
Sumanta Ray1,3✉, Snehalika Lall2,3 and Sanghamitra Bandyopadhyay2✉

Differential coexpression has recently emerged as a new way to establish a fundamental difference in expression pattern among a
group of genes between two populations. Earlier methods used some scoring techniques to detect changes in correlation patterns
of a gene pair in two conditions. However, modeling differential coexpression by means of finding differences in the dependence
structure of the gene pair has hitherto not been carried out. We exploit a copula-based framework to model differential
coexpression between gene pairs in two different conditions. The Copula is used to model the dependency between expression
profiles of a gene pair. For a gene pair, the distance between two joint distributions produced by copula is served as differential
coexpression. We used five pan-cancer TCGA RNA-Seq data to evaluate the model that outperforms the existing state of the art.
Moreover, the proposed model can detect a mild change in the coexpression pattern across two conditions. For noisy expression
data, the proposed method performs well because of the popular scale-invariant property of copula. In addition, we have identified
differentially coexpressed modules by applying hierarchical clustering on the distance matrix. The identified modules are analyzed
through Gene Ontology terms and KEGG pathway enrichment analysis.
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INTRODUCTION
Microarray-based gene coexpression analysis has been demon-
strated as an emerging field that offers opportunities to the
researcher to discover coregulation pattern among gene expres-
sion profiles. Genes with similar transcriptomal expression are
more likely to be regulated by the same process. Coexpression
analysis seeks to identify genes with similar expression patterns,
which can be believed to associate with the common biological
process1–3. Recent approaches are interested to find the
differences between coexpression pattern of genes in two
different conditions4,5. This is essential to get a more informative
picture of the differential regulation pattern of genes under two
phenotype conditions. Identifying the difference in coexpression
patterns, which is commonly known as differential coexpression, is
no doubt a challenging task in computational biology. Several
computational studies exist for identifying a change in gene
coexpression patterns across normal and disease states6–9. Finding
differentially coexpressed (DC) gene pairs, gene clusters, and
dysregulated pathways between normal and disease states is
most common6,10–13. Another way for identifying DC gene
modules is to find gene cluster in one condition, and test whether
these clusters show a change in coexpression patterns in another
condition significantly8,10.
For example, CoXpress10 utilizes hierarchical clustering to model

the relationship between genes. The modules are identified by
cutting the dendrogram at some specified level. It used a
resampling technique to validate the modules coexpressed in
one condition but not in the other. Another approach called
DiffCoex11 utilized a statistical framework to identify DC modules.
DiffCoex proposed a score to quantify differential coexpression
between gene pairs and transform this into dissimilarity measures
to use in clustering. A popularly used tool WGCNA (Weighted
Gene Coexpression Network Analysis) is exploited to group genes
into DC clusters14. Another method called DICER (Differential

Correlation in Expression for meta-module Recovery)15 also
identifies gene sets whose correlation patterns differ between
disease and control samples. Dicer not only identifies the
differentially coexpressed module, but it goes one step beyond
and identifies metamodules or a class of modules where a
significant change in coexpression patterns is observed between
modules, while the same patterns exist within each module.
In another approach, Ray and Maulik16 proposed a multi-

objective framework called DiffCoMO to detect differential
coexpression between two stages of HIV-1 disease progression.
Here, the algorithm operates on two objective functions that
simultaneously optimize the distances between two correlation
matrices obtained from two microarray data of HIV-infected
individuals.
Most of the methods proposed some scoring technique to

capture the differential coexpression pattern and utilized some
searching algorithm to optimize it. Here, we have proposed CODC
Copula-based model to identify Differential Coexpression of genes
under two different conditions. Copula17,18 produces a multi-
variate probability distribution from multiple uniform marginal
distribution. It was extensively used in high-dimensional data
applications. In the proposed method, first, a pairwise dependency
between gene expression profile is modeled using an empirical
copula. As the marginals are unknown, so we used empirical
copula to model the joint distribution between each pair of gene
expression profiles. To investigate the difference in coexpression
pattern of a gene pair across two conditions, we compute a
statistical distance between the joint distributions. We hypothe-
sized that the distance between two joint distributions can model
the differential coexpression of a gene pair between two
conditions. To investigate this fact, we have performed a
simulation study that provides the correctness of our method.
We have also validated the proposed method by applying it in
real-life datasets. For this, we have used five pan-cancer RNA-Seq
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data from TCGA: Breast-invasive carcinoma [BRCA], Head and Neck
squamous carcinoma [HNSC], Liver hepatocellular carcinoma
[LIHC], Thyroid carcinoma [THCA] and Lung adenocarcinoma
[LUAD], which are publicly available in the TCGA data portal
(https://tcga-data.nci.nih.gov/docs/publications/tcga/).

RESULTS
Dataset preparation
We have evaluated the performance of the proposed method in
five RNA-seq expression data downloaded from the TCGA data
portal (https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga). We have downloaded a
matched pair of tumor and normal samples from five pan-
cancer datasets: Breast-invasive carcinoma (BRCA, #samples =
112), head and neck squamous cell carcinoma (HNSC, #samples =
41), liver hepatocellular carcinoma (LIHC, #samples = 50), thyroid
carcinoma (THCA, #samples = 59), and Lung Adenocarcinoma
(LUAD, #samples = 58). For preprocessing the dataset, we first
take those genes that have raw read count greater than two in at
least four cells. The filtered data matrix is then normalized by
dividing each UMI (Unique Molecular Identifiers) count by the
total UMI counts in each cell, and subsequently, these scaled
counts are multiplied by the median of the total UMI counts across
cells19. The top 2000 most variable genes were selected based on
their relative dispersion (variance/mean) with respect to the
expected dispersion across genes with similar average expression.
Transcriptional responses of the resulting genes were represented

by the log2(fold change) of gene expression levels from paired
tumor and normal samples. A brief description of the datasets
used in this paper is summarized in Table 1. Figure 1a, b
represents box and violin plot of the average expression value of
samples for each dataset.

Detection of DC gene pair
Differential coexpression between a gene pair is modeled as a
statistical distance between the joint distributions of their
expression profiles in a paired sample. Joint distribution is
computed by using empirical copula that takes the expression
profile of a gene as marginals in normal and tumor samples. The
K–S distance, computed between the joint distribution, served as
differential coexpression score between a gene pair. The score for
a gene pair (gi, gj) can be formulated as DC Copulaðgi; gjÞ =
KS distðe:cðgtumor

i ; gtumor
j Þ; e:cðgnormal

i ; gnormal
j ÞÞ, where KS-dist

represents Kolmogorov–Smirnov (K–S) distance between two
joint probability distributions, e.c represents empirical copula,
and gPi represents the expression profile of gene gi at phenotype
P. For each RNA-seq data, we have computed the DC_Copula
matrix, from which we identify differentially coexpressed
gene pairs.
To know how the magnitude of differential coexpression is

changing with the score, we plot the distribution of correlation
values of gene pairs with their scores in Fig. 2. The figure also
shows the number of gene pairs having positive and negative
correlations in each stage (normal/tumor). It can be noticed from
the figure that high scores produce differentially coexpressed
gene pairs having a higher positive and negative correlation. We
collected the gene pairs having the score greater than 0.56 and
plot the correlations values in Fig. 3. This figure shows plots of all
gene pairs having a positive correlation in normal and the
negative correlation in tumor (shown in panel a) and vice versa
(shown in panel b). The density of the correlation values is shown
in panels c and d for each case. In Fig. 4, we create a visualization
of top differentially coexpressed gene pairs in BRCA data, which
show a strong positive correlation in tumor stage and negative
correlation in normal stage. The figure shows a heatmap of a
binary matrix constructed from the expression data of those gene
pairs in tumor and normal stages. The expression values showing
the same pattern for a gene pair are assumed 1, while 0 represents
a nonmatching pattern. From the figure, it is quite understandable

Table 1. Tumor types and number of TCGA RNA-seq samples used in
the analysis.

Sl No. Cancer type # matched pair
samples

1 Breast-invasive carcinoma (BRCA) 112

2 Head and neck squamous cell
carcinoma (HNSC)

51

3 Liver hepatocellular carcinoma (LIHC) 50

4 Thyroid carcinoma (THCA) 59

5 Lung adenocarcinoma (LUAD) 58
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Fig. 1 Description of TCGA data used in the analysis: Panel-A and -B describes box and violin plots of mean expression values of the used
datasets.
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that most of the entry in the normal stage is 0 (nonmatch) while in
tumor stage, it is 1 (match). For other datasets, the plots are shown
in Supplementary Fig. 2.

Stability performance of CODC
To prove the stability of CODC, we have performed the following
analysis:
First, we add Gaussian noise to the original expression data of

normal and cancer samples to transform these into noisy datasets.
We use the rnorm function of R to create normally distributed
noise with mean 0 and standard deviation 1, and we add this into
the input data. We have utilized BRCA data for this analysis.

First, we compute the K–S distance and then obtain DC_Copula
matrix for both original and noisy datasets. Let us denote these
two matrices as D and D′.
The usual way is to pick a threshold t for D (or D′) and extract

the gene pair (i,j) for which D(i, j)(orD′(i, j)) ≥ t. First, we set t as the
maximum of D and D′, and then decrease it continuously to
extract the gene pairs. For each t, we observe the number of
common gene pairs obtained from D and D′. Figure 5 shows the
proportion of common genes selected from D and D′ for different
threshold selection and different level of noise. Theoretically,
CODC produces D with scores no more than D′ (see the above
section for details). So, it is quite obvious that the number of
common genes increased with a lower threshold value. From the
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Fig. 2 The figure shows the distribution of correlation values in normal and cancer samples of BRCA data with the DC_Copula score.
a shows the distribution for different DC_Copula scores. Here, four pirate plots are shown in each facet, two for positive and two for negative
correlations. The violins in each facet represent the distribution of positive and negative correlations of gene pairs in normal and cancer
samples. b shows a bar plot representing the number of positive and negatively correlated gene pairs in normal and cancer samples in
each facet.
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Fig. 3 The figure shows visualizations of gene pairs having DC_copula score greater than 0.56. a, b show the visualization of correlation
values of gene pairs having a positive correlation in normal and negative correlation in tumor and vice versa, respectively. c, d represent the
distribution of correlation values according to a, b, respectively.
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property (see the above section for details), it can be noticed that
the scores in D get preserved in D′. So, it is expected that obtained
gene pairs from original data are also preserved in noisy data.
Figure 5 shows the evidence for this case. As can be seen from the
figure that even the noise label is 80%, for threshold value above
0.25, more than 55% of the gene pairs are common between noisy
and original datasets.

Detection of differentially coexpressed modules
Detection of DC gene modules is performed by using hierarchical
clustering on the DC matrix. Here, the differential coexpression
score obtained from each gene pair is treated as the similarity
measure between genes. The distance between a gene pair is
formulated as dist_copula(gi, gj) = 1 − DC_Copula(gi, gj). For each
dataset, modules are extracted using average linkage hierarchical
clustering by using the dist_copula as a dissimilarity measure
between a pair of a gene. For BRCA and HNSC data, we have
identified 15 modules, for LIHC data 14 modules, for LUAD 21
modules, and for THCA 22 modules are identified. For studying the
relationship between the modules, we have identified module

eigengene networks for each dataset. According to ref. 14 module,
eigengene represents a summary of the module expression
profiles. Here, module eigengene network signifies coexpression
relationship among the identified modules in two stages. We
create visualizations of the module eigengene network for normal
and tumor stages in Fig. 6. The upper triangular portion of the
correlation matrix represents the correlation between module
eigengenes for normal samples, whereas the lower triangular
portion represents the same for tumor samples. This figure shows
the heatmap for BRCA, HNSC, and LUAD datasets. It is clear from
Fig. 6 that most of the modules show differential coexpression
pattern in normal and tumor stages. For a differentially
coexpressed module, it is expected that it shows an opposite
correlation pattern in two different phenotype conditions. Here,
the correlation pattern between two modules is represented as
the correlation between the module eigengenes. In the heatmap
of Fig. 6, we can observe that in all three datasets, the correlation
pattern between most of the MEs in normal and tumor stages has
the opposite direction. For example, from panel a, it can be
noticed that for BRCA data, the modules have a negative
correlation in the normal phase while showing a strong positive
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Fig. 6 Heatmap of differentially coexpressed modules. Here the heatmap is shown for module eigengenes.The upper triangular portion of
the matrix represents correlations of module eigengenes in normal samples, whereas the lower triangular portion signifies the same for tumor
samples. Left and right sidebar of the heatmap represents −log(p value) of significantly enriched GO terms and pathways, respectively. “NA”
stands for unavailability of significant pathway or GO terms. The upper annotation bar of the heatmap shows the DC_copula score of the
module. a Shows the heatmap for BRCA data, whereas (b, c) Show heatmap HNSC and LUAD data.
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correlation in tumor phase. For the HNSC dataset, the opposite
case is observed. Modules have a strong positive correlation in
normal phases while having a negative correlation in tumor phase.
In Supplementary Fig. 2, the visualization of all datasets is given.

Comparisons with competing methods
For comparison purpose, we have taken three competing
techniques, such as Diffcoex, coXpress, and DiffCoMO, and
compared them with our proposed method. All these methods
are extant DC based, which look for gene modules with altered
coexpression between two classes. DiffCoEx performed hierarch-
ical clustering on the distance matrix complied from correlation
matrices of two phenotype stages. CoXpress detects a correlation
module in one stage and finds the alternation of the correlation
pattern within the module in other classes. DiffCoMO uses the
multiobjective technique to detect differential coexpression
modules between two phenotype stages. We have made two
approaches for comparing our proposed method with competing
methods. We first compare the efficacy of these methods for
detecting differential coexpressed gene pairs, and next compare
the modules identified in each case. For the first case, we take the
top 1000 gene pairs having high DC_Copula scores from the DC
matrix, and perform classification using normal and tumor
samples. The expression ratio of each DC gene pair from the
expression matrix was taken and compiled a n × 1000, where n
represents the number of samples in each data. For the other
three methods, we have also selected the same number of

differentially coexpressed gene pairs for the classification task.
Table 2 shows some parameters we have used for the selection of
the gene pairs. For CoXpress, first, we have used “cluster.gene”
and “cuttree” function with default parameters provided in the R
package of CoXpress to get the gene clusters according to the
similarity of their expression profiles. These groups are then
examined by the coXpress R function to identify the differentially
coexpressed modules by comparing with the t statistics generated
by randomly resampling the dataset 10,000 times for each group.
We have taken the top 10 modules based on the robustness
parameter, which tells the number of times that the group was
differentially coexpressed in 1000 randomly resampled data. Now,
we have selected 1000 gene pairs randomly from those modules.
For the DiffCoEx method, we collected the DC gene pairs before
partitioning them in modules. We used the code available in the
supplementary file of the original paper of DiffCoEx, to get the
distance score matrix that is used in the hierarchical clustering for
module detection. We sort the score of the distance matrix and
pick the top 1000 gene pairs based on the scores. For DiffCoMO,
we use the default parameters to cluster the network to obtained
differentially coexpressed modules. As it utilized the multi-
objective method, all the Pareto optimal solutions of the final
generation are taken as selected modules. We then choose 1000
gene pairs randomly from the identified modules. Classification is
performed by treating normal and tumor samples as class labels. A
toy example of the comparison is shown in Fig. 7. Note that all
these methods are meant for differentially coexpressed module
detection. So, for comparison, we collected the DC gene pairs

Table 2. Table shows the different parameters/threshold we have used for selecting differentially coexpressed gene pairs for other methods.

Method No of gene pairs
selected

Parameters used

CoXpress 1000 Used cluster.gene and cutree function with corr.coef threshold 0.6 and cutting height of hierarchical tree
h = 0.4. Robustness parameter threshold = 800

DiffCoEX 1000 Used Spearman correlation to compute adjacency matrix for each phenotype condition. Use default soft-
thresholding parameter β = 6 for computation of distance score matrix

DiffCoMO 1000 No of modules (population size) is taken as 50 and the number of generation is 200

Fig. 7 A toy example of performing classification on differentially coexpressed gene pairs. From the DC matrix, the top gene pairs are
selected based on DC_copula score. The expression ratio is computed for each gene pair for normal and tumor samples. The final matrix is
then transposed and subsequently, classification is performed using normal and tumor samples as class labels.
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before partitioning them in modules. We train four classifiers
Boosted GLM, Naive Bayes, Random Forest, and SVM with the data
and take the classification accuracy. The classification results are
shown in Fig. 8. It can be noticed from the figure that for most of
the dataset, the proposed method achieved high accuracy
compared with the other methods.
To assess the performance of all the methods for detecting

differential coexpression modules, we check the distribution of the
correlation score of gene pairs within top modules in normal and
tumor samples. Extant methods do a comparison by computing
the absolute change in correlation value between a pair of a gene
within a module. The problem for this type of comparison is that
the score ignores a small change in differential coexpression. It
also fails to consider the gene pair having a low score and
correlation of opposite sign in two conditions. For example, it
emphasized the gene pair with correlation value 0.2 in normal and
0.7 in the tumor (here the score is 0.5) rather than the gene pair
whose correlation value is −0.2 in normal and 0.2 in the tumor
(here the score is 0.4). So, for comparison, it is required to
investigate the number of gene pairs having correlation values of
an opposite sign over −1 to +1. So, for all identified modules, we
calculate the correlation score of each gene pair in two different
samples (normal and cancer) and plot the frequency polygon in
Fig. 9. To investigate whether the gene pairs within the modules
show a good balance in positive and negative correlations, we
have computed the correlation score for all the identified modules
of DiffCoMO, DiffCoEx, and CoXpress. Figure 9 shows the
comparisons of the correlation scores. It is noticed from the figure
that gene pairs within the identified modules of the proposed
method show good balance in positive and negative correlation
values. DiffCoMO and DiffCoEX have also achieved the same,
whereas most of the gene pairs within the coXpress modules

shifted toward positive correlation in both tumor and normal
samples. In Fig. 9a, we have also shown the boxplot of the
correlation values obtained from different methods. As can be
seen from the figure, the median line of correlation values for the
proposed method is nearer to 0, which signifies good distribution
of correlation scores in normal and tumor samples over −1 to +1.
Thus, the proposed method can able to detect differentially
coexpressed gene pairs having correlation values well distributed
between −1 and +1.
To compare CODC with the other methods, we tested its

performance in a simulated dataset also. To create the simulated
data, we have used HNSC RNA-seq expression dataset. We create
the simulated data as follows:

1. For each gene gi in the normal sample, we simulated the
expression profile of sample sj as Xij ¼ Nðmi ; σ

2
i Þ where mi

represents mean expression value of gene gi across all 51
HNSC normal samples, and σ2 represents their variance.

2. Similarly, we simulated the expression profile of tumor
sample s0j as Yi;j ¼ Nðm0

i ; σ
02
i Þ, where m0

i is mean of the
expression value of gene g0i and σ02

i is the variance. Here, we
assume that a gene pair is truly differentially coexpressed if
the following condition holds: DC_score(gi, gj) > 0.5 and the
correlation between gi and gj has opposite sign in tumor
and normal stage.

3. We then add different levels of Gaussian noise to the Yij to
create different noisy expression data (Y 0

ij) from the
simulated tumor samples. We use rnorm function of R to
produce normally distributed noise with mean 0 and
standard deviation 1.

Now, we compute differentially coexpressed gene pairs
between simulated normal (Xij) and noisy sample (Y 0

ij) and
compare them with the underlying true differentially coexpressed
gene pairs. We compute the proportion of matched gene pairs
and plot the results against all the different noise levels in Fig. 10.
We have done this analysis for all competing methods. To select
the differentially coexpressed gene pairs from simulated, normal,
and noisy tumor samples, we use DC_Copula threshold as 0.6. For
other competing methods, we use the threshold and other
parameters, same as the previous analysis, which are provided in
Table 2.

Pathway analysis
To compare functional enrichment of identified modules, we have
utilized KEGG pathway enrichment analysis. We defined enrich-
ment score of a pathway in a module as pathway score ¼ n

m,
where n is the fraction of the pathway genes in the module and m
is the fraction of the pathway genes in the dataset. We compare
the pathway score for the modules identified for DiffCoEx,
DiffCoMO, CoXpress, and the proposed method. For comparison
purpose, we have utilized the HNSC dataset. For identifying
modules in other competing methods, we have utilized the the
parameters provided in Table 2. For coXpress, we take the
modules with robustness parameter value greater than 760, which
produces 19 clusters. For DiffcoEx, we have used the default
parameters for cutreeDynamic function (cutHeight = 0.996,
minClusterSize = 20), which produces 42 clusters. Figure 11
shows the result. The Y axis represents CCDF (complementary
cumulative distribution function), which represents how often the
number of modules is above a certain value of pathway score. It is
clear from the figure that more modules for the proposed method
achieved a high pathway score compared with other competing
methods. In Fig. 6, we have shown heatmaps of differentially
coexpressed modules for BRCA, HNSC, and for LUAD data. The
heatmap also provides pathways and GO terms significantly
enriched with the modules. The p value for KEGG pathway and GO
enrichment is computed by using the hypergeometric test with
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0.05 FDR corrections. We have utilized GOstats, kegg.db, and GO.
db R package for that. It can be seen from Fig. 6a that some
pathways such as “Complement and coagulation cascades”,
“Proximal tubule bicarbonate reclamation”, “Caffeine metabolism”,
“Protein digestion and absorption”, “Tryptophan metabolism”, and
“ABC transporters”, are strongly associated with the identified
modules of BRCA. “Tryptophan metabolism” has eminent evi-
dence to link with malignant progression in breast cancer20. In
ref. 21, the association between ABC transporters with breast
carcinoma has been established. From panel b, it can be seen that
drug metabolism–cytochrome P45022 ECM–receptor interaction23,
“Nitrogen metabolism”, and “Protein digestion and absorption”
are significantly associated with the modules of HNSC data. Some
pathways such as “Drug metabolism–cytochrome P450” and
“ECM–receptor interaction” have strong evidence associated with
the head and neck squamous cell carcinomas22,23. Similarly from
panel c, it can be noticed that pathways such as “Metabolism of
xenobiotics by cytochrome P450”, “Pancreatic secretion”, and
“Linoleic acid metabolism” are significantly associated with
modules of LUAD data. Among them, there exists strong evidence
for pathways: “Metabolism of xenobiotics by cytochrome P450”24,

“Pancreatic secretion”25, and “Linoleic acid metabolism”26 to be
associated with lung carcinoma.

DISCUSSION
In this paper, we have proposed CODC, a copula-based model to
detect differential coexpression of genes in two different samples.
CODC seeks to identify the dependency between expression
patterns of a gene pair in two conditions separately. The Copula is
used to model the dependency in the form of two joint
distributions. K–S distance between two joint distributions is
treated as differential coexpression score of a gene pair. We have
compared CODC with three competing methods DiffCoex,
CoXpress, and DiffCoMO in five pan-cancer RNA-Seq data of
TCGA. CODC’s ability for delineating a minor change of coexpres-
sion in two different samples makes it unique and suitable for
differential coexpression analysis. The scale-invariant property of
copula inherited into CODC to make it robust against noisy
expression data. It is advantageous for detecting the minor
change in correlation across two different conditions, which is the
most desirable feature of any differential coexpression analysis.
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Under the premise that the differential coexpressed genes are
likely to be important biomarkers, we demonstrate that CODC
identifies those that achieve better accuracy for classifying
samples. Moreover, CODC goes a step further from the pairwise
analysis of genes, and seeks modules wherein differential
coexpression is prevalent among each pair of genes. We have
also analyzed the identified modules enriched with different
biological pathways, and highlighted some of these such as
“Complement and coagulation cascades”, “Tryptophan metabo-
lism”, “Drug metabolism–cytochrome P450”, and “ECM–receptor
interaction”.
We have evaluated the efficacy of CODC on five different pan-

cancer datasets to effectively extract differential coexpression
gene pairs. Besides that, we have also compared different
methods for detecting differentially coexpressed modules in
those data. It is worth mentioning that CODC improves upon
the competing methods. We have also proved that the scale-
invariant property of copula makes CODC more robust for
detecting differential coexpression in noisy data. The most
important part of the DC analysis is to reveal changes in gene
correlation that would not be detected by traditional DE analysis.
CODC uses copula for measuring gene–gene dependency, and
copula is a multivariate measure, so it can be easily extendible to
use in the measurement of dependence structure of
multiple genes.

METHODS
In this section, we have briefly introduced the proposed method.

Modeling differential coexpression using Copula
Differential coexpression is simply defined as the change in coexpression
patterns of a gene pair across two conditions. A straightforward method to
measure this is to take the absolute difference of correlations between two
gene expression profiles in two conditions. For a gene pair genei and genej,
this can be formally stated as DC Scorep1;p2i;j ¼ jSimðxi ; xjÞp1 � Simðxi ; xjÞp2j,
where p1, p2 are two different phenotype conditions, and xi,xj represent
expression profile of genei and genej, respectively. Here Sim(xi, xj)

p signifies
Pearson correlation between xi and xj for phenotype p.
In the statistical analysis, a simple way to measure the dependence

between the correlated random variable is to use copulas27. Copula is
extensively used in high-dimensional data applications to obtain joint
distributions from a random vector, easily by estimating their marginal
functions.

Copulas can be described as a multivariate probability distribution
function for which the marginal distribution of each variable is uniform. For
a bivariate case, copula is a function: C: [0, 1]2 → [0, 1], and can be defined
as C(x, y) = P(X ≤ x, Y ≤ y), for 0 ≤ x, y ≤ 1, where X and Y are uniform
random variables. Let, Y1 and Y2 be the random vectors whose marginals
are uniformly distributed in [0, 1] and having marginal distribution FY1 and
FY2, respectively. By Sklar’s theorem

28, we have the following: there exists a
copula C such that F(y1, y2) = C(FY1(y1), FY2(y2)), for all y1 and y2 in the
domain of FY1 and FY2. In other words, there exists a bivariate copula that
represents the joint distribution as a function of its marginals. For the
multivariate case, the copula (C) function can be represented as

FYðy1; y2; ¼ ; ynÞ ¼ CðF1ðy1Þ; F2ðy2Þ; ¼ ; FnðynÞÞ; (1)

where (Y1, Y2, …, Yn) be the random vectors whose marginals are F1(y1),
F2(y2), …, Fn(yn). The converse of the theorem is also true. Any copula
function with individual marginals Fi(yi) as the arguments, represents valid
joint distribution function. Assuming that F(Y1, Y2, …, Yn) has nth-order
partial derivatives, the relation between the joint probability-density
function and the copula-density function, say c, can be obtained as

f ðy1; y2; ¼ ; ynÞ ¼ ∂nðFðY1 ;Y2 ;¼ ;YnÞÞ
∂Y1∂Y2 ¼ ∂Yn

¼ ∂n C F1ðy1Þ;F2ðy2Þ;¼ ;FnðynÞð Þð
∂Y1∂Y2 ¼ ∂Yn

¼ cF1ðy1Þ; F2ðy2Þ; ¼ ; FnðynÞ
Q
i
fiðyiÞ

(2)

where, we define

cðy1; ¼ ; ynÞ ¼ ∂nCðy1; ¼ ; ynÞ
∂y1 � � � ∂yn : (3)

So, Copula is also known as joint distribution-generating function with a
separate choice of marginals. Hence, different families (parametric and
nonparametric) of copulas exist, which model different types of
dependence structure. The example includes Farlie–Gumbel–Morgenstern
n family (parametric), Archimedean Copula (parametric), Empirical Copula
(nonparametric), Gaussian (parametric), and t (parametric). Empirical
copulas are governed by the empirical distribution functions, which try
to estimate the underlying probability distribution from given
observations.
Empirical Copula is defined as follows:
Let Y1, Y2, …, Yn be the random variables with marginal cumulative

distribution function F1(y1), F2(y2), …, Fn(yn), respectively.
The empirical estimate of (Fi, i = 1, …, n), based on a sample, {yi1, yi2, …,

yim}, of size m is given by

F̂iðyÞ ¼ 1
m

Xm

j¼1

1fYij � yg; ½i ¼ 1; ¼ ; n� (4)
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The Empirical Copula of Y1, Y2, …, Yn is then defined as

Ĉðu1; u2; ¼ ; unÞ
¼ 1

m

Pm
j¼1

1fbF1ðy1;jÞ � u1; bF2ðy2;jÞ � u2; ¼ ; bFnðyn;jÞ � ung; (5)

for ui ∈ [0, 1], [i = 1, …, n]. Here, we model the dependence between each
pair of gene expression profile using empirical copulas. As we were
unaware of the distributions of expression profiles, so empirical copulas are
the only choice here. Notably, we have estimated joint empirical copula
density from the marginals of each gene expression profile. We have used
beta-kernel estimation to determine the copula density directly from the given
data. The smoothing parameters are selected by minimizing the asymptotic
mean-integrated squared error (AMISE) using the Frank copula as the
reference copula. The input to the copula-density estimator is of size n × 2,
where n is the number of samples in different datasets. For each pair of
samples, we estimate the empirical copula density using beta-kernel estimator.
We have shown some marginal normal contour plots of copula density during
the estimation process of the BRCA dataset in Supplementary Fig. 1. To model
the differential coexpression of a gene pair, we have measured a statistical
distance between two joint distributions provided by the copulas. We have
utilized the K–S test to quantify the distance between two empirical
distributions. The value of d statistic represents the distance here. Thus, the
distance obtained for a gene pair is treated as a differential coexpression score.
To check whether the distance between the joint distribution perfectly

models the differential coexpression, we have performed an analysis. To
show the concordance between the DC_Score with the proposed distance,
we have performed the following analysis. We create a 20 × 20 matrix M,
whose rows (i) and columns (j) annotated with correlation values from −1
to +1 with 0.1 spacing. We create two pairs of marginals (Fx1, Fx2) and (Fy1,
Fy2) having correlations i and j, respectively. For the generation of
marginals, we have used mvnorm function of MASS R-package and set the
“empirical” parameter of mvnorm as “TRUE”. This generates (Fx1, Fx2) or (Fy1,
Fy2) with an exact correlation of i or j. Next, we compute joint distributions
using copula function FX1X2 = C(Fx1, Fx2), FY1Y2 = C(Fy1, Fy2) and finally
compute KS distance between FX1X2 and FY1Y2. Each entry of (i,j) in M is
filled with this distance value. We generate M 100 times following the
same method. Now, to visualize the matrices, each row is represented as a
series of boxplots in Fig. 12. For a fixed row, the DC_Score will increase
from left to right along the column as it ranges from correlation value −1
to +1. Each facet in the figure corresponds to a row/column in the matrix,
which represents 20 sets of 100 distances corresponding to the
correlations ranging from −1 to +1 with a spacing of 0.1. Considering
each facet of the plot, it can be noticed that distances are gradually
increasing with the increase in the DC_Score. For example, considering the
second facet (corr value = −0.9), the distances increased from left to right
gradually. So, it is evident from the figure that there exists a strong
correlation between the distance and DC_Score, which signifies that the
proposed method can model the difference in coexpression patterns.

STABILITY OF CODC
CODC is stable under noisy expression data. This is because of the
popular “non-parametric”, “distribution-free”, or “scale-invariant”
nature of the copula29. The properties can be written as follows: let
CXY be a copula function of two random variables X and Y. Now,
suppose α and β are two functions of X and Y, respectively. The
relation of C(α(X),β(Y)) and CXY can be written as follows:

● Property 1: If α and β are strictly increasing functions, then
the following is true:

CαðXÞβðYÞðu; vÞ ¼ CXYðu; vÞ (6)

● Property 2: If α is strictly increasing and β is strictly
decreasing, then the following holds:

CαðXÞβðYÞðu; vÞ ¼ u� CXYðu; 1� vÞ (7)

● Property 3: If α is strictly decreasing and β is a strictly
increasing function, then we have

CαðXÞβðYÞðu; vÞ ¼ v � CXYðv; 1� uÞ (8)

● Property 4: If both α and β are strictly decreasing functions,
then the following holds:

CαðXÞβðYÞðu; vÞ ¼ uþ v � 1� CXYð1� u; 1� uÞ (9)

These properties of copula are used to prove that the distance
measure used in CODC is approximately scaled invariant.
Theoretical proofs are described below, and the simulation result
is given later in section (Stability performance of CODC). The proof
is as follows: we know that the K–S statistic for a cumulative
distribution function F(x) can be expressed as

D ¼ supx jHnðxÞ � FðxÞj;
where Hn is an empirical distribution function for n i.i.d
observation Xi ≤ x, and sup corresponds to supremum function.
The two-sample K–S test used in CODC can be described similarly

D ¼ supx;y jðH1
nðx; yÞ � Fðx; yÞÞ � ðH2

nðx; yÞ � Fðx; yÞÞj
¼ supx;y jðH1

nðx; yÞ � H2
nðx; yÞÞj;

(10)

where H1
n, H

2
n are denoted as the joint empirical distribution for

two samples taken from normal and cancer, respectively. Now the
D statistic can be written as

D ¼ supx;y jðH1
nðx; yÞ � H2

nðx; yÞÞj
¼ supx;y jCðF1ðxÞ; F1ðyÞÞ � CðF2ðxÞ; F2ðyÞÞj
¼ supx;y jCXYðu; vÞ � CXYð~u; ~vÞj;

(11)

where C(.) is copula function and u = F1(x), v = F1(y), ~u ¼ F2ðxÞ; ~v ¼
F2ðyÞ are uniform marginals of joint distributions H1

n and H2
n .

Let us assume that both α and β functions are strictly increasing.
Then from Eqs. (6) and (11), the distance D between H1

n(α(x), β(y))
and H2

n(α(x), β(y)) has the form

D ¼ supx;yjH1
nðαðxÞ; βðyÞÞ � H2

nðαðxÞ; βðyÞÞj
¼ supx;yjCðF1ðαÞ; F1ðβÞÞ � CðF2ðαÞ; F2ðβÞÞj
¼ supx;y jCαðxÞ;βðyÞðu; vÞ � CαðxÞ;βðyÞð~u; ~vÞj
¼ supx;y jCXYðu; vÞ � CXYð~u; ~vÞj

By using the property in Eq:ð6Þ½ �
¼ supx;y CðF1ðxÞ; F1ðyÞÞ � CðF2ðxÞ; F2ðyÞÞj j
¼ supx;y ðH1

nðx; yÞ � H2
nðx; yÞÞ

�� ��:

(12)

Now, if α is strictly increasing and β is strictly decreasing, then D
can be written as

D0 ¼ supx;y jH1
nðαðxÞ; βðyÞÞ � H2

nðαðxÞ; βðyÞÞj
¼ supx;y jCðF1ðαÞ; F1ðβÞÞ � CðF2ðαÞ; F2ðβÞÞj
¼ supx;yjCαðxÞ;βðyÞðu; vÞ � CαðxÞ;βðyÞð~u; ~vÞj
¼ supx;y ju� CXYðu; 1� vÞ � ~u� CXYð~u; 1� ~vÞj

By using the property in Eq: ð7Þ½ �
¼ supx;y jðu� ~uÞ þ CXYð~u; 1� ~vÞ � CXYðu; 1� vÞj
¼ supx;y jðu� ~uÞ þ CXYð~u; ~mÞ � CXYðu;mÞj
� supx;yj½CXYð~u; ~mÞ � CXYðu;mÞ�j
� supx;yj½CXYðu;mÞ � CXYð~u; ~mÞ�j
¼ supx;y jH1

nðx; yÞ � H2
nðx; yÞj

¼ D

(13)

Similarly, for strictly increasing β and strictly decreasing α, the
distance D′ between H1

n(α(x), β(y)) and H2
n(α(x), β(y)) can be shown

to satisfy the relation

D0 ¼ supx;y jH1
nðαðxÞ; βðyÞÞ � H2

nðαðxÞ; βðyÞÞj
� supx;y jH1

nðx; yÞ � H2
nðx; yÞj

¼ D:

(14)
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Finally, let us consider that both α and β are strictly decreasing
functions. The distance D′ can be described as

D0 ¼ supx;y jH1
nðαðxÞ; βðyÞÞ � H2

nðαðxÞ; βðyÞÞj
¼ supx;yjCðF1ðαÞ; F1ðβÞÞ � CðF2ðαÞ; F2ðβÞÞj
¼ supx;y jCαðxÞ;βðyÞðu; vÞ � CαðxÞ;βðyÞð~u; ~vÞj
¼ supx;y juþ v � 1þ CXYð1� u; 1� vÞ

� ~uþ ~v � 1þ CXYð1� ~u; 1� ~vÞj
By using the property in Eq: ð8Þ½ �

¼ supx;y jðu� ~uÞ þ ðv � ~vÞ þ CXYð1� u; 1� vÞ
� CXYð1� ~u; 1� ~vÞj

� supx;y jCXYð1� u; 1� vÞ � CXYð1� ~u; 1� ~vjÞj
¼ supx;yjCXYðm; nÞ � cXYð ~m; ~nÞj
¼ supx;y jH1

nðx; yÞ � H2
nðx; yÞj:

(15)

Thus, the value of D′ between two joint distributions H1
n(α(x),

β(y)) and H2
n(α(x), β(y)) is the same as that when we add Gaussian

noise to the original expression data of normal and cancer
samples to transform these into noisy datasets of D that
represents the distances H1

n(x, y) and H2
n(x, y) when both α and β

are increasing functions. For other cases of α and β, D′ attains at
least the value of D. So, the distance for two random variables α(X)
and β(Y) is equal or at least that of the random variables X and Y.
CODC treats the distance D as differential coexpression score;
thus, it remains the same (or at least equal) under any
transformation of X and Y.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Datasets are available in TCGA data portal.

CODE AVAILABILITY
https://github.com/Snehalikalall/CODC (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga).

Received: 29 August 2019; Accepted: 18 March 2020;

REFERENCES
1. Ralston, A. & Shaw, K. Gene expression regulates cell differentiation. Nat. Edu-

cation 1, 127 (2008).
2. Yang, Y. et al. Gene co-expression network analysis reveals common system-level

properties of prognostic genes across cancer types. Nat. Commun. 5, 3231 (2014).
3. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display

of genome-wide expression patterns. Proc. Natl Acad. Sci. 95, 14863–14868
(1998).

4. Ideker, T. & Krogan, N. Differential network biology. Mol. Syst. Biol. 8, 565 (2011).
5. Ray, S. & Bandyopadhyay, S. Discovering condition specific topological pattern

changes in coexpression network: an application to hiv-1 progression. IEEE/ACM
Trans. Comput. Biol. Bioinformatics 11 (2015).

6. Cho, S., Kim, J. & Kim, J. Identifying set-wise differential co-expression in gene
expression microarray data. BMC Bioinformatics 10, 109 (2009).

7. Kostka, D. & Spang, R. Finding disease specific alterations in the co-expression of
genes. Bioinformatics 20, i194–i199 (2004).

8. Lai, Y., Wu, B., Chen, L. & Zhao, H. A statistical method for identifying differential
gene–gene co-expression patterns. Bioinformatics 20, 3146–3155 (2004).

9. Kostka, D. & R, R. S. Finding disease specific alterations in the co-expression of
genes. Bioinformatics 20, i194–199 (2005).

10. Watson, M. Coxpress: differential co-expression in gene expression data. BMC
Bioinformatics 7, 509 (2006).

11. Tesson, B., Breitling, R. & Jansen, R. Diffcoex: a simple and sensitive method to
find differentially coexpressed gene modules. BMC Bioinformatics 11, 497 (2010).

12. Fang, G. et al. Subspace differential coexpression analysis: problem definition and
a general approach. Biocomputing 2010, 145–156 (2009).

13. Wu, G. & Stein, L. A network module-based method for identifying cancer
prognostic signatures. Genome Biology 13, https://doi.org/10.1186/gb-2012-13-
12-r112 (2012).

14. Langfelder, P. & Horvath, S. Wgcna: an R package for weighted correlation net-
work analysis. BMC Bioinformatics 9, 559 (2008).

15. Amar, D., Safer, H. & Shamir, R. Dissection of regulatory networks that are altered
in disease via differential co-expression. Plos Comput. Biol. 9, e1002955 (2013).

16. Ray, S. & Maulik, U. Identifying differentially coexpressed module during hiv
disease progression: a multiobjective approach. Scientific Rep. 7, 86 (2017).

17. Nelsen, R. B. An Introduction to Copulas (Springer Science & Business Media, 2007).
18. Embrechts, P. Copulas: a personal view. J. Risk Insurance 76, 639–650 (2009).
19. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells.

Nat. Commun. 8, 14049 (2017).
20. Juhász, C. et al. Tryptophan metabolism in breast cancers: molecular imaging and

immunohistochemistry studies. Nuclear Med. Biol. 39, 926–932 (2012).
21. Hashimoto, K. et al. Activated pi3k/akt and mapk pathways are potential good

prognostic markers in node-positive, triple-negative breast cancer. Annal. Oncol.
25, 1973–1979 (2014).

22. Shatalova, E. G., Klein-Szanto, A. J., Devarajan, K., Cukierman, E. & Clapper, M. L.
Estrogen and cytochrome p450 1b1 contribute to both early-and late-stage head
and neck carcinogenesis. Cancer Prevention Res. 4, 107–115 (2011).

23. Kuang, J., Zhao, M., Li, H., Dang, W. & Li, W. Identification of potential therapeutic
target genes and mechanisms in head and neck squamous cell carcinoma by
bioinformatics analysis. Oncology Lett. 11, 3009–3014 (2016).

24. Anttila, S., Raunio, H. & Hakkola, J. Cytochrome p450–mediated pulmonary
metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am.
J. Respiratory Cell Mol. Biol. 44, 583–590 (2011).

25. Gonlugur, U., Mirici, A. & Karaayvaz, M. Pancreatic involvement in small cell lung
cancer. Radiol. Oncol. 48, 11–19 (2014).

26. Barhoumi, R., Mouneimne, Y., Chapkin, R. S. & Burghardt, R. C. Effects of fatty acids
on benzo [a] pyrene uptake and metabolism in human lung adenocarcinoma
a549 cells. PloS ONE 9, e90908 (2014).

27. Nelsen, R. B. Introduction. In An Introduction to Copulas, 1–4 (Springer, 1999).
28. Sklar, A. Random variables, joint distribution functions, and copulas. Kybernetika

9, 449–460 (1973).
29. Nelsen, R. B. Properties and applications of copulas: A brief survey. In Proceedings

of the first brazilian conference on statistical modeling in insurance and finance
(University Press USP Sao Paulo, 2003).

ACKNOWLEDGEMENTS
We would like to thank Dr. Debarka Sengupta, IIIT, Delhi for insightful discussions. S.R.
acknowledges support from ERCIM Alain Bensoussan Fellowship programme grant. S.
B. acknowledges support from J.C. Bose Fellowship [SB/S1/JCB-033/2016 to S.B.] by
the DST, Govt. of India; SyMeC Project grant [BT/Med-II/NIBMG/SyMeC/2014/Vol. II]
was given to the Indian Statistical Institute by the Department of Biotechnology
(DBT), Govt. of India.

AUTHOR CONTRIBUTIONS
All authors contributed equally to this work.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41540-020-0137-9.

Correspondence and requests for materials should be addressed to S.R. or S.B.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

S. Ray et al.

12

npj Systems Biology and Applications (2020)    20 Published in partnership with the Systems Biology Institute

https://github.com/Snehalikalall/CODC
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://doi.org/10.1186/gb-2012-13-12-r112
https://doi.org/10.1186/gb-2012-13-12-r112
https://doi.org/10.1038/s41540-020-0137-9
https://doi.org/10.1038/s41540-020-0137-9
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

S. Ray et al.

13

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    20 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	CODC: a Copula-based model to identify differential coexpression
	Introduction
	Results
	Dataset preparation
	Detection of DC gene pair
	Stability performance of CODC
	Detection of differentially coexpressed modules
	Comparisons with competing methods
	Pathway analysis

	Discussion
	Methods
	Modeling differential coexpression using Copula

	Stability of CODC
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




