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The artificial intelligence program AlphaFold 2 is revolutionizing the field of protein structure
determination as it accurately predicts the 3D structure of two thirds of the human
proteome. Its predictions can be used directly as structural models or indirectly as
aids for experimental structure determination using X-ray crystallography, CryoEM or
NMR spectroscopy. Nevertheless, AlphaFold 2 can neither afford insight into how proteins
fold, nor can it determine protein stability or dynamics. Rare folds or minor alternative
conformations are also not predicted by AlphaFold 2 and the program does not forecast
the impact of post translational modifications, mutations or ligand binding. The remaining
third of human proteome which is poorly predicted largely corresponds to intrinsically
disordered regions of proteins. Key to regulation and signaling networks, these disordered
regions often form biomolecular condensates or amyloids. Fortunately, the limitations of
AlphaFold 2 are largely complemented by NMR spectroscopy. This experimental
approach provides information on protein folding and dynamics as well as
biomolecular condensates and amyloids and their modulation by experimental
conditions, small molecules, post translational modifications, mutations, flanking
sequence, interactions with other proteins, RNA and virus. Together, NMR
spectroscopy and AlphaFold 2 can collaborate to advance our comprehension of proteins.

Keywords: AlphaFold, NMR spectroscopy, Intrisically disordered proteins, Rare conformations, posttranslational
modifications

BACKGROUND

In 1961, Anfinsen demonstrated that what determines the three dimensional structure of a protein is
encoded in its amino acid sequence (Anfinsen et al., 1961). This raised interest in “decoding” since
predicting the structure from sequence would be much simpler than undertaking the laborious effect
to solve the 3D structure by X-ray crystallography, which in those days was just beginning to reveal
the first protein structures (PERUTZ et al., 1960). Interest in the protein folding problem increased
when rapid sequencing methods were introduced (Sanger et al., 1977).

One key insight into how proteins fold was provided by Levinthal, who realized that if protein
folding were to occur by a random sampling of conformers, then even the folding of a small protein
would require more time than the age of the Universe (Levinthal, 1968). Nevertheless, proteins fold
quickly, often within seconds. Scientists quickly deduced that Levinthal’s paradox meant that protein
folding must involve intermediates which greatly reduce the conformational space that must be
searched. Characterizing these intermediates’ structures was seen as a way to solve the problem.
Whereas this presented technical challenges as protein folding is highly cooperative and folding
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intermediates are generally heterogeneous and sparsely
populated, one elegant approach involved using proline
isomerization to slow the conversion of intermediate species
into fully folded protein and H/D labeling coupled with NMR
spectroscopy afforded the identification of which elements of
secondary structure fold first (Udgaonkar and Baldwin, 1988). A
complementary ingenious method based on site-directed
mutagenesis and kinetics revealed the order of side chain
structurization during folding (Matouschek et al., 1989).
Although these investigations provided insight into how
proteins fold, no general solution of the protein folding
problem was achieved.

With the development of accurate energy functions for protein
folding, it became possible to directly simulate the folding process
of very small proteins using molecular dynamics methods and a
special purpose, massively parallel computer chip (Lindorff-
Larsen et al., 2011). This success confirmed the importance of
nascent structural elements in funneling the folding process,
nevertheless, it is too slow for larger proteins or proteome-
level applications.

In contrast to these physicochemical based methods, other
scientists sought to use a more biological approach based on
garnering structural inferences from evolutionarily related
protein sequences (Bashford et al., 1987). This led to the
successful modeling using sequences homologous to a known
structure (Fiser, 2010). However, the quality of the structural
model varies and depends on how similar a sequence is to that of
the known structure.

Further advances have come from the field of protein design,
which has produced new folds with novel enzymatic functions
(Siegel et al., 2015). The results of protein design also revealed
new insights into how proteins fold (Baker, 2019), in particular: 1)
the speed of folding increases when contacts are closer together
along the sequence, 2) the fold is dictated by thermodynamics,
not kinetics, 3) designed proteins can be much more stable than
natural ones, and 4) the diversity of natural protein folds is small
compared to what is possible. Despite this impressive progress,
the problem of predicting protein structure from sequence
remained unsolved.

AlphaFold 2 Successfully Predicts Protein
Tertiary Structure From Sequence
Since 1994, a community experiment called “CASP” (critical
assessment of methods for protein structure prediction) has
provided a proving ground for algorithms trying to solve the
protein folding problem (Moult et al., 1995). Researchers are
given protein sequences unrelated to those of known structures.
Then, they attempt to predict their structures while other groups
experimentally determine the structures using X-ray
crystallography or NMR spectroscopy (Figure 1A). Finally, the
accuracy of the predictions are independently assessed. As
described in detail in an excellent, recent account (Pearce and
Zhang, 2021) one group of CASP participants researchers
attempted to model the target proteins based on homology
with known structures whereas a second group tried to
construct protein structure models based on the

physicochemical principles. From the mid-1990s until 2016,
the accuracy of the predictions slowly improved, especially for
structures considered to be moderately challenging, whereas
difficult proteins remained intractable (Kryshtafovych et al.,
2021) (Figure 1B). In 2018, and especially in 2020, however,
significant improvements were seen thanks to the development
and application of deep learning and artificial intelligence
algorithms, particularly AlphaFold 2 (Kryshtafovych et al.,
2021). AlphaFold 2 uses both protein sequences and structures
as input to a multi-layered neural network (Jumper et al., 2021).
Multiple sequence alignments reveal amino acids which co-
evolve, inferring that they are in contact. For example, a
contact could be inferred if two positions were found to have
a statistical preference for residues that interact favorably, such as
Glu and Lys. AlphaFold 2 also includes Amber refinement (Duan
et al., 2003) as a last step. Remarkably, the program’s structural
models accurately predict both backbone and side chain positions
with a precision ≤ 1Å (Jumper et al., 2021). In CASP14, some of
the test structures were determined by NMR spectroscopy; one
structure predicted with AlphaFold 2 actually agreed better with
the NMR spectral data than the structure obtained from standard
NMR data analysis and structure calculation (Huang et al., 2021).
However, AlphaFold 2 did not succeed with intrinsically
disordered proteins (Huang et al., 2021). A further strength of
AlphaFold 2 is its speed; the prediction of a 400 residue protein
structure requires only about one GPU minute (Jumper et al.,
2021). This has enabled the method to be applied to whole
proteomes of proteins and the structures predicted by
AlphaFold 2 for the human proteome and 20 other proteomes
are now publicly available (Tunyasuvunakool et al., 2021) at
https://alphafold.ebi.ac.uk. High confidence predictions are
reported for two-thirds of the proteome. While few percent of
the regions or proteins predicted with low/very low confidence by
AlphaFold 2may be novel folds; the great majority corresponds to
intrinsically disordered regions. The AlphaFold 2 output for a
representative protein, TDP-43, with contrasting high
confidence, folded domains and low confidence, disordered
regions, is shown in Figure 2.

AlphaFold 2 and Membrane Proteins
Membrane proteins have always challenged structural biologists.
Although AlphaFold 2’s performance on water-soluble globular
proteins is impressive, there are some doubts regarding its
capacity to predict the structure of membrane proteins. Would
the small fraction of membrane proteins in the PDB database (less
than 3% of the total (Li et al., 2021) and https://blanco.biomol.uci.
edu/upstruc), which was used to train AlphaFold 2, be sufficient
for the program to capture concepts about their structures? Also,
could AlphaFold 2 handle mobile protein regions which extend
beyond the membrane proteins into the aqueous phase?
Moreover, in a recent elucidation of a novel membrane
protein called ChRmine, some structural features were
reported to be mispredicted by AlphaFold 2 (Kishi et al.,
2022). However, in a thorough retrospective study (Hegedűs
et al., 2022), which used new membrane protein structures
reported after the optimization and launch of AlphaFold 2, the
programwas found to be likely to perform as well with membrane
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proteins as with water soluble proteins. For both classes of
proteins, disordered regions are modeled with low confidence
and for the former they are sometimes incorrectly threaded
through the membrane. Moreover, performance is worse when
the membrane thickness is small, as was the case for ChRmine.
Nevertheless, the overall performance of AlphaFold 2 on
membrane proteins is excellent and it is particularly
impressive considering that AlphaFold 2 training did not
include an explicit lipid bilayer. Even homodimeric membrane
proteins are reported to be correctly modeled, when inputted into
the program as two copies of the monomer sequence connected
by a linker sequence. Considering that membrane proteins
represent less than 3% of PDB structures but compose over
27% of the proteome (Almén et al., 2009), the ability of
AlphaFold 2 to accurately predict membrane protein
conformations represents an important advance in Structural
Biology.

JMB Special Issue on AlphaFold 2. . . TLDR
Due to its profound impact on Biochemistry and Structural
Biology, AlphaFold 2 has been the subject of commentary by
authorities in the special volume edited by Serpell, Otzen and
Radford (Serpell et al., 2021) of J. Mol. Biol., which appeared in
October of 2021. Their main points are summarized in the
following paragraphs.

A. Fersht compared and summarized Machine Learning (ML)
programs for chess and Go to AlphaFold 2 (Fersht, 2021).
Compared to older chess programs, such as Deep Blue which
defeated Kasparov in the 1990s by a brute force approach of
testing myriads of possible moves, newer ML programs are
different. They master games by studying old games and
playing them themselves. A key “sea change” moment for ML
occurred in 2016 when the ML Go program “Alpha Go” invented
a completely novel moves, some of which was seen at the moment
as errors but proved to be strokes of genius as highlighted in the

FIGURE 1 | (A) Work flow of CASP. (B) Remarkable recent improvement in protein structure prediction. The GDT_TS score is a multi-parameter measure of the
accuracy of the structural predictions. Scores over 0.9 are considered to be accurate and highly precise (ref. 13).
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documentary movie AlphaGo (https://www.youtube.com/watch?
v=WXuK6gekU1Y). Fersht notes AlphaFold 2 is an especially
impressive achievement considering that for games like chess or
Go, it was possible to program the rules, however for protein
structure, AlphaFold 2 had to infer indirectly the rules from the
protein sequences and structures. Fersht noted that while some
professional chess players retired in the face of superior ML chess
programs such as Alpha Go Zero, others use these programs as
tools to better their game. Fersht proposes that we proteinologists
follow their example and use AlphaFold 2 as a tool for protein
design.

This thread is continued by D. Woolfson (Woolfson, 2021),
who pointed out that α-helices are widely used in protein design
because they are self-contained structural elements. He also
emphasized the importance of “negative design”, that is, to
disfavor unwanted conformations, in creating new protein
structures. Considering that protein design has shown that the

“space” of possible folds is much greater than what is observed in
natural proteins, Woolfson points out that it will be interesting to
see if AlphaFold 2 can “predict” the conformation of designed
proteins whose structures are very different from those found in
the protein database. The ability of AlphaGo to invent newmoves
in the game Go suggests AlphaFold 2 may have similar success in
novel protein design. Other challenges for the future of protein
design mentioned by Woolfson (Woolfson, 2021) include
developing novel binding sites, catalysts and allostery.

M. K. Higgens addressed how and whether AlphaFold 2 can
help advance structural biology questions related to pandemics
such as SARS-CoV-2 (Higgins, 2021). Higgens points out that
AlphaFold 2 is probably not the best tool for predicting how the
mutations present in different strains affect the conformation of
key viral proteins. For example, for the SARS-CoV-2 spike
protein, during the development of the highly successful
mRNA vaccines, it was key to develop an mRNA that coded a

FIGURE 2 | AlphaFold 2 structural model of human TDP-43. (A) Cross-eyed stereo view of the AlphaFold 2 output (https://alphafold.ebi.ac.uk/entry/Q13148) for a
representative human protein, TDP-43. As defined by a color code panel (B) the protein contains well folded N-terminal (appearing on the left) and two RRM domain
(center) followed by a long, poorly predicted region. The former are in good agreement with their NMR solution structures (Mompeán et al., 2016) (Lukavsky et al., 2013).
The latter is known to be disordered but does contain a partly populated helix approximately in the position predicted with low confidence (yellow) by AlphaFold 2.
The expected positional error panel (C) shows dark green patches for the three domains, indicating that they are well defined. Note that the green shading in weak
between the N-terminal domain (residues 1-80) and the RRM domains (residues 103-260). This means that their inter-domain configuration is not well defined. By
contrast, the green shading between the two RRM domains (residues 103- 175 and 195-260) is darker, indicated that their relative orientation is better defined.
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mutant spike protein that highly stabilized the “closed” form and
not the post-fusion “open” form (Fauci, 2021). This is an issue
that is thought to be challenging for AlphaFold 2, but there are
other programs which are especially designed to predict the
impact of mutations (for an example, see (Goldenzweig et al.,
2016)). Higgens further remarked that AlphaFold 2 is probably
not well suited to address the effect of glycosylation, which can
modulate viral protein function andmask them from the immune
system or to viral proteins fragmenting and then to adopting
alternative conformations to perform distinct functions.

About a third of the human proteome is predicted with low or
very low confidence by AlphaFold 2. K.M. Ruff and R. V. Pappu
(Ruff and Pappu, 2021) pointed out that it is now widely believed
that almost all these low/very low confidence regions are
intrinsically disordered, with the remaining 1–2 % being well
folded proteins which are mispredicted by AlphaFold 2. In our
laboratory, we have found that AlphaFold 2 does not correctly
predict the structure of a glycine-rich protein which adopts well
folded polyproline II helical bundle (Mompeán et al., 2021)
(Figure 3). Nonetheless, the regions marked by AlphaFold 2
as low/very low confidence are almost always disordered. This
makes AlphaFold 2 one of the best algorithms for predicting
disordered domains or proteins. Since AlphaFold 2’s approach is
completely different from those of other disorder predictors, this
strongly suggests that in the future improved hybrid methods can
be developed. Profs. Ruff and Pappu also correctly point out that
the extended spaghetto representation of low confidence regions
is not an accurate representation of a disordered protein for a
couple of reasons (Ruff and Pappu, 2021). First, it is well known
that the disordered state ensemble is populated by a large number
of transient conformations, not one extended structure. Secondly,
the radius of gyration of the AlphaFold 2 representation is not
accurate since many disordered regions show a wide variation of
radii of gyration as shown by SAXS measurements (Ruff and
Pappu, 2021). Disordered regions and proteins frequently adopt
compact states especially when they undergo liquid/liquid phase
separation. Thirdly, AlphaFold 2 always “bets on the favorite
horse” so it does not serve to detect minor populations of
structure or rigid conformations within a disordered protein,
or zones that may fold under certain conditions or upon binding
other proteins.

In their articles, B. Strodel (Strodel, 2021) and S. Ventura and
coworkers (Pinheiro et al., 2021) described the challenges for
AlphaFold 2 to address protein aggregation and amyloid
structures. This is difficult for AlphaFold 2 for three reasons.
Firstly, a large proportion of protein sequences can adopt an
amyloid structure (Fändrich et al., 2001). This undermines the
analysis of sequence data to obtain structural inferences. This is
exacerbated by many amyloidogenic sequences being low
complexity, consisting of stretches of a few different residues
or just one residue, such as polyglutamine. Secondly, for the many
amyloids which are pathogenic, not functional, their structures
are decoupled from natural selection. This means that their
sequences evolve in a more random way and can not provide
structural inferences. Ventura and his team insightfully point out,
however, that for functional amyloids, structural clues from
sequence could be obtained. Thirdly, amyloids exhibit

polymorphism, with the same sequence being capable of
adopting diverse amyloid structures with different pathological
outcomes, such as the distinct Tau amyloid structures seen in AD,
FTD and “boxer’s dementia” (Shi et al., 2021). The study of the
bases of these distinct amyloid structures is still an active and
growing field (Shi et al., 2021) (Lövestam et al., 2022). B. Strodel
also advanced that many of these gaps in AlphaFold 2’s capacities
can be filled by molecular dynamics (Strodel, 2021). Finally,
Ventura and coworkers noted that most predictive algorithms
of amyloid forming stretches look for partially exposed
hydrophobic segments, but buried hydrophobic segments in
folded proteins can also form amyloid if they become exposed.
Predicting such hidden amyloidogenic segments accurately relies
on having a precise protein structure. By providing more precise
protein structural models, Ventura and coworkers predict that
AlphaFold 2 could be harnessed to improve the prediction of
amyloid formation (Pinheiro et al., 2021).

Other computational approaches can also be applied to extend
AlphaFold 2 structural models. For example, Normal Mode
Analysis, which treats a protein structure as an oscillating
system moving sinusoidally about a ground state, is
computationally inexpensive and can reveal the effects of
ligand binding and allosteric states (Wako and Endo, 2017).
By contrast, Monte Carlo approaches probe protein structure
through random sampling and statistical analysis. They can
provide information on thermodynamics and folding kinetics
of individual residues (Heilmann et al., 2020). Other Monte Carlo
experiments have been used to characterize the conformational
ensemble of intrinsically disordered proteins (Ciemny et al.,
2019).

NEW HORIZONS

Protein electrostatics is another important area where AlphaFold
2 has been combined with another method to achieve advances.
Alone, AlphaFold 2 does not predict the pKa or charged state of
the titratable residues like Asp, His or Glu. This information is
very important for assessing electrostatic interactions, solubility
and binding to macromolecules, substrates and drugs, but
experimental pKa measurements are generally laborious
(Laurents et al., 2003). Fortunately, a rather successful
empirical method for estimating pKas is available called
PropKa (Li et al., 2005); it uses a protein 3D structure and
takes into account factors like burial, which tends to favor the
neutral state and the proximity of other charged groups to
calculate approximate pKa values. Thanks to AlphaFold 2, the
availability of accurate 3D structures has now enabled the
complete calculation of all titratable residues in the whole
human proteome (Chen et al., 2022).

AlphaFold 2 and Protein Complexes
Although AlphaFold 2 was developed to predict monomeric
protein structures, in many cases it can be tricked into
calculating the structure of dimers. This is done by putting
both protein sequences into the same input file separated by a
dummy sequence that acts as a flexible linker (Bryant et al., 2022);
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FIGURE 3 | Chiaroscuro in AlphaFold 2 prediction of polyproline II helical bundle proteins. The snow flea antifreeze protein (sfAFP; PDB 3BOG) structure as solved
by X-ray crystallography (Pentelute et al., 2008) is shown in two orientations in panels (A,B)with the chain colored in a rainbow blue to red spectrum from the N-terminus
to the C-terminus. In panels (C–G), five AlphaFold 2 structural models are shown for the sfAFP protein over a dark gray background. Whereas some polyproline II-like
extended conformations are seen in structures shown in panels (E,F), overall the method does not succeed in predicting sfAFP’s structure. By contrast, the
essentially correct AlphaFold 2 structural model of the E. coliObg GTPase is shown in panel (H). The ribbonmodel is colored from blue (very high confidence) to red (very
low confidence). The polyproline II helical domain, colored blue, is the region predicted with the highest confidence throughout the entire structure.
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the latest on-line versions of AlphaFold 2, such as the colab
notebook AlphaFold.ipynb, allow multimer structures to be
predicted by separating the PDB filenames by colons. This
approach works well when two or a few proteins interact like
a faithful matrimony so that the residues lining the binding
surface undergo co-evolution. However, when a protein has
many binding partners, inference from multiple sequence
alignments and co-evolution becomes blurred, impacting the
prediction. Currently, research is underway to combine
AlphaFold 2 with experimental methods like cryoelectron
microscopy (CryoEM, vide infra), or other computational tools
such as RoseTTAFold developed by D. Baker and his laboratory
(Humphreys et al., 2021) to predict the structure of protein
complexes. In particular, the combination of AlphaFold 2 with
alternative multiple sequence alignments has been recently
reported by A. Elofsson and his team to be the best approach
for predicting heterodimeric protein complexes and
discriminating non-binders (Bryant et al., 2022).

AlphaFold 2 Complements Experimental
Approaches For Structure Determination
AlphaFold 2 can enhance low andmedium resolution biophysical
methods. By providing highly accurate structural models,
AlphaFold 2 could aid the interpretation of circular dichroism
or fluorescence spectra. Imagine, for example, a protein with
three Trp residues which shows fluorescence spectral changes
upon ligand binding. By revealing that two Trp residues are
completely buried and that the third is on the surface, AlphaFold
2 could putatively identify which Trp is at the binding site.

For crystallography, structural models afforded by AlphaFold
2 can be utilized to calculate phases by molecular replacement to
solve protein structures using experimental X-ray diffraction data
(Millán et al., 2021), and represents a moderate improvement
relative to current protocols based on homology (McCoy et al.,
2022). In particular, for 34 test cases, AlphaFold 2 derived
molecular replacement phases led to the successful elucidation
of 31 structures; the cases where it did not work involved proteins
with long α-helices with small kinks that gave rise to large
displacements (McCoy et al., 2022).

Cryo-EM excels at determining the structure of enormous
protein complexes. Although improving, its resolution is often in
the 3–4 angstrom range and can vary throughout a large
structure. In these cases, as exemplified by the very recent
elucidation of the large multidomain non-structural protein 2
(NSPS 2) from SARS-CoV-2 (Gupta et al., 2021), or modeling of
the truly gigantic nuclear pore complex (Mosalaganti et al., 2021),
AlphaFold 2 can serve as a useful complement by providing high
resolution structural models which can be fit into the cryoEM
electron density map. Taking this line of research one step
further, F.J.B. Bäuerlein and W. Baumeister propose
combining AlphaFold 2 structural models with cryoEM
tomography results for “visual proteomics” (Bäuerlein and
Baumeister, 2021), which integrates high resolution and
medium resolution data from different approaches to provide
a holistic view of organelles and cellular machinery. Besides
cryoEM, other methods like cryo-electron tomography, which

can provide medium (up to 4–5 Å) resolution protein structures
in an unpurified cellular context (Ni et al., 2022), and cryoEM
microcrystal electron diffraction, which yields high resolution
structures of proteins from crystals far too small for standard
X-ray diffraction methods (Nannenga and Gonen, 2019), are
maturing rapidly.

Whereas X-ray crystallography and CryoEM obtain data on
proteins in highly non-physiological conditions; namely
extremely low temperatures and/or trapped inside crystals,
NMR spectroscopy can provide high resolution structural data
under near physiological conditions of pH, concentration and
temperature. Therefore, as pointed out by M. Zweckstetter, it is
important to use NMR spectroscopy to assess how accurately
AlphaFold 2 structural models represent the structure of proteins
in solution (Zweckstetter, 2021). For three small, stable, well-
folded proteins, excellent agreement was found for the NMR
solution structures and the AlphaFold 2 structural models
(Zweckstetter, 2021). By contrast, another recent study
suggested that for many proteins, AlphaFold 2 structures are
generally more precise and accurate than those solved by NMR
spectroscopy (Fowler and Williamson, 2022). In particular,
proteins with long loops that tend to yield few constraints,
such NOEs, for NMR structural calculations are generally
excessively floppy and are better determined by AlphaFold 2.
However, for about 3% of the 904 cases studied, NMR
spectroscopy produced superior results by detecting small
elements of secondary structure or kinks in α-helices that are
missed by AlphaFold 2 (Fowler and Williamson, 2022). NMR
spectroscopy is also better at characterizing rare or alternative
conformations or disordered regions as will be discussed in more
detail below.

In assessing the relative accuracy of AlphaFold 2 and NMR
structures, it is important to consider that AlphaFold 2 draws
much insight from the PDB, which is dominated by X-ray crystal

FIGURE 4 | AlphaFold 2. Strengths, weaknesses and future directions.
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structures (92% of the total) compared to NMR (8%). The very
cold temperatures typically used by X-ray crystallography rigidify
protein structures (Tilton et al., 1992), especially the loops (Tilton
et al., 1992). Moreover, crystal packing tends to stiffen loops and
limit their conformational diversity (Eyal et al., 2005). This might
bias AlphaFold 2 structural models to have overly rigid loops. To
address this issue, Williamson and coworkers recently proposed
comparing the flexibility of a protein calculated from its backbone
1HN, 15N, 13Cα, 1Hα, 13C, and 13Cβ nuclei to the flexibility
calculated from the protein structure using mathematical
rigidity theory (Fowler et al., 2020). They found that whereas
X-ray crystal structures tend to model loops too rigidly, the loops
in NMR structures are too floppy. These findings should be useful
to fine tune the definition of loops in future versions of AlphaFold
and other ML protein prediction programs.

Taken together, these commentaries suggest there is some
broad agreement on the AlphaFold 2’s strengths, its weaknesses
and the new horizons it opens up, which are summarized in
Figure 4.

NMR Spectroscopy Can Help With
AlphaFold 2’s Shortcomings
In the previous paragraphs, ways that AlphaFold 2 could advance
NMR spectroscopy and other structural biological methods were
described. Regarding the weaknesses of AlphaFold 2, some of
them, such as the prediction of protein complexes and the
prediction of highly unusual folds, may well be overcome in
the next few years. However, four weaknesses seem to be more
difficult for AlphaFold 2, or ML in general, to overcome. These
are: 1) the prediction of folds that populate only a small fraction
of a conformational ensemble, 2) the impact of post translational
modifications, 3) the prediction of interaction with ligands and 4)
the prediction of partially populated structure in intrinsically
disordered proteins. Fortunately, these problems can be
addressed using NMR spectroscopy.

As mentioned previously, AlphaFold 2 always bets on the
winning horse, meaning that it predicts the most likely structure.
However, protein molecules are constantly sampling alternative
conformations and even unfolded states as their conformational
stability is marginal (Pace and Hermans, 1975). These alternative
conformations can be subtly different, such as the tense and
relaxed conformations of hemoglobin with distinct oxygen
affinities (Figure 5A) or more notorious, like the apo- and
Ca++-bound forms of calmodulin (Figures 5B,C). The distinct
conformations of these proteins is physiologically vital, but
AlphaFold 2 only predicts one of them (Figure 5). X-ray
crystallography (Puius et al., 1998) and NMR spectroscopy
(Zhang et al., 1995) (Kainosho et al., 2006) are able to
characterize alternative conformations.

Rare conformations can also be important in health and
disease. NMR-monitored hydrogen/deuterium (H/D) exchange
provided the first way to detect and characterize sparsely
populated intermediates forming during protein folding
(Udgaonkar and Baldwin, 1988). H/D exchange measurements
can also be used to probe slow conformational changes, like the
unfolding and refolding of α-helices and β-strands (Mayo and

Baldwin, 1993) (Skinner et al., 2012) as well as to measure protein
conformational stability (Huyghues-Despointes et al., 1999).
Protein H/D exchange can also be measured by mass
spectrometry (Wales and Engen, 2006). Compared to NMR,
mass spectrometry is not a real time experiment, but it can be
automated and a 15N-labeled sample and an assigned 1H-15N
HSQC spectrum are not prerequisites.

In the last 15 years, a new series of NMR experiments have
been developed, i.e., dark state exchange saturation transfer, Carr-
Purcell-Meiboom-Gil relaxation, chemical exchange saturation
transfer, paramagnetic relaxation enhancement, which reveal
conformational populated to a few percent forming under
different time scales (Sekhar and Kay, 2013) as well as residual
dipolar couplings which show the relative orientation of segments
(Zweckstetter, 2021). These methods are being used to
characterize conformations with a small population making a
big impact in enzymatic action (Sekhar and Kay, 2013), ion-
channel regulation (Bernardo-Seisdedos et al., 2018) and amyloid
formation (Fawzi et al., 2011). If the results from these NMR
experiments are deposited in well-curated databases, it might
eventually be possible to apply ML and use them to obtain
correlations with AlphaFold 2 predicted structures with sub-
optimal scores. For example, AlphaFold 2 models could be
used to initiate MD simulations or related computational
methods to sample rare conformations of biological interest.
In this way ML methods could be leveraged to predict and
identify rare structures.

Post translational modifications (PTM) are quite common in
proteins; over 10% proteins are phosphorylated and another 10%
plus are glycosylated (Khoury et al., 2011). PTMs are also quite
diverse; over 400 different types of modifications are known
(Ramazi and Zahiri, 2021). Protein structure can be strongly
impacted by these modifications. For example, the
phosphorylation of one serine residue in the RNA-binding
K-homology splicing regulator protein (known to impact
interactions with partners and mRNA degradation) was found
by NMR spectroscopy to act by provoking the unfolding a key
domain (Díaz-Moreno et al., 2009). Glycosylation is probably the
most complex class of PTMs due to the great number of different
sugars and branching patterns. In SARS-CoV-2, both the spike
protein and its receptor protein are glycosylated and NMR
spectroscopy has revealed the identity and diversity of their
oligosaccharide chains (Lenza et al., 2020). For
phosphorylation and glycosylation as well as other PTMs,
AlphaFold 2 unfortunately does not consider their impacts on
protein structure. However, there are a score of databases on
protein PTMs and computational tools for predicting PTMs
(Ramazi and Zahiri, 2021). Therefore, once sufficient
knowledge on how PTMs affect proteins is acquired from
NMR spectroscopy and other experimental methods such as
mass spectrometry, it may eventually become possible to
create new algorithms to forecast such impacts. These new
algorithms might then be applied to AlphaFold 2 generated
structures and PTM databases to achieve a holistic approach
to protein structure and PTM prediction.

The pharmaceutical industry uses protein structures as a
starting point for screening compound libraries to identify
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ligands as lead compounds for drug development. The
enormous increase in accurate protein structures provided
by AlphaFold 2 will certainly stimulate these efforts,
however, enzyme active sites tend to “break the protein
folding rules” and have unusual conformations (Mullard,
2021). This casts doubts on the utility of AlphaFold 2 for
drug discovery (Mullard, 2021). One application of NMR
spectroscopy is to determine protein structures. It is
especially useful for small proteins while studies of larger
proteins becomes tedious and expensive as larger magnets,
deuteration and selective methylation are necessary to
overcome signal overlap and resonance broadening from
slow tumbling (Frueh et al., 2013). A second application of
NMR, which is gaining in importance, is to detect and
characterize the binding of drug-like ligands.

In a first round of screening experiments, 1D 1H NMR
experiments can be performed on a mixture of several binding
candidate molecules in the presence of dilute, unlabeled protein.
These experiments detect changes in the chemical shift and
resonance width of the ligands or in their dynamics, as a
compound bound to a protein will show faster transverse (T2)
relaxation, or in their diffusion rate, since a small molecule united
to a larger protein will diffuse more slowly (Hajduk et al., 1997).
Another powerful approach is saturation transfer difference
(STD) NMR spectroscopy, wherein a large molecule is excited
selectively and then some of the magnetization is transferred to
the bound ligand. In many cases, when binding is not too tight or
too weak, the dissociation constant and the part of the ligand that
binds can be determined (Walpole et al., 2019). The
WaterLOGSY NMR approach transfers magnetization from

FIGURE 5 | AlphaFold 2 overlooks alternative conformations. (A) The human hemoglobin α-subunit in the tense (cyan, PDB 1VWT) and relaxed (green, PDB 1RVW)
forms solved by X-ray crystallography (Puius et al., 1998) superimposed on the AlphaFold 2 predicted structure (pink, https://alphafold.ebi.ac.uk/entry/P69905 ).
Despite no heme group or water molecules being present in the AlphaFold 2 input, the correct structure is computed with an RMSD of < 0.5 angstroms. (B) Calmodulin
contains two well folded domains connected by a long, unstable α-helix. Bending in the central α-helix of the AlphaFold 2 model (https://alphafold.ebi.ac.uk/entry/
P0DP23) leads to large RMSD values relative to the X-ray crystallography structure of the Ca++-bound form of calmodulin (PDB 3CLN) (Babu et al., 1988). (C) NMR
solution structures reveal that the central α-helix is disordered in the absence of Ca++ provoking significant conformational diversity which is highly relevant for the
protein’s biological function (Zhang et al., 1995) (Kainosho et al., 2006).
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water to protein and then to ligand, thus revealing changes in
solvent accessibility of the free versus protein bound ligand
(Raingeval et al., 2019). By performing all these fast 1D 1H
based NMR experiments, up to five different lines of evidence
for binding can be quickly obtained. Once a ligand is identified by
these fast methods, binding can be further corroborated and the
binding site in the protein can be mapped using 2D 1H-15N
HSQC NMR spectroscopy. This experiment requires an assigned
1H-15N HSQC spectrum and also serves to study protein/protein
or protein/nucleic acid interactions (Zuiderweg, 2002).

In addition to the nuclei (1H, 13C and 15N ) which are typically
observed in NMR studies of proteins, two other spin ½ nuclei, 19F
and 31P are useful for binding studies. Due to its very wide range
of chemical shift values and the sensitivity of its resonance to
broadening upon interaction, 19F has been incorporated into
chemical libraries to facilitate the screening of small drug-like
“fragment” compounds (Troelsen et al., 2020). On the other
hand, a protocol based on a modified genetic code has enabled
the site-specific labeling of a large membrane protein with 19F
(Wang et al., 2021). Its signal in the presence or absence of ligand
proved crucial to identify an allosteric binding site (Wang et al.,
2021). 31P NMR can be exploited to study protein
phosphorylation (Hirai et al., 2000) as well as characterize the
conformation and dynamics of nucleic acids (Saxena et al., 2015).

About a third of eukaryotic proteins are intrinsically
disordered or contain a disordered region at least thirty
residues long. Since their discovery (Pontius and Berg, 1990)
intrinsically disordered proteins (IDPs) have been found to play
numerous physiological functions including the integration of
numerous and diverse clues in protein signaling networks
(Uversky, 2016). As mentioned previously, the low sequence
complexity and conservation and a lack of stable structures
complicates their analysis by ML. The conformation and
biological activities of IDPs are also highly affected by PTMs
which adds further difficulty to their study. NMR spectroscopy
has been the key experimental method for obtaining atomic level
information on IDPs (Dyson and Wright, 2021). Disordered
regions can also act as association tags that enable proteins to
form biomolecular condensates. This occurs for the disordered
region of TDP-43 shown in Figure 2 (Conicella et al., 2016). IDPs
frequently contain partly populated conformations or segments
that become well folded when they bind to a partner.
For example, certain segments of the IDP Tau tend to form

α-helices and β-strands (Mukrasch et al., 2009). The population
of two β-strands increases when Tau binds to μtubules
(Kadavath et al., 2015). However, they can also become fully
structured in the Tau amyloid structures associated with
Alzheimer’s disease and other dementias (Lövestam et al.,
2022). AlphaFold 2 does not serve for characterizing IDPs.
Nevertheless, the DisProt database is consolidating knowledge
on IDPs (Quaglia et al., 2022) and it is possible that some
future ML program may learn to glean conformational
inferences from experimental data, thus paving the way to IDP
characterization by ML and other computational approaches
(Lindorff-Larsen and Kragelund, 2021).

In conclusion, AlphaFold 2 accurately and precisely predicts
the structure of well-folded proteins. Moreover, it can be
combined with other computational methods to advance our
understanding of protein electrostatics and forecast protein
complexes. However, it does not predict rare conformations,
the impact of post translational modifications (PTM), ligand
binding or partially structured zones in intrinsically disordered
proteins (IDPs). Fortunately, these shortcomings of AlphaFold 2
are strengths of NMR spectroscopy. In the future, results from
NMR spectroscopy and other experimental methods could pave
the way for future ML methods able to predict sparsely populated
conformations, the effects of PTM, small molecule binding and
preferred conformations in IDPs.
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