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through a range of tasks, such as tracing

the B cell origin of the antibody, quanti-
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THE BIGGER PICTURE Understanding antibody function is critical for deciphering the biology of disease
and for the discovery of novel therapeutic antibodies. The challenge is the vast diversity of antibody variants
compared with the limited labeled data available. We overcome this challenge by using self-supervised
learning to train a large antibody-specific language model, followed by transfer learning, to fine-tune the
model for predicting information related to antibody function. We initially demonstrate the success of the
model by providing leading results in antibody binding site prediction. The model is amenable to further
fine-tuning for diverse applications to improve our understanding of antibody function.

Proof-of-concept Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
An individual’s B cell receptor (BCR) repertoire encodes information about past immune responses and po-
tential for future disease protection. Deciphering the information stored in BCR sequence datasets will trans-
form our understanding of disease and enable discovery of novel diagnostics and antibody therapeutics. A
key challenge of BCR sequence analysis is the prediction of BCR properties from their amino acid sequence
alone. Here, we present an antibody-specific language model, Antibody-specific Bidirectional Encoder Rep-
resentation from Transformers (AntiBERTa), which provides a contextualized representation of BCR se-
quences. Following pre-training, we show that AntiBERTa embeddings capture biologically relevant informa-
tion, generalizable to a range of applications. As a case study, we fine-tune AntiBERTa to predict paratope
positions from an antibody sequence, outperforming public tools acrossmultiple metrics. To our knowledge,
AntiBERTa is the deepest protein-family-specific language model, providing a rich representation of BCRs.
AntiBERTa embeddings are primed for multiple downstream tasks and can improve our understanding of the
language of antibodies.
INTRODUCTION

B cells are critical to immune protection through their production

of antibodies with specific binding properties. To recognize any

potential antigen, an individual has a vast diversity of B cells with

different B cell receptors (BCRs)—estimated to be as high as

1015 variants.1,2 BCR repertoire diversity is generated through

the process of somatic recombination of V, D (heavy chain

only), and J gene segments during B cell development, followed

by somatic hypermutation during B cell activation. Each BCR

is composed of two heavy-light chain pairs. The heavy chain

and light chain each have three complementarity-determining

regions (CDRs), which largely determine the BCR’s target

specificity.
This is an open access article under the CC BY-N
Characterizing the BCR repertoire of an individual has proven

to be a valuable tool for understanding the fundamental biology

of B cells3 as well as characterizing changes during disease.4–7

There are also clinical applications of BCR repertoire analysis

in finding novel diagnostics and therapeutic antibody discovery.

Most analyses have focused on comparing high-level differ-

ences in aggregate BCR repertoire metrics between cohorts,

such as differences in diversity, number of somatic hypermuta-

tions,8 isotype subclass usage, and V(D)J gene segment us-

age.9,10 To realize the full potential of the data, it will be neces-

sary to understand the specific function of individual BCRs

within the context of the entire repertoire.

It has so far proven challenging to predict a BCR’s binding

specificity and function from its amino acid sequence alone.
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Most work focuses on analyzing the third CDR (CDR3) of the

BCR heavy chain, as it is the greatest determinant of binding;

however, predicting CDR3 structure and function is notoriously

difficult.11–13 Sequence-dissimilar CDR3s can adopt similar

structures14 and recognize similar regions of a target molecule,15

while small changes in CDR3 sequence can change structure

and binding properties.16,17 In addition, BCRs with identical

CDR3 sequences but changes elsewhere can have different

binding properties.18,19

One solution is to use representation learning techniques to

encode BCR sequences as vectors of real numbers or ‘‘embed-

dings.’’ Ideally, the embedding should capture the function of

each BCR and contextualize it within the larger BCR universe.

In addition, the representations can then be used as inputs for

downstream machine-learning models.20 Some of the earliest

forms of BCR representation learning focused on calculating

physicochemical properties of CDR3 sequences, building

k-mer frequencymatrices, or constructing position-specific sub-

stitution matrices.21–25 Representations from these approaches

have previously been used for repertoire classification and anti-

body structure prediction. While interpretable, these methods

depend on hand-crafted features that may miss hidden, or

latent, patterns in the data. Furthermore, these methods are

context free; they consider sub-units of the CDR3 sequence as

being independent and do not consider covariance with the

remainder of the BCR sequence.

Recently, deep-learning techniques have shown great prom-

ise in learning unobserved patterns from amino acid sequences

that relate to their structure and function.26 Neural networks,

such as transformers,27,28 are first pre-trained via masked lan-

guage modeling (MLM) to build a protein language model (LM).

General protein LMs, such as ProtBERT and ESM-1b, can then

be used to generate a distributed, contextual representation

for each amino acid in a protein sequence. The embeddings

from thesemodels then act as a ‘‘warm’’ starting point for various

downstream tasks, such as protein structure prediction and pro-

tein engineering.26,29,30

In natural language processing applications, single language

models can offer superior performance to their multi-lingual

counterparts.31,32 Likewise, protein-family-specific models are

known to outperform general protein models.33–35 Therefore,

we advocate for a BCR-specific LM that focuses on the nuances

of BCR amino acid sequences.

To date, two LMs have been developed for BCRs and anti-

bodies: DeepAb13 and Sapiens.36 DeepAb is a bidirectional

long short-term memory (LSTM) network that is pre-trained on

100k paired BCR sequences from the Observed Antibody

Space.37,38 As sequence embeddings from DeepAb naturally

separate intodistinct structural clusters, they canhelp toproduce

structural predictions. However, it is unclearwhether theDeepAb

embeddings can be harnessed for tasks beyond antibody

structure prediction. Furthermore, LSTMs are typically less per-

formant compared with transformers, in terms of accuracy and

speed.27,28 Sapiens is composed of two separate four-layer

transformer models that were pre-trained on 20M BCR heavy

chains and19MBCR light chains. Sapiens hasbeenused for anti-

body humanization and can propose mutations that are near

equivalent to those chosen by expert antibody engineers. As

with DeepAb, the applicability of Sapiens beyond humanization
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is unclear. Moreover, most protein LMs use at least 12 trans-

former layers;26,29,30 by comparison, Sapiens is shallow, and it

may not capture the full complexity of BCR sequences.

In this work, we propose Antibody-specific Bidirectional

Encoder Representation from Transformers (AntiBERTa), a

12-layer transformer model that is pre-trained on 57M human

BCR sequences (42M heavy chains and 15M light chains). We

demonstrate that AntiBERTa learns meaningful representations

of BCRs, which relate to their B cell origin, activation level, immu-

nogenicity, and structure. We also demonstrate how AntiBERTa

canfit in a transfer-learning framework by usingAntiBERTa repre-

sentations to predict an antibody’s binding site, the paratope.

AntiBERTa improves upon the state of the art for paratopepredic-

tion across multiple metrics, reinforcing the value of a protein-

family-specific representation learning approach. AntiBERTa

thus provides a method to better understand the ‘‘language,’’ or

sequence patterns, of BCRs that encode their structure and

function.

RESULTS

AntiBERTa learns a meaningful representation of BCR
sequences
AntiBERTa is a 12-layer transformer model that is pre-trained on

42M unpaired heavy-chain and 15M unpaired light-chain BCR

sequences. Taking inspiration from natural language processing,

we consider each BCR sequence as a ‘‘sentence,’’ where each

amino acid is a ‘‘token.’’ We consider amino-acid-level tokeniza-

tion to facilitate comparison with other protein LMs and to allow

residue-level downstream predictions. AntiBERTa is based on

the RoBERTa architecture,39 as it allows a more direct compar-

ison to established BERT-based protein language models, such

as ProtBERT and Sapiens.29,36

AntiBERTa is pre-trained using a self-supervised MLM task,

like other transformer-based protein LMs.26,29,36 Briefly, 15%

amino acids within the input BCR sequence are randomly per-

turbed, and the model determines the correct amino acid in

place of these masked positions. This task encourages the

model to develop a contextual understanding of the BCR

sequence. For example, AntiBERTa estimates the probability

that an alanine belongs in IMGT 105, given the sequence context

(see experimental procedures; Figure S1).

Following pre-training, AntiBERTa outputs a distributed

vector representation, or embedding, per residue for each BCR

sequence (see experimental procedures). To visualize the

AntiBERTa embeddings, 1,000 BCR heavy chainswere randomly

selected from a well-characterized public dataset40 and then

averaged over the length dimension before projection by uniform

manifold approximation and projection (UMAP).26,29,41 Despite

only being given BCR sequences and no other information, we

find that the BCR embeddings naturally separate according to

mutational load and the underlying BCR V gene segments used

(Figure 1). Remarkably, there is also good partitioning of BCRs

derived from naive versus memory B cells, suggesting that func-

tionally important information is captured by our model. We

repeated the visualization onmultiple random batches and found

similar separations (Figure S2).

When the same set of BCR sequences are processed via

ProtBERT,29 a general protein transformer model, these
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Figure 1. Representation of 1,000 randomly selected BCR heavy chains

Outputs from the final layer of AntiBERTa (A, D, and G), ProtBERT (B, E, and H), or Sapiens (C, F, and I) are averaged and then projected onto two dimensions via

UMAP. Points are colored according to V gene family (A–C), mutational load (D–F), and B cell population (G–I). The same 1,000 sequences are also projected onto

a two-dimensional manifold by MDS, based on sequence identity (see experimental procedures and Figure S3).
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separations are less distinct. Despite having a smaller dataset

and fewer parameters, our BCR-specific transformer captures

more patterns that are relevant to BCR function compared with

ProtBERT. Furthermore, AntiBERTa has a lower exponentiated

cross-entropy (ECE) for the MLM task (AntiBERTa ECE = 1.43;

ProtBERT ECE = 1.72), suggesting that AntiBERTa produces

higher quality representations of BCRs.

We also embedded the BCR sequences by an existing anti-

body language model, Sapiens.36 While it is an antibody-spe-
cific model like AntiBERTa, it only has four layers compared

with AntiBERTa’s twelve. This reduced model complexity may

explain why Sapiens’ embeddings do not separate BCRs by

mutational load or B cell origin (Figure 1). As a final control, we

projected the same 1,000 BCRs onto a two-dimensional mani-

fold using multi-dimensional scaling (MDS) of the sequences’

pairwise sequence identities. Again, we found that BCRs do

not separate strongly with respect to functional properties by

MDS (Figure S3).
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Figure 2. Representation of 191 non-redun-

dant therapeutic antibodies

Embeddings from the last layer of AntiBERTa (A, C,

and E) and ProtBERT (B, D, and F) are averaged

over the length dimension and projected onto two

dimensions via UMAP. Each point represents a

BCR and is colored by antibody source (A and B),

germline V gene identity (C and D), and ADA score

(E and F). For (A) and (B), only 65 of the 191 anti-

bodies are shown, as they have known source or-

ganism information.43
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We then used AntiBERTa and ProtBERT to embed the

heavy chains from 198 well-characterized therapeutic anti-

bodies.42,43 AntiBERTa is generally able to separate therapeutic

antibodies according to their origin (i.e., chimeric, humanized,

human, or murine), as evidenced by the UMAP. These separa-

tions also coincide with the sequences’ identity to their closest

human germline V gene (Figures 2A and 2B). ProtBERT is also

able to achieve decent separation, though there is a ‘‘fork’’ in

the UMAP. These antibodies also have known anti-drug anti-

body (ADA) response scores; separations in ADA largely corre-

spond to separations by human germline V gene identity

(Figures 2C and 2D). The embeddings offer a potential method

to filter antibodies with high ADA scores and discover safer

therapeutics.

Self-attention can provide clues on structure and
function
One of the major components of transformer-based models, like

AntiBERTa, is its multi-head self-attention mechanism.27

AntiBERTa’s 12 attention heads in each of its 12 layers focus

on different aspects of the BCR sequence (Figures 3, S4, and

S5). The self-attention scores are then used to compute the final,

contextual embedding for each amino acid in the BCR

sequence. Typically, self-attention in AntiBERTa tends to be
4 Patterns 3, 100513, July 8, 2022
directed toward non-germline positions

of the BCR sequence, or between CDR3

positions.

We find that residue pairs with high self-

attention scores can reveal long-range

structural contacts, similar to Sapiens.36

As an example, we embedded the heavy-

chain amino acid sequence of aducanu-

mab, a recently approved therapeutic

antibody binding beta-amyloid. The sixth

attentionhead inAntiBERTa’sfinal layerpla-

ces high self-attention between Tyr37 of

CDR1 and Arg108 of CDR3 (Figures 3 and

S4). These positions were later confirmed

to be a contact within the crystal structure

(PDB: 6CO3). Self-attention may also give

clues toward functionally interesting anti-

body positions; the germline residue Trp57

in aducanumab receives a high level of

attention from other residues within the

heavy chain (Figure S5). This position was

then verified to be part of the paratope.44
When aducanumab is processed by ProtBERT, the self-

attention pattern does not show as strong a relationship

to non-germline or potential paratope positions (Figure S6).

We found that ProtBERT pays attention to the conserved di-

sulfide bridge between Cys23-Cys104,37 while AntiBERTa

does not. This further reflects how AntiBERTa pays more

attention to what is functionally important for specific binding,

as the cysteine pair is almost always invariant for all

antibodies.

We also observe similar patterns in canakinumab and an

anti-CD73 antibody (Figures S7 and S8). Higher self-attention

scores are associated with structural contacts, such as Trp57-

Thr110 in canakinumab and Ala35-Pro58 in the anti-CD73

antibody. Overall, we find that self-attention scores between

pairs of non-adjacent positions in contact are slightly higher

(p < 1e�10; Figure S9).

Paratope prediction using AntiBERTa
Pre-trained LMs provide useful representations for transfer

learning on a wide range of tasks.28 For example, in natural lan-

guage processing, pre-trained word embeddings from BERT

have been fine-tuned for classifying sentences, computing

sentence entailment, and named-entity recognition. Similarly,

protein representations from LMs, such as ESM-1b and



Figure 3. Self-attention heatmap from AntiBERTa’s 12th layer, sixth head, for aducanumab’s heavy chain can show potential structural

contacts

(A) Attention is directed from positions in the rows toward positions in the columns; stronger self-attention is indicated by darker shades of purple. For each

position, we label which positions are germ line (pink), part of the paratope (blue), or the CDR (green). Here, we show attention between positions in the CDRs and

one position before and after each CDR; the full self-attention map is shown in Figure S4. We highlight Tyr37 and Arg108 in orange.

(B) The crystal structure of aducanumab confirmed the contact between Tyr37 and Arg108 (PDB: 6CO3).
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ProtBERT, have been used for secondary structure prediction

and contact prediction.26,29

As AntiBERTa’s representations seemed to capture hints of

BCR function, and self-attention was concentrated on putative

paratope positions, we fine-tuned the model for paratope pre-

diction, akin to named-entity recognition. A rapid, accurate, par-

atope prediction method can shed light on binding properties

and is valuable for therapeutic antibody engineering.45–47 We

predict paratopes in an antigen-agnostic, single-chain manner,

making it ideal for bulk sequencing datasets.47 While we focus

on paratope prediction here, the AntiBERTa model can poten-

tially be fine-tuned for other tasks, such as antibody structure

prediction and humanization.13,36

For each position in the antibody sequence, we predict the

probability that it is part of the antibody’s paratope (see exper-

imental procedures). To evaluate paratope prediction, we

report the precision, recall, F1 score, Matthews’ correlation co-

efficient (MCC), area under the receiver operating characteristic

curve (AUROC), and average precision-recall (APR) scores on a

held-out test set of 90 antibodies (Table 1). We benchmark

AntiBERTa against two other publicly available tools: Parapred

and ProABC-2. Parapred uses an LSTM and convolutional neu-
ral networks (CNNs) to predict paratope positions within the

Chothia-defined CDR loops, plus two residues before and

two residues after the CDRs. ProABC-2 uses CNNs on paired,

full-length antibody sequences to predict paratopes. Both

Parapred and ProABC-2 also predict paratopes in an antigen-

agnostic manner. As additional comparisons, we fine-tuned

ProtBERT and Sapiens to predict paratope positions from

unpaired, full-length antibody sequences (see experimental

procedures).

AntiBERTa predicts paratopes of both CDR and non-CDR po-

sitions, like ProABC-2. For the C1A-C2 antibody (PDB: 7KFX),48

a severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) binder in our test set, AntiBERTa detects Tyr66 in the

framework as a paratope position (Figures 4A and 4B). Likewise,

for the light chain of the 059–152 antibody (PDB: 5XWD),49

another antibody in our test set, AntiBERTa correctly predicts

paratope positions outside of the CDRs (Figures 4C and 4D).

AntiBERTa’s self-attention changes via fine-tuning (Figures 4A

and 4B), suggesting that it adapts its self-attention toward pre-

dicting paratope positions. For instance, attention toward Ile13

is high before fine-tuning, but it is reduced via fine-tuning.

Instead, the model then learns to pays more attention to other
Patterns 3, 100513, July 8, 2022 5



Table 1. Performance metrics of paratope prediction

Precision Recall F1 MCC AUROC APR

Parapred 0.610 0.763a 0.678 0.558 0.889 0.720

ProABC-2 0.648 0.583 0.613 0.575 0.951 0.650

ProtBERT 0.639 0.741 0.686 0.652 0.959 0.701

Sapiens (VH) 0.645 0.637 0.641 0.594 0.928 0.643

Sapiens (VL) 0.655 0.110 0.188 0.250 0.894 0.435

AntiBERTa 0.711a 0.669 0.689a 0.659a 0.961a 0.742a

aThis method had the best performance for this particular metric.
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positions, such as Val2, which was confirmed to be part of the

antibody’s paratope.

Our BCR-specific transformer model outperforms Parapred,

ProABC-2, ProtBERT, and Sapiens across multiple metrics (Ta-

ble 1; Figure 5). AntiBERTa has the highest precision, F1, MCC,

AUROC, and APR, while Parapred has the highest recall. Since

Parapredonlymakes predictions on theChothia-definedCDRpo-

sitions with four extra anchors, we compared the performance of

the five methods on this subset of residues (Table S1). While

AntiBERTa’s recall is higher on the CDRs and their anchors than

across the whole antibody sequence, it is still lower than Para-

pred. This may be due to Parapred being specifically trained on

antibodies with at least five paratope positions, while AntiBERTa

just requires two (one for the heavy chain and one for the light

chain). Effectively, this leads to a more class-imbalanced dataset

and encourages AntiBERTa to make fewer paratope predictions.

Whenbreaking down the predictions by V gene cluster, we find

that precision is not related to a particular V gene cluster or the

amount of structural data. Recall is lower for light chains in gen-

eral, and this does not correlate with the amount of structural

data (Figure S11). Recall is likely lower for light chains as there

are fewer paratope positions in the light chain, and the model

has a more skewed distribution of non-paratope positions in its

training set. Neither precision nor recall are significantly different

between protein and peptide-binding antibodies (Figure S12).
A
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Figure 4. AntiBERTa can predict non-CDR positions that form the para

The framework and CDR regions of the C1A-C2 antibody heavy chain (A and B) an

Observed paratope positions from the crystal structure are highlighted with blue l

in pink.
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DISCUSSION

Natural languages encode higher order concepts, such as

grammar and thought, in the form of text. We interpret the lan-

guage of BCRs as the latent patterns embedded within the

amino acid sequence, which determine an antibody’s structure

and function. Here, we present AntiBERTa, a transformer-based,

BCR-specific LM that learns the language of antibodies.

We demonstrate that embeddings from AntiBERTa reflect

various biologically meaningful aspects of a BCR, such as muta-

tion count, V gene provenance, B cell origin, and immunoge-

nicity, despite not having this information during pre-training. A

key driver of AntiBERTa’s understanding is its multi-head, self-

attention mechanism, which focuses on structurally and func-

tionally important residues within a BCR sequence. Given these

capabilities, we fine-tune the model for paratope prediction to

demonstrate the quality of the representations and find that

AntiBERTa is the best performer across multiple metrics.

Machine learning methods have previously been used to clas-

sify B cells based on the BCR sequence and its features, such as

the CDR3 region’s physicochemical properties.40 While we have

not explicitly predicted B cell subsets using AntiBERTa, its em-

beddings can already separate naive and memory B cells. This

shows the advantages of a transformer approach: the model

learns latent features of BCRs that correspond to various facets

of BCR function, such as its B cell origin. The onus of hand-craft-

ing features that best correlate with BCR origin is effectively

delegated to the pre-training process.

A particular benefit of using transformer-based methods is the

availability of self-attention heatmaps, which can help explain

what the model understands about BCRs. In general,

AntiBERTa’s self-attention focuses on non-germline positions.

We also find that self-attention can hint toward pairs of residues

that contact each other or identify putative paratope positions.

While the current self-attention scores do not always carry a

clear relationship to antibody structure and function, the self-

attention scores may point to latent features that are not yet
tope

d 059-152 light chain (C and D) are outlined in gray and green boxes. (A and C)

etters. (B and D) Predicted paratope positions from AntiBERTa are highlighted
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Figure 5. AntiBERTa outperforms publicly available tools for paratope prediction

(A) Precision-recall and (B) receiver operating characteristic (ROC) curves for paratope prediction by Parapred, ProABC-2, ProtBERT, Sapiens (separate models

for heavy chains and light chains), and AntiBERTa.
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directly relatable to our current intuitions. A more in-depth anal-

ysis of how specific layers and heads correlate with antibody

structure and function, as has been done for general protein lan-

guage models, could be the first step in facilitating interpreta-

tion.50 Furthermore, some of the self-attention can be noisy;

we expect the scores to have sharper focus with more data

and a longer pre-training regime.

AntiBERTa outperformed current paratope prediction ap-

proaches across various metrics, and its performance is fueled

by a shift in its self-attention scores. One advantage of

AntiBERTa is its ability to predict paratope positions outside of

the CDRs, meaning it can be used to inform the engineering

of non-CDR positions. Furthermore, AntiBERTa can predict the

paratopes of unpaired chains, making it suitable for most reper-

toire datasets where only the heavy- or light-chain sequences

are available. In our current analyses,wedidnot apply any thresh-

olds on the predicted paratope probabilities, though we envision

more work in this space to achieve a more precise predictor.

Surprisingly, ProtBERT has the highest recall for the Chothia-

defined CDRs and its anchors. One possible explanation is that

ProtBERT’s pre-training corpus contains non-human BCRs and

other proteins whose binding sites share some physicochemical

similarities to CDR residues, such as T cell receptors. Another

possibility is that there are other proteins with immunoglobulin

folds inProtBERT’spre-trainingcorpus, andProtBERTcandetect

functional loop sequence motifs. Ultimately, this may empower

ProtBERT to detect paratopes, albeit at lower precision.

Currently, AntiBERTa’s paratope prediction is antigen

agnostic. The ability to predict paratopes in an antigen-specific

manner or to be able to predict multiple paratopes for cross-

reactive antibodies is not possible due to limited training data.

Paratope shapes can be plastic,51 and an ideal dataset would

cover multiple antibodies for a single antigen and vice versa.

To our knowledge, most antigens in SAbDab typically have

one unique antibody, except for some antigens, such as the

HIV gp120 glycoprotein and the SARS-CoV-2 spike protein,

where many antibody binders are known, with highly dissimilar

sequences. On the other hand, there are only two antibodies in
SAbDab where the heavy chain and light chain have identical

amino acid sequences yet bind two different antigens. The para-

tope positions are highly similar in these antibodies, giving good

confidence in our approach (Table S2).

For practical reasons, we did not perform a full ablation study

of hyperparameters for pre-training. The 12-layer setup is well

established as a strong baseline for protein language models

and for several fine-tuning applications.26,30 Furthermore, our

comparisons to Sapiens provide a reasonable approximation

on predictive performance at lower model depth. However, we

envision further hyperparameter sweeps in future work. Another

potential avenue of research lies in using alternative, more effi-

cient transformer models, such as the Performer or BigBird,

which would help scale the model to understand complex pat-

terns of BCR sequences.52,53

Throughout this work, we have visualized BCR sequences as

the averaged embedding across the length of the BCR, akin to

ProtBERT and ESM-1b.26,29 Though there are several strategies

to represent full-length sequences,52 we have not explored these

in extensive detail here. The optimal method of embedding full-

length BCRs may depend on the use case of interest, and we

see this as an active area of research in the future.

AntiBERTa offers a high-quality representation of BCR se-

quences that captures aspects of a BCR’s origin, structure,

and function. The embeddings from AntiBERTa also provide a

representation of BCRs that can be leveraged for various down-

stream tasks via a transfer learning paradigm. Specifically, we

show that AntiBERTa representations can fuel paratope predic-

tion capabilities. Beyond paratope prediction, we see AntiBERTa

being able to empower a wider range of tasks relating to BCR

repertoire analysis.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information should be directed to and will be fulfilled by the lead con-

tact, Jinwoo Leem (jin@alchemab.com).
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Table 2. Hyperparameters for AntiBERTa, compared with trans-

formers in the wider literature

AntiBERTa Sapiens ESM-1b ProtBERT

Number of layers 12 4 33 30

Number of attention

heads

12 8 20 16

Embedding dimension 768 128 1,280 1,024

Feedforward layer

dimension

3,072 256 5,120 4,096

Total number of

parameters

86M 569k 650M 420M
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Materials availability

This study did not generate new unique reagents.

Data and code availability

Jupyter notebooks describing how to pre-train and fine-tune AntiBERTa are

available at https://github.com/alchemab/antiberta and deposited to Zenodo:

10.5281/zenodo.6476600. Datasets used to train AntiBERTa (OAS and

SAbDab) are publicly available. The subset of SAbDab used for fine-tuning

AntiBERTa is available in the GitHub repository.
Datasets

Masked language modeling dataset

To pre-train AntiBERTa, human antibody sequences spanning 61 studies were

downloaded from the OAS database37 on 10 March 2021.

Antibody sequences were first filtered out for any sequencing errors, as indi-

cated by OAS. Sequences were also required to have at least 20 residues

before the CDR1 and 10 residues following the CDR3. Finally, sequences

were filtered to have 5–12 residues in the CDR1, 1–10 residues in the CDR2,

and 5–38 residues in the CDR3. This results in a maximum sequence length

of 148 residues.

The entire collection of 71.98M unique sequences (52.89M unpaired heavy

chains and 19.09M unpaired light chains) was then split into disjoint training,

validation, and test sets using an 80:10:10 ratio. In total, the MLM training

set comprised 42.3M heavy chain and 15.3M light chain sequences, while

the MLM validation and MLM test sets each consist of 5.3M heavy chains

and 1.9M light chains. AntiBERTa is a single model that is trained on both

heavy and light chains (Figure S13).

Paratope prediction dataset

To fine-tune AntiBERTa for paratope prediction, human antibody structural

and sequence data were downloaded from SAbDab on 26 Aug 2021.53

X-ray crystal structures of antibody-antigen complexes binding to proteins

or peptides with a resolution of 3.0 Å or better were used. Single-chain Fv

structures and structures with missing residues within two residues of the

IMGT-defined CDRs were omitted. Fourteen unorthodox structures were

manually removed where the annotated antigen was largely in contact with

the framework regions rather than the CDRs (Figure S14; Table S3). Anti-

body-antigen contacts were identified as any heavy atom in an antibody chain

within 4.5 Å of a heavy atom in an antigen chain. We used antibodies with at

least one contact in the heavy chain and one contact in the light chain.

In total, 1,111 redundant heavy-chain and 1,111 redundant light-chain se-

quences were separately clustered at 99% identity using CD-HIT,54 leading

to 469 non-redundant heavy chains and 453 non-redundant light chains.

We then assigned the 922 antibody chains to a V gene cluster by hierarchical

clustering5 and removed antibodies that belonged to a V gene cluster with

fewer than three antibodies (Table S4). For example, IGLV7-43 belongs to

our ‘‘VL3’’ cluster, which only had two antibodies (PDB: 3T2N and 6WH9);

thus, the two antibodies were removed from the set of 922 sequences. In total,

six antibody chains were removed using this method.

Antibody chains within a V gene cluster can have awide variation in the num-

ber of contacts. To address this imbalance, we binned the number of paratope

contacts for each antibody chain per V gene cluster. We then excluded anti-

body chains where the combination of V gene cluster and paratope count

bin had fewer than three members (Figures S15 and S16). For example, there
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are nine antibody chains in the VH4 cluster that have fewer than 15 paratope

positions, while one chain has 20 (PDB: 4G6F). Thus, this antibody chain

was removed. An additional 16 antibody chains were removed by this strategy.

The remaining 900 BCR chains were split into training, validation, and test

sets by an 80:10:10 ratio, ensuring that V gene clusters and paratope count

bins were evenly stratified to avoid any biases in training. In total, there were

720 BCR chains in the training set, 90 BCR chains in the validation, and 90

BCR chains in the test set.

AntiBERTa pre-training

The AntiBERTa model was pre-trained using a modified setup of the original

RoBERTa-base model.39 The vocabulary is composed of 25 tokens: the stan-

dard 20 amino acids and five special tokens (<s>, </s>, <pad>, <unk>, and

<mask>). Each amino acid acts as a token, and no byte-pair encoding was

used. The entire BCR sequence is considered as a sentence. Each BCR is en-

codedwith the start (<s>) and end (</s>) tokens; <pad> tokens are used to pad

out tensors to the maximum sequence length of the mini-batch. <unk> tokens

are used for ambiguous amino acids, such as X.

We allow a maximum length of 150, as it covers the maximum sequence

length in our MLM dataset (148), along with the start and end tokens. Briefly,

the advantage of this is that it covers our training set in OAS, while ensuring

that we minimize the amount of unnecessary padding. This comes at the

expense of sub-optimal batching. Typically, sequence lengths and batch sizes

are chosen to be powers of two so that batches can be evenly divided across

physical processors.

AntiBERTa is pre-trained via MLM, which has been used elsewhere.26,29,36

Briefly, 15% of amino acids are chosen for perturbation. Of these, 80% are re-

placedwith the <mask> token, 10%with the original amino acid, and 10%by a

random amino acid. Themasking ratios have been demonstrated elsewhere to

be optimal, and we retain these in our work.26,28,55

During pre-training, the model predicts the original amino acid in the per-

turbed positions, M (Figure S1). For a sequence S = (s1, s2, . sl) in a batch

B, the MLM loss is

LMLM = � 1

jBj
X
S˛B

X
i˛M

log bpðsi jS MÞ:

The full set of AntiBERTa hyperparameters is described in Table 2. 39 Briefly,

AntiBERTa has 12 layers with 12 attention heads per layer; the hidden dimen-

sion was set to 768, and the feed-forward dimension set to 3072. In total, the

model has 86 million learnable parameters. AntiBERTa was pre-trained for

225,000 steps, which equates to three epochs. The learning rate was warmed

up to a peak learning rate of 1 3 10�4 over 10,000 steps and linearly decayed

thereafter. We used a batch size of 96 across eight NVIDIA V100 GPUs, for a

global batch size of 768.

BCR representations

For a set of n BCR sequences in a batch B = (S1, S2, . Sn), each with

lengths L = (l1, l2, . ln), we use the output from the last layer of

AntiBERTa. The output embedding is a padded three-dimensional tensor,

(n 3 max(L) 3 768).

For visualization of the 1,000 BCR heavy chains,40 we compute the

average embedding across the length dimension to generate a two-dimen-

sional (n 3 768) tensor. Since each batch can comprise different BCR

sequence lengths, we omit contributions from padding tokens. As a compar-

ison, we generated BCR embeddings from the last layer of the ProtBERT

model, a general protein transformer, and from Sapiens, an antibody-spe-

cific transformer model. Briefly, ProtBERT is a 30-layer transformer model

that is trained on a much larger corpus of protein sequences across

UniRef and BFD.29 Sapiens is a four-layer model that is trained on 20M

BCR heavy-chain sequences. The two-dimensional tensors are then pro-

cessed by UMAP, with a minimum of 15 neighbors and a minimum Euclidean

distance of 0.1.41

Finally, we constructed a two-dimensional manifold using MDS of the pair-

wise sequence identities between BCR sequences. The distance between two

BCRs d is simply 1 � sequence identity; in other words,

dðSi ;SjÞ = 1 �
P

p˛PIðSi;p = Sj;pÞ
jPj ;

https://github.com/alchemab/antiberta
http://10.5281/zenodo.6476600
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where Si,p and Sj,p represent amino acids for IMGT position p in sequences Si

and Sj. P is the set of aligned IMGT positions, |P| is the cardinality of the set P,

and I is the indicator function.

For testing the representation capabilities of AntiBERTa, two datasets were

used: a BCR repertoire dataset containing information on which B cell type

each BCR sequence was derived from40 and 191 non-redundant therapeutic

antibodies from TheraSAbDab42 with ADA scores. Of these, 65 antibodies

also have known source information.43

Paratope prediction by AntiBERTa

Paratope prediction was framed as a binary token classification task. For each

position in the antibody sequence, AntiBERTa predicts the probability that the

position is part of the paratope. This is done by adding a binary classifier

‘‘head’’ on top of AntiBERTa’s 12 layers (Figure S17). A similar procedure

was implemented for fine-tuning ProtBERT for paratope prediction. As Sapi-

ens is composed of two separate transformer models for the heavy chain

and light chain, respectively, we fine-tune each model for paratope prediction

on the heavy chain and light chain. Sapiens’ predictions are reported for each

chain separately. For all transformer-based paratope prediction models, the

predicted class for each position (paratope versus non-paratope) is the class

assigned the highest probability.

The task was evaluated using six metrics: precision, recall, F1 score,

AUROC, APR, and MCC.

Hyperparameters for paratope prediction were estimated by fine-tuning the

model over various orders of learning rate magnitude (from 1 3 10�6 to

1 3 10�3) and over different scheduling regimes (constant learning rate and

5% or 10% warmup with linear decay). The optimal setup was decided by

the training configuration that yielded the highest APR on the validation set. Ex-

periments were repeated over three seeds to check for variance in the results.

Paratope prediction by AntiBERTa was compared with a PyTorch imple-

mentation of Parapred.45 Parapred predictions with a probability higher than

or equal to 0.67 were assigned as the paratope. Sequences were also pro-

cessed by ProABC-2;46 since ProABC-2 does not handle unpaired chains,

we used paired sequences as input. For example, only the heavy chain of

PDB: 7KFX is in our test set; for prediction, we submitted both the heavy-

and light-chain sequences of the antibody but only use the heavy-chain pre-

dictions for benchmarking. For ProABC-2 predictions, positions with a proba-

bility higher than or equal to 0.40 were assigned as the paratope.46

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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