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Abstract: The contribution of biological nitrogen fixation to the total N requirement of food and feed
crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green
revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence
primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic
associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen
fixation and the development and application of recombinant DNA technology have created oppor-
tunities that could help increase the share of symbiotically-driven nitrogen in global consumption.
With the availability of molecular biology tools, rapid improvements in symbiotic characteristics
of rhizobial strains became possible. Further, the technology allowed probing the possibility of
establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process
did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has
been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In
this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen
fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments.
The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed.
An approach to integrate the genetically modified elite rhizobia strains in crop production systems
is highlighted.

Keywords: biological nitrogen fixation; efficiency; molecular biology; rhizobia; stress; ethylene;
nodulation; improvement; cereals

1. Introduction

Biological nitrogen fixation (BNF) was the primary source of converting atmospheric
nitrogen into a usable organic form until the Haber–Bosch process was discovered in the
early 20th century and commercialized since then. Fueled by a seemingly unlimited supply
of hydrocarbons, this chemical process provided an easily accessible source of N fertilizers,
which played a central role in the crop productivity revolution. During the past century,
chemical fertilizers witnessed an exponential growth of synthesis and consumption to the
point that the contribution of BNF in crop productivity became obscure. N fertilizer use
in cereal and other crops became a routine part of the agricultural practices and farmers
were even tempted to supplement the nitrogen in legume crops. Undoubtedly, N fertilizers
were paramount in providing a food security cover which otherwise would have been an
uphill task at the existing productivity level [1]. In the past, intensive use of the factory-
produced fertilizers was less of an environmental concern. A high carbon footprint and
nitrogen pollution of water bodies such as eutrophication [2] have provided enough reason
to pause and question the sustainability of the steep upward curve of N fertilizer usage.
Due to environmental concerns regarding the synthetic option and the additional cost of
cultivation, the significance of BNF has re-gained focus in agriculture production systems.
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The contribution of BNF in agricultural systems ranges from 40 to 70 Tg N y−1 [3,4],
which is approximately at 50% of global production of N fertilizers. More nitrogen will be
needed in pursuit of achieving higher agricultural productivity goals to feed a growing pop-
ulation. Improvements in BNF can play an important role in bridging the supply/demand
gap and reducing dependence on the chemical route. There are many areas where the
improvements can be made to increase output of fixed nitrogen. The efficiency and efficacy
of the rhizobia could play a key role in determining the output. The former relates to the
catalytic efficiency of nitrogenase using host nutrients, whereas efficacy indicates how well
rhizobia can perform under the given conditions [5]. Several factors adversely affect the
survival and performance of rhizobia, with negative consequences on nitrogen fixation.
Many of these factors are extremes of environments and unfavorable soil conditions. Ex-
tensive efforts have been made to search for microorganisms that have improved efficiency
of BNF, are adapted to the extremes of environments, and are more competitive in a mi-
crobiome sphere. The identification of such strains, which are specific to the conditions,
presents opportunities to study the adaptive mechanisms. Recombinant DNA technology
has provided powerful tools to manipulate the mechanisms and transfer desirable traits to
the strains that are better in other symbiotic characteristics.

Cereals such as wheat, rice and maize are consumed as staple foods, providing 75% of
the world’s calorie uptake [6]. They dominate in the acreage of total arable land compared
to leguminous crops. There was only 3.3%, 12.5% and 32% of grain legume crops in the
total area of arable crops in EU, Canada and USA, respectively, in 2006 [7]. Rhizobia do
not forge a symbiotic relationship with cereals. Except some contribution from associative
symbiosis and free-living nitrogen-fixing bacteria, most of the nitrogen demand is met
through synthetic N fertilizer to maintain the optimum productivity level. Cereal crops,
therefore, are the principal contributing factor to the overall consumption of synthetic
versions of nitrogen. Enabling cereals to fix their own nitrogen could be a leap forward in
sustainable agriculture. Deploying various strategies, attempts have been made in recent
decades to explore the possibility of nitrogen self-sufficiency in cereals.

The process of nitrogen fixation through symbiosis is very complex, involving multiple
events and their regulation in both the host and the rhizobia. This makes the task of
developing symbiosis in cereals very difficult, especially considering the fact that the
process did not evolve naturally over a long period of time. Nevertheless, a series of
steps in symbiosis provide numerous opportunities to optimize them for increasing the
productivity of BNF. Molecular biology has played a significant role in decoding the
symbiotic mechanisms and applying the knowledge both in strain improvement and
creating new possibilities. The progress achieved in this area of BNF has been reviewed
here.

2. Improvement of Rhizobial Strains

To maximize the amount of nitrogen conversion by the rhizobia, different stages of the
plant–bacteria interaction could be optimized. The chemical communication between the
bacteria and its host plant can be improved to enhance the number of nodules formed and
favor occupation by desirable strains. Flavonoids produced by the plant are the earliest
signals that promote the symbiotic interaction, and induce the genes (nod genes) that are
responsible for synthesis of Nod factors. Chemically, these are Lipochitooligosaccharides
that signal the plant to initiate nodule formation [8]. Manipulation of nod genes, espe-
cially for their expression under suboptimal environmental conditions can significantly
enhance symbiotic efficiency [9]. For example, increasing Nod factor availability at low
soil temperatures can enhance nodulation [10,11], though in some specific cases an excess
of Nod factor can block nodulation of primitive cultivars [12]. Nitrogen reduction could
be made more efficient by facilitating the transport of electrons in a reaction catalyzed by
the nitrogenase. Overexpression of genes from nif and fix groups is being used to develop
such technologies [13–18]. Modulation of stress response genes, phytohormone biosyn-
thesis, phosphate solubilization, and antibiotic production are among the other areas of
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symbiotic interaction that are being explored to enhance rhizobia effectiveness [19]. Table 1
summarizes the molecular modifications in rhizobial strains and its effect on host–bacteria
symbiotic processes. Prominent areas with significant developments are discussed.

Table 1. Modification of rhizobial strains to improve survival and nitrogen fixation characteristics.

Group Gene Genotype Phenotype Reference

Adhesin
biosynthesis rapA1

Overexpression in
Rhizobium

leguminosarum

Increased competitiveness and
nodule occupation in red clover. [20]

Antagonism related TFX (peptide antibiotic
trifolitoxin)

Production in
Rhizobium etli

Higher rhizosphere
competitiveness and nodulation. [21]

Cellular replication parA
Overexpression in

Azorhizobium
caulinodans

Single swollen bacteroid in one
symbiosome, relatively narrow

symbiosome space, and polyploid
cells were observed when in

symbiosis with Sesbania rostrate.

[22]

EPS biosynthesis

pssA and rosR Overexpression in
R. leguminosarum

Increased competitiveness and
induced more nodules in

clover plants.
[23]

exoY Overexpression in
Sinorhizobium meliloti

Higher shoot fresh weight and
shoot length in Medicago truncatula. [24]

Heat stress

clpB
Extra copies in
Mesorhizobium
mediterraneum

Improvement in symbiosis under
normal and acidic conditions.

Overexpression of nodA and nodC.
[25]

groEL Overexpression
in Mesorhizobium

Improved symbiotic effectiveness
in chickpea. [26]

Hydrogen uptake hup

Gene from R.
leguminosarum

expressed in Rhizobium
tropici and

Rhizobium freirei

Increase in nodule efficiency and
seed N content in Phaseolus vulgaris [27]

Metal toxicity

MTL4 and AtPCS
Genes from Arabidopsis

thaliana expressed in
Mesorhizobium hauakuii

Increased Cd in nodules working
on phytoremediation. [28]

MTL4, AtPCS
and AtIRT1

Higher sensitivity and higher
accumulation of Cd. Advantage in

accumulation of Cu and As.
[29]

pSinA

Plasmid from
Sinirhizobium inserted

in several
Alphaproteobacteria

Arsenic resistance and oxidation
and heavy metal resistance. [30]

copAB

Gene from Pseudomonas
fluorescens expressed in
Sinorhizobium medicae

Improved root Cu accumulation
without altering metal loading to

shoots in M. truncatula.
[31]

Improved root Cu tolerance in
M. truncatula. [32]

S-adenosyl-methionine
methyltransferase

Gene from
Chlamydomonas
reinhardtii in R.

leguminosarum bv.
trifolii

Methylation of arsenite. [33]

ropAe Deletion in R. etli Cu tolerance enhanced. [34]

PsMT1 and PsMT2
Metallothionein genes
from pea expressed in

R. leguminosarum

Improved tolerance to Cd depicting
normal development of nodules. [35]
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Table 1. Cont.

Group Gene Genotype Phenotype Reference

Molecular transport dctA Overexpression
Rhizobium meliloti

Higher rate of nitrogen fixation in
Medicago sativa. [36]

nif genes
nifA

Gene from Klebsiella
pneumonie

overexpressed in
S. meliloti

Increased nodulation
competitiveness in alfalfa. [13]

Did not affect S. meliloti
competitiveness. [37]

Extra copy in S. meliloti Increased alfalfa biomass. [16]

Overexpression in
S. meliloti

Increased nodule formation
efficiency and rhizopine synthesis.

[38]Overexpression in
Bradyrhizobium

japonicum
Overexpression of groESL3.

Gene from K. pneumonie
overexpressed in

Sinorhizobium fredii

Accelerated nodulation and
increased competitiveness

in soybean.
[39]

Overexpression in
S. meliloti

Improved nitrogen fixing efficiency
in M. sativa. [15]

nifHDK Overexpression in
R. etli

Increased nitrogenase activity and
increased weight and yield in P.

vulgaris.
[17]

nod genes

Random DNA
fragment

Random DNA
duplication in R. tropici

More competitive strains for nodule
formation in Macroptilium

atropurprreum.
[9]

nodD1, nodABC
and nifN

Overexpression in
S. meliloti

Increase in nodulation, nitrogen
fixation (acetylene reduction

activity) and growth of alfalfa.
[40]

nodD
Overexpression in
R. leguminosarum

Increased nitrogen fixation in Vicia
sativa and Trifolium repens. [41]

nodD1 Delayed nodulation and reduced
number of nodules on Vicia plants. [42]

nodD2

nolR Overexpression in
S. fredii

Increased EPS production and less
number of nodules on Glycine max.
Increased number of nodules on

Vigna unguiculata.

[43]

Oxidative stress

fld

Gene from
Anaboena variabilis
Overexpressed in

S. meliloti

Nodule senescence delayed in
M. sativa. [44]

Reduced structural alterations in
alfalfa nodules. [45]

Less decline in nitrogenase activity
under salinity conditions. [46]

Improves tolerance to oxidative
stress and the survival in the

presence of the herbicides paraquat
and atrazine.

[47]

katB Overexpression in S.
meliloti

Aberration infection thread
formation and delayed nodulation

on M. sativa.
[48]
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Table 1. Cont.

Group Gene Genotype Phenotype Reference

cbb3

Overexpression in B.
japonicum

Increase in the symbiotic
effectiveness and in O2

consumption rate
(free-living cultures).

[49]

Enhancement in symbiotic
nitrogen fixation. [50]

Overexpression in R.
etli

Reduced sensitivity of symbiosis
with P. vulgaris in

drought conditions.
[51]

vktA (catalase)
Gene from Vibrio

rumoiensis expressed in
R. leguminosarum

Increased N fixation activity into
nodules, reduced H2O2 production. [52]

ahpC Overexpression
in Anabaena

Lowered the peroxide, superoxide
and malondialdehyde contents in

Anabaena strains.
[53]

Phosphate
solubilization

appA

Gene from Citrobacter
braakii overexpressed

in rhizobia

Increased P content and shoot dry
weight of Vigna radiataradiate. [54]

Gene from Escherichia
coli overexpressed in

S. meliloti

Improvement of maize growth in
low P soil. [55]

Phytohormone
modulation

acdS and lrpL
(ACC deaminase)

Mutation in
R. leguminosarum Decreased nodulation in pea. [56]

Genes from R.
leguminosarum

overexpressed in
S. meliloti

Improved competitiveness,
nodulation and shoot dry weight

in alfalfa.
[57]

iaaM and tms2 Overexpression in
S. meliloti

Increased number of nodules in M.
truncatula. [58]

Increased tolerance to UV, high salt,
low pH and phosphate starvation. [59]

Improved nitrogenase activity in
nodules and increased stem

dry weight.
[60]

Lower expression of ethylene
signaling genes, released larger

amounts of P-solubilizing organic
acid and lower reduction in shoot
dry-weight under P starvation on

M. truncatula.

[61]

Induction of many of the
transcriptional changes in

free-living cells like those occur in
nitrogen-fixing root nodule.

Increased expression of nitrogen
fixation genes and stress
response-related genes.

[62]

Higher tolerance of alfalfa in
drought conditions. Higher

concentration of Rubisco and lower
accumulation of ethylene in

drought conditions.

[63]
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Table 1. Cont.

Group Gene Genotype Phenotype Reference

Introduction of iaaM
gene from Pseudomonas

savastanoi and tms2
from Agrobacterium

tumefaciens in
R. leguminosarum

Fewer number of nodules (but
heavier) and increased nitrogenase

activity in vetch.
[64]

acdS (ACC deaminase)

Overexpression in
Mesorhizobium loti

Higher nodulation in Lotus japonicus
and Lotus tenuis, and improved
competitiveness of the strain.

[65]

Gene of Pseudomonas
putida overexpressed in

Mesorhizobium ciceri

Stimulated growth and increased
nodulation on chickpea under

normal and waterlogging
stress conditions.

[66]

Increased nodulation, plant growth
and biocontrol potential

in chickpeas.
[67]

Improved growth of chickpea
under saline conditions. [68]

Gene of P. putida
overexpressed in

S. meliloti

Higher biomass of Medicago lupulina
under copper stress. Enhancement

of antioxidant defense system.
[69]

ipt (cytokinin)

ipt gene from
Agrobacterium

overexpressed in
S. meliloti

Increased survival of nodules and
increased production of

antioxidants under drought
conditions in alfalfa.

[70]

miaA (cytokinin) Mutation in
Bradyrhizobium

Faster nodule formation and
alteration of size and number of

nodules in Aeschynomene.
[71]

Polysaccharide
biosynthesis celC

Overexpression in
R. leguminosarum

Reduction in biofilm formation,
aberrant infection behavior, delay in

nodulation and decreased root
attachment in T. repens..

[72]

Gene from R.
leguminosarum

overexpressed in
S. meliloti

Delay in nodulation in
M. truncatula. [73]

Salinity and
drought stress

putA
Overexpression in

S. meliloti

Increased competitiveness in alfalfa
plants under drought stress. [74]

betS
Rapid acquisition of betaines and

better maintenance of nitrogen
fixation in salinized alfalfa.

[75]

otsA

Overexpression in
R. etli

Improved number of nodules,
nitrogenase activity and biomass in
P. vulgaris. Plants recovered from

drought stress.

[76]

Gene from S. meliloti
overexpressed in

M. ciceri

Increased growth in saline media.
Improved nodules formation and

shoot biomass accumulation in
chickpea growing in presence

of NaCl.

[77]
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Table 1. Cont.

Group Gene Genotype Phenotype Reference

Siderophore
production

fegA
Gene from B. japonicum

expressed in
Mesorhizobium sp.

Increased growth and nodule
occupancy in peanut plants. [78]

fhuA

Gene from B. japonicum
expressed in
Rhizobium sp.

Increased growth and nodule
occupancy in pigeon pea. [79]

Gene from E. coli
overexpressed in

Rhizobium ssp.

Increased nodulation and growth in
pigeon pea. [80]

2.1. The Enhanced Efficiency of Nitrogen Fixation

The rhizobial strains could be improved at any stage beginning with their perception
of flavonoids to initiate the nodulation process, through all the steps up to delivery of fixed
nitrogen to the host plant. Symbiotic nitrogen fixation in rhizobia is mostly controlled
by nod, nif and fix genes [5]. Changing the nodD gene expression from an induced to a
constitutive state to broaden the host range of symbiosis in tropical legumes was among
the earliest approaches to exploit the potential of DNA recombinant technology [41].
The DNA fragment harboring the nodD1 gene, the common nodulation genes (nodABC),
and an operon essential for nitrogen fixation (nifN) from the nod regulon region of S.
meliloti was integrated to generate average 2.5 copies of the region [40]. The derivative
strain significantly improved symbiotic properties, with increased nodulation, nitrogenase
activity and overall growth in alfalfa. The modifications in nif genes and the potential
benefit of improved strains were tested under field conditions. In a study, S. meliloti was
engineered for extra copies of nifA and dctABD genes and the modified strain resulted in
an approximately 13% increase in alfalfa biomass yield [16]. The dctABD genes encode
a dicarboxylate transport system (and its regulatory genes) responsible for the import
of the carbon compounds as a source of energy which is crucial to support the function
of nitrogenase [81]. Engineering nitrogen reductase (nifH) of R. etli as a nifHDK operon
under the nifHc promoter that had only a truncated version of the operon resulted in
enhanced nitrogenase activity (58% on average), increased plant weight (32% on average),
increased nitrogen content and seed yield (36%) in common bean plants [17]. In addition, a
genetic modification in poly-beta-hydroxybutyrate-negative background further enhanced
the symbiotic efficiency of the recombinant strain. The studies on adding extra copies
or restoring the full functionality of existing copies of nitrogenase components leading
to a positive impact on the nitrogenase function suggest the latter to be a limiting factor
in nitrogen fixation. The beneficial effect of protein engineering to increase the catalytic
function of nitrogenase was demonstrated successfully a few decades ago [82]. With better
understanding of nitrogenase structure and function, progress has been made in improving
the enzyme’s catalytic function [83,84]. In nitrogen fixation reactions, H2 is produced as
a by-product, which, in most of rhizobial strains, diffuses into the environment. It is not
clearly known why approximately 25% of the total energy consumption is wasted in an
otherwise energy expensive reaction [85]. There exist some strains that have the ability
to metabolize H2 through uptake hydrogenases (Hup). These strains are referred to as
Hup+ and those that do not have this activity are termed as Hup- strains. Could the
transfer of the hydrogenase gene to Hup- strains improve symbiotic efficiency? The gain in
symbiotic efficiency has been demonstrated by Torres and coworkers who transferred an
18 kb hup gene cluster from R. leguminosarum bv. viciae encoding a NiFe hydrogenase to a
common bean rhizobial strain lacking hydrogenase [27,86]. However, other studies [87]
have found no increase in nitrogen fixation in pea after adding hup genes. Regulation of hup
genes is complex and heavily influenced by host plant background and nickel availability,
so these conflicting results are not surprising [88]; there is a strong consensus that in
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soybean symbionts, uptake hydrogenase systems do enhance nitrogen fixation and crop
yield [89]. Due to the sensitivity of nitrogenase to oxygen, a low concentration environment
is maintained in bacteroids. However, oxygen is required in the electron transport chain
to generate energy to support nitrogen reduction. To overcome this challenge, bacteria
synthesize a high-affinity cytochrome cbb3 oxidase [90]. Overexpression of this oxidase
in R. etli was associated with higher symbiotic performance [50]. Other strategies that are
not directly targeted at nitrogenase have also been employed to improve the symbiotic
efficiency. In one study, additional copies of the clpB gene that encodes a chaperone
protein were transferred to M. mediterraneum and a symbiotic analysis was performed with
chickpea [25]. In addition to conferring tolerance to stress, the transformed strain induced
a greater number of nodules and increased symbiotic effectiveness by 60–80% depending
on the pH conditions. The higher nodulation was correlated with enhanced expression
of nodulation genes nodA and nodC. Chaperone proteins and other stress-responsive
genes that play an important role in symbiosis have been comprehensively reviewed by
da-Silva et al. [26]. Reduction in oxidative stress through enhanced expression of catalase,
which effectively lowered the H2O2 content, led to an approximately 2-fold increase in
nitrogen fixation [52]. A similar increase in symbiont performance was demonstrated with
extra copies of the ahpC gene that lowered the peroxide, superoxide and malondialdehyde
contents in Anabaena strains [53]. For more details on the role of redox status in regulation
of plant and bacterial differentiation and the symbiotic process, the readers are referred to
a review [91]. The secretion of exopolysaccharide can also improve symbiotic efficiency,
which has been demonstrated by overexpressing the exoY gene in a S. meliloti strain,
enabling increased production of succinoglycan [24]. The modified strain enhanced the
symbiotic productivity in M. truncatula. Regulation of assimilation of fixed nitrogen
through distribution and allocation of nitrate in the plant parts has been explored as another
strategy to improve symbiotic performance. In plants, the nitrogen flux across different
organs is controlled by transporters that belong to mainly four protein families, namely
chloride channels, slowly activating anion channels, nitrate/peptide transporters (NPF)
and nitrate transporters [92]. By disrupting L. japonicus transporter LjNPF2.9, Sol et al. [93]
demonstrated an increase in shoot biomass without affecting symbiotic nitrogen fixation.
In summary, the strains were genetically modified targeting various genes and different
processes of host–rhizobial symbiosis. The improvement resulting from these modifications
suggests that a variety of factors determine the symbiotic performance and yet there might
be more areas of host–rhizobial interaction that can be optimized in terms of increasing
amount of N2 fixed.

BNF in nodules is not only controlled by the symbiont but the host plant also plays
an important role. Because the latter is responsible for supply of carbon that supports
nitrogenase activity, the nodule development, number and nitrogen turnover are subject to
regulation by the host [94]. A higher rate of nitrogen fixation by an improved symbiont will
still be dependent on the regulatory constraints of carbon and nitrogen metabolism in the
host plant. There is a high demand of Pi in metabolically active nodules [95]. Increasing the
nodule number to achieve more N output could have a negative impact on plant growth and
development, if there is a phosphorus deficiency. Therefore, it is not necessary that positive
results of every strategy will translate into measurable gains in different situations. For
example, the success of hup+-modified strains can only be ascertained in field conditions,
especially when H2 is known to promote plant growth-promoting rhizobacteria that allow
certain plants to compete successfully early in the growing season [96].

2.2. Microsymbiont Competitiveness

One of the obstacles to widespread use of superior strains of rhizobia, irrespective
of whether these strains are selected from natural populations or engineered to include
beneficial attributes, is competition from soil microflora, including native strains of rhizobia
that can form nodules on the same crop. Indigenous strains are usually found anywhere
there is a history of cultivation of a given legume species, and can arise from horizontal gene
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transfer from inoculant strains to non-symbiotic bacteria present in soils [97]. The native
strains are usually well adapted to local soil conditions but inefficient at fixing nitrogen,
yet they will form the bulk of nodules on a crop because of their superior competitiveness;
this has been termed “the rhizobium competition problem” [98].

Solutions to this competition problem require an in-depth understanding of the at-
tributes of individual rhizobial strains that contribute to their competitiveness for formation
of nodules, and ability to survive and proliferate in the rhizosphere. These include motility
and chemotaxis [99–101], production of antibiotics and bacteriocins (discussed below), and
ability to catabolize a variety of different carbon sources, some of which are known to be
specifically secreted by plants.

The capacity to take up and metabolize many sugars, sugar alcohols, amino acids,
and other compounds has been shown to affect the ability of rhizobial strains mutated
in these processes to compete against isogenic wild-type strains. For example, this has
been shown for rhamnose [102,103], proline [104], erythritol [105], and glycerol [106],
although the ability to use these carbon and energy sources is fairly widespread in rhizobia,
and probably of little value in terms of manipulating bacteria. More specific compounds
such as the non-protein amino acid homoserine, which is produced in large amounts by
pea seedlings [107], and rhizopines [108] offer better possibilities for engineering strains
suited to specific rhizospheres. Homoserine catabolism appears to be restricted to isolates
adapted to pea rhizospheres [109,110], and it has been shown that the ability to transport
and catabolize homoserine is necessary for competitive nodulation [110].

The rhizopines, which are rare scyllo-inosamine derivatives synthesized by rhizo-
bia themselves in nodules [108,111,112], and catabolized by the free-living rhizobia, of-
fer an intriguing possibility for manipulation of the rhizosphere to give a competitive
advantage only to certain selected strains. Proof of principle for this was provided by
Geddes et al. [113], who engineered M. truncatula and barley plants to synthesize rhi-
zopines. These plants were able to induce expression of rhizopine catabolic gene promoters
in bacteria in the root region, and select for increased populations of engineered rhizopine
catabolizing rhizobia. Creating a biased rhizosphere in this fashion has the potential to
eliminate competition from native strains.

Antimicrobial compounds produced by rhizobia vary greatly among strains, and have
been examined for their role in competition. Bacteriocins are narrow-spectrum antibiotics
that are usually proteinaceous in nature [114], and several different rhizobial bacteriocins
have been shown to play some role in promoting competitive nodulation [115,116]. The
biggest success story in terms of antimicrobial production is trifolitoxin, a small-peptide
antibiotic/bacteriocin that is made by only a few strains of R. leguminosarum [117,118].
Engineered strains producing trifolitoxin have been shown to have greatly enhanced com-
petitiveness in both lab and field trials [21,119]. This ability could potentially be exploited
further in design of strains of many species of rhizobia with enhanced competitiveness.

Another approach to solving the competition problem may be to select for or design
bacteriophage-resistant inoculant strains with superior symbiotic attributes. These can be
co-inoculated onto seeds with a cocktail of phages that target native strains and eliminate
them as competitors. Several studies with phage-resistant strains have proven that this
approach has validity [120,121]. Further isolation and characterization of phages that are
lytic for rhizobia, and of rhizobial phage defense mechanisms will be required to exploit
this approach on a wider scale.

2.3. Stress Tolerance

For the strains to perform efficiently under environmental stress and to maintain their
competitiveness, they should have adequate tools to mitigate the stress. The geographical
distribution of strains as a result of their adaptation to specific conditions suggests the
presence of certain mechanisms enabling their survival and functionality. Such mechanisms
provide resources and opportunities to improve strains with high symbiotic performance
which otherwise are not capable of withstanding a particular stress. Genetic improvements
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of strains conferring tolerance against a variety of stresses have been achieved through
recombinant DNA technology. It is important to keep in mind that there will be challenges
in converting these strains into commercial opportunities due to competition with the
native strains. The studies indicate that commercial strains do not always outperform the
native interactions [122,123].

2.3.1. Drought and Salinity

Though drought and salinity are different types of stresses, there is, in both cases, a
reduced availability of water. Often, the perception and tolerance mechanisms of these two
types of stresses display many similarities. The accumulation of osmoprotectants such as
sugars, polyols, betaines, and amino acids is one of the responses under stress to maintain
membrane structure and cellular function. Overexpression of trehalose-6-phosphate syn-
thase, which catalyzes a step towards trehalose accumulation, in the symbiotic bacterium
R. etli improved the strain performance under drought measured by nitrogenase activity,
growth and biomass of P. vulgaris [76]. The study suggested that trehalose was not only
an osmoprotectant but also played a role in a signaling mechanism for plant growth and
adaptation to the stress. The importance of trehalose accumulation in stress tolerance
was further documented in the chickpea—M. ciceri symbiosis. The overexpression of the
gene otsA that encodes trehalose-6-phosphate synthase in the rhizobial strain enabled the
host to form more nodules and higher shoot biomass than wild-type strains under salinity
stress [77]. Whereas in the previous studies the enhanced de novo synthesis of an osmolyte
was targeted, in another study the impact of increased uptake of such molecules was
studied. BetS is a high-affinity glycine and proline betaine uptake system involved in the
rapid acquisition of betaines by cells under osmotic stress. Boscari et al. [75] overexpressed
this transporter, resulting in 2.3-fold higher glycine betaine transport than in the wild-type
strain. In the host plant alfalfa, there was an approximately 40% increase in proline betaine
accumulation under salinity stress. The nodules with the overexpressing strain maintained
a superior nitrogenase function to the wild type. A higher accumulation of the osmolytes
proline and pinitol was among the metabolic changes observed in alfalfa due to overproduc-
tion of IAA in the symbiotic Rhizobium strain [63]. The host plant showed better adaptation
to drought conditions upon forming symbiosis with the IAA-overproducing strain and
there was downregulation of ABA biosynthesis genes. Increase in ABA is a characteristic
indicator of drought stress status in plants. Induction of stress-responsive genes upon
IAA treatment was observed through transcriptomic profiling in B. japonicum, suggesting
that IAA is a positive regulator of stress tolerance [124]. Most of the abiotic stresses are
associated with changes in redox environment causing oxidative stress, possibly acting
as a signal for downstream metabolic changes [125–127]. The prevention of oxidative
stress through flavonoids was used as a strategy to mitigate salinity stress in the alfalfa—S.
meliloti symbiosis [46]. The flavonoid-overproducing strain reduced the salt-induced struc-
tural damage and had a protective effect on the nodule structure and function. Enhanced
tolerance to drought stress was achieved through enhancing the function of cbb-3 oxidase
in R. etli that displayed higher respiratory activity under stress [51]. Cytochrome cbb3
oxidase is a member of the heme-copper oxidase superfamily that catalyzes an oxidation
reaction and coupled pumping of protons.

2.3.2. Heat Stress

Extreme high temperature limits the geographical distribution of strains and their abil-
ity to nodulate, depriving many crops of the benefit of symbiotic nitrogen fixation [128,129].
An improvement in heat tolerance can not only restore the nodulating ability of strains
under conditions which otherwise are non-conducive to normal symbiotic interaction, but
also enhance strain survival in hostile temperatures. Efforts have been made to achieve the
objective through molecular manipulations. The chaperones, many of which are activated
during stress, play an important role in stress tolerance or adaptation [130]. Knocking
out a ClpB chaperone in a M. ciceri strain resulted in sensitivity to heat stress [131]. There
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was a delayed appearance of nodules and a greater proportion of them were ineffective.
Conversely, additional copies of this chaperone gene provided more tolerance to heat stress,
with overall higher symbiotic effectiveness [25]. The effectiveness of other chaperone
genes in heat stress tolerance has also been observed. Additional copies of groEL in a
Mesorhizobium strain allowed enhanced recovery from heat shock of 48 ◦C for 15 min [26].
In addition, the modified strain displayed a greater symbiotic effectiveness.

2.3.3. Metal Toxicity

Industrialization greatly helped in alleviating poverty but it came at an environmental
cost, especially in the case of heavy metal toxicity in areas exposed to industrial waste [132].
Soil polluted with heavy metals not only restricts plant productivity, but also poses an
increased risk to human health due to bioaccumulation of toxic contaminants. In biore-
mediation strategies, both plants with tolerance to metal stress and microorganisms with
metal scavenging or detoxifying activity could be deployed. Due to the presence of a
wide range of mechanisms, microorganisms serve as a powerful tool to mitigate the metal
stress [133,134]. Symbiotic nitrogen fixation is limited to a select category of microor-
ganisms, which may not necessarily have highly adapted mechanisms for tolerating and
detoxifying metals, but through genetic manipulation success has been achieved against
several metals. Inoculation with S. medicae expressing copper resistance genes, copAB from
P. fluorescens was able to phytostabilize the toxic level of Cu (copper) in M. truncatula [31].
Further improvement in Cu tolerance was observed when the host plant was also mod-
ified with a metallothionein gene mt4a and inoculated with S. medicae [32]. In another
study, Cu tolerance by R. etli was enhanced upon deletion of a plasmid carrying ropAe
gene encoding an outer membrane protein with a β-barrel channel structure that likely
facilitates Cu transport [34]. Cadmium (Cd), which finds its way into the environment
through mining, smelting and municipal wastes becomes a source of exposure with adverse
effects on human health (https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=4). For
bioremediation against Cd, separately, two recombinant M. huakuii strains, each expressing
a synthetic tetrameric metallothionein (MTL4) and phytochelatin synthase from A. thaliana
(AtPCS), were constructed [28]. The inoculation of Astragalus sinicus plants with the modi-
fied strains led to substantial accumulation of Cd in both nodules and roots. The expression
of another iron-regulated transporter from Arabidopsis (AtIRT1) enabled M. huakuii strains
to accumulate increased amounts of Cu and arsenic (As) in the nodules [29]. Arsenite
bioremediation was also demonstrated through its methylation by S-adenosylmethionine
methyltransferase [33]. The researchers expressed the gene from C. reinhardtii in a R. legu-
minosarum bv. trifolii strain and a sizeable amount of methylation could be achieved in red
clover with recombinant Rhizobium symbiosis. Oxidation of arsenite can be another mecha-
nism of improved tolerance as observed in S. meliloti where pSinA plasmid was found to
carry the genes responsible for oxidation [30]. The effectiveness of metal efflux pumps in
the host plant has been shown by expressing arsenite efflux pump Acr3 from S. medicae in
tobacco plants [135]. It was noted that targeting of Acr3 to the tonoplast was more effective
than its expression on the plasma membrane. The importance of metallothionein proteins
in amelioration of heavy metal toxicity is further underlined in a more recent study. Two
recombinant strains of R. leguminosarum bv. Viciae, each expressing a pea metallothionein
gene, PsMT1 or PsMT2, led to normal development of nodules in pea under Cd stress [35].
Because the heavy metals cause oxidative stress [136], the other strategies could be based on
maintaining the homeostasis of metals through different mechanisms [133]. The observed
tolerance to copper in M. lupulina by ACC deaminase-overproducing S. meliloti suggests
that stress signaling interference could also lead to resistance against metal toxicity [68]. It
remains to be seen whether a mitigation strategy for one heavy metal will also hold true
for other heavy metals.

https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=4
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3. Reduction in Ethylene Synthesis and Nodulation

Ethylene, initially recognized as a fruit ripening hormone, is involved in multiple
aspects of plant growth and development. Ethylene interacts with other hormones to
modulate disease and abiotic stress response and plays a major role in senescence. Ethy-
lene is a negative regulator of nodulation, although its role in early symbiotic events
has been recognized [137,138]. Interference in ethylene signaling through application of
aminoethoxyvinylglycine stimulated nodulation in alfalfa [139]. Further, several mutants
and transgenic plants altered in ethylene level and signaling showed variation in nodule
size and number [137]. The control of ethylene synthesis and perception, thus, presents
opportunities to enhance the nodulating ability of Rhizobium. In addition to nodulation, the
manipulation of ethylene response can also have a positive effect on abiotic stress tolerance.
Ethylene is synthesized from its immediate precursor 1-aminocyclopropane-1-carboxylic
acid (ACC) through oxidation, a reaction catalyzed by ACC oxidase. Because under normal
conditions this reaction is not a rate-limiting step, the level of ACC directly impacts the
ethylene level [140]. ACC can be metabolized through its deamination by ACC deaminase,
which is encoded by the acdS gene (Figure 1).
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Among a collection of B. japonicum isolates, those expressing higher level of acdS
had higher numbers of nodules, biomass and delayed senescence of the nodules [141].
Overexpression of acdS in M. ciceri increased nodulation in chickpea, improved the growth
and plant biomass, reduced susceptibility to root-rot disease and improved tolerance to
waterlogged conditions [66,67]. Similarly, the exogenous expression of acdS in other species
of Mesorhizobium increased chickpea tolerance against salinity [68]. A higher plant biomass
compared to a wild-type strain was obtained under stress in M. lupulina by inoculating with
ACC deaminase-overproducing S. meliloti transformants [69]. Increased nodulation due
to overexpression of ACC deaminase was earlier observed in alfalfa and pea [56,57]. The
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effect of ACC deaminase on nodulation was also exerted by the co-inoculants along with
Rhizobium. The exogenous expression of ACC deaminase in Serratia grimesii BXF1 and its
co-inhabitation with R. tropici led to an early nodulation in common bean [142]. Similarly, co-
inoculation of plant growth-promoting bacteria containing ACC deaminase with Rhizobium
phaseoli strains enhanced plant growth and induced salt tolerance in Vigna mungo [143].

4. Nitrogen Fixation in Cereals

In view of the overwhelming benefits, the idea of enabling cereal crops to fix their own
nitrogen with little or no reliance on external input has fascinated the scientific community
in recent decades. A tremendous advancement in the field notwithstanding [144–146],
the task has been extremely challenging. The recent developments in the field have been
discussed here.

It is important to assess the magnitude of the challenge in making the cereals nitrogen
self-sufficient before different strategies and progress in that pursuit are discussed. Atmo-
spheric nitrogen exists as a N2 molecule, where two N atoms are bonded through a triple
bond. It requires a huge amount of energy to reduce it to NH3 (see the equation).

N2 + 8H+ + 8e− + 16ATP→ 2NH3 + H2 + 16ADP + 16Pi

Chemically, the equation depicts only a direct cost in the form of required ATPs.
There is an additional indirect cost to maintain infrastructure of the catalytic process and
metabolism of by-product [147]. In a symbiotic nitrogen fixation the required energy
is drawn from the host and in a free-living bacterium it is diverted from other cellular
processes, which nevertheless, has its consequences. The nitrogenase enzyme is a large
complex of MoFe protein (catalytic unit) and Fe protein (reductase unit) components with
a size range of 220–250 and 50–60 kD, respectively, depending on the organism [148,149].
The complexity of metal centers for their structure and function makes nitrogenase a
unique metalloprotein to understand its mechanism [85,150]. Advances in the mechanism,
especially the electron transfer from the Fe protein to the catalytic site of MoFe protein,
have been reviewed recently [151]. The nitrogenase complex is encoded by a battery of nif
genes, which are controlled through an intricate mechanism both at transcriptional and
post-transcriptional levels [149,152,153]. Their coordinated expression encoding all the
proteins of nitrogenase complex in stoichiometric proportions is essential to assemble a
functional holoenzyme, which requires a clear understanding of a regulatory framework
of all the genes involved [154]. Nitrogenase is highly sensitive to oxygen, with quick
oxidation/inactivation of the catalytic site (MoFe protein) and reductase component (Fe
protein) [155]. The reason for the extreme sensitivity of the enzyme to oxygen resides in
the evolutionary details of geobiology [156]. The enzyme is insulated from oxygen by
structural barriers and through binding of free oxygen by leghemoglobins in legume root
nodules [157]. Other free-living bacteria employ different strategies for protection of the
nitrogenase from O2 and simultaneously meeting a high demand of respiration [158]. Ad-
ditionally, nitrogen fixation being an energy expensive process is very sensitive to feedback
inhibition by an accumulated NH3, which requires its efficient removal or assimilation [159].
Together, these factors pose biochemical, genetic engineering and structural challenges to
equip the cereals with nitrogen fixing ability.

Using molecular biology tools, different approaches have been taken to improve
biological nitrogen fixation and supply to cereals (Figure 2). Mostly they were directed
at manipulation of microbes harboring nitrogenase activity, but recently the advent of
synthetic biology allowed handling of large pieces of DNA or clusters of genes for ge-
netic engineering.
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Inoculation of crops with plant growth-promoting bacteria has been studied to en-
hance yield and production with reduced reliance on chemical N fertilizers [160]. The
free-living diazotrophs, e.g., Azotobacter, Beijerinckia, and Clostridium, with the ability to fix
nitrogen have been explored in cereals [161,162]. A mutation in the nifL gene in Azotobacter
vinelandii allowed nitrogen fixation at higher ammonium concentration [163]. Manipula-
tions of the glutamine synthetase promoter and the nifL gene of this diazotroph not only
enabled secretion of high amounts of ammonium but also showed strong proliferation
of microalgae and promoted growth in cucumber plants in the absence of added N fer-
tilizer [164]. The deletion in the negative regulatory region of nifL genes and inclusion
of positive regulatory gene nifA in another species of Azotobacter enhanced its capability
of nitrogen fixation and reduced the reliance on N fertilizer under field conditions of
wheat cultivation [162]. The engineered bacterium enhanced the yield by 60% compared to
unfertilized controls. These bacteria obtain their energy from decayed organic matter in
soil, thus agriculture management practices greatly influence their distribution in soil [165].
Free-living bacteria are an indirect source of nitrogen without host specificity. There are
other types of bacteria that closely associate with the host roots and fix nitrogen through a
process referred to as associative nitrogen fixation. Azospirillum, Klebsiella, and Pseudomonas
are among the bacteria that have an associative relationship with non-legumes including
cereal crops [166–168]. To enhance nitrogen fixation by the associative symbionts, two
biotechnological approaches could be used. Either the pre-existing colonizing bacteria
are improved for efficient nitrogen fixation or those with best nitrogen fixing traits are
genetically modified to induce colonization in cereals [169]. The authors argued in favor
of improving the pre-existing colonizers for nitrogen fixation due to greater complexity
involved in the colonization mechanism. The transfer of a gene cluster from Pseudomonas
stutzeri to the aerobic root-associated beneficial bacterium Pseudomonas protegens Pf-5 en-
dowed the strain with a functional nitrogenase, which was able to fix nitrogen and release it
as ammonia [170]. Recently, an improved tolerance to ammonia and oxygen by transferring
inducible clusters from P. stutzeri and A. vinelandii has been demonstrated in P. protegens
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Pf-5 [171]. The progress in genetic modifications of associative symbionts has been recently
reviewed [144,169].

There is a considerable gap of nitrogen fixation rates from nodules to other types of
fixation. The rhizobia fix 50–465 Kg N ha−1 y−1, while other associative or free-living
nitrogen-fixing species provide 1–170 Kg N ha−1 y−1 [144]. Given the large difference in
nitrogen derived from different sources, nitrogen fixation similar to legumes, or providing
the plant with its own N-fixing machinery are the most desirable outcomes in cereals
for reduced or limited dependence on N fertilizers. A symbiotic relationship of rhizo-
bia with legumes evolved over time, where, in nodules, the respiratory requirement of
oxygen is sufficiently met with simultaneous protection of nitrogenase from O2 [172–174].
Non-legumes such as cereals have poor or no symbiotic relationships with rhizobia, al-
though different species from genus Rhizobium have been described colonizing cotton,
maize, wheat, rapeseed, sugar cane, carrot and rice and a new species Rhizobium rhizoryzae
sp. nov. from rice has been reported [175]. Some rhizobia were found in cereal plants
where expression of the bacterial nitrogenase gene was detected [176]. Apparently, these
crops did not develop a shield from high level of oxygen and rhizobia were unable to
form specialized structures similar to nodules in legumes [177,178]. The discovery of a
nitrogen-fixing cyanobacterium, Nostoc, that colonizes intracellular in mucilage-secreting
gland cells of Gunnera plants points that nodulation is not a pre-requisite for intracellular
symbiotic nitrogen fixation [168]. The relationship has been able to satisfy the plant’s
nitrogen requirement. Moreover, the rhizobia have been found to fix nitrogen in several
non-nodulating legumes [179]. Another example of nitrogen fixation by diazotrophs was
found in a unique Sierra Mixe maize landrace that secretes a large amount of mucilage
in aerial roots and acquires 29–82% of the required nitrogen through microbiota in mu-
cilage [180]. The further scope of nitrogen fixation through aerial roots in cereals has been
discussed in detail [181]. The other novel strains with optimized nitrogenase expression
are continuously sought and discovered [182]. Genetic engineering of non-nodulating
microbes to expand nitrogen fixation in cereal crops presents another opportunity to meet
the nitrogen demand through a symbiotic process. The approach of nodulation in cereal
crops by decoding a complete mechanism of a classical rhizobia-legume symbiosis is still
being pursued and the work is in progress. The topic highlighting the challenges and
building on opportunities has been reviewed [145]. A structural similarity between Nod
factors and Myc factors, which activate the signaling pathway during mycorrhizal sym-
biosis in cereals has been noticed [183]. The strategy of engineering the perception of nod
factors to activate mycorrhizal symbiosis signaling pathway which in turn can activate
the engineered nodulation specific genes has been pursued and the progress made was
reviewed [145]. A transgenic rice expressing three legume-specific nodulation (Nod) factor
receptor protein genes responded to rhizobial Nod factors and conferred on root hairs
the ability to respond to these factors in terms of exhibiting deformations displaying a
similarity to initial symbiotic reactions in legumes [184].

The advances in synthetic biology have generated vigorous interest and led to intensi-
fied efforts in transferring the nitrogen reduction catalytic machinery to cereal crops. In
spite of enormous challenges in this non-microbial or non-symbiotic approach, the devel-
opments have been encouraging [144,152]. The selection of a nitrogen assembly site within
a plant system is important to address the nitrogen fixation requirements. Chloroplasts and
mitochondria were at the forefront when meeting a high energy demand of fixation was
taken into consideration. Additionally, these organelles offer a prokaryotic style of gene
expression and regulation. The chloroplasts are the active site of O2 evolution in the light
reaction of photosynthesis. To mitigate nitrogenase sensitivity to O2, the expression of nif
genes during the dark period was contemplated [185]. A window of approximately 4 h of
respiratory burst before the onset of dark period can be utilized to express nif genes under
the rhythmic control of promoters [152]. The expression of active Fe protein by integrating
bacterial nifH and nifM genes into tobacco chloroplasts, but only under a low level of
oxygen, has been demonstrated [186]. Further improvements in Fe protein solubility and
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activity under atmospheric oxygen conditions have been achieved [187]. A significant
breakthrough in the stoichiometric challenge of synthetic biology coordinating expression
of multiple genes has been reported recently. Yang et al. [188] regrouped 14 essential nif
genes from Klebsiella oxytoca into giant genes either by fusing them together or by express-
ing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. The
optimal activity of proteins supported E. coli growth on dinitrogen. A correct assembly
of 15 nif genes (11 genes—nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA, nifV, groES, and
groEL—from Paenibacillus polymyxa WLY78; and 4 genes—nifS, nifU, nifF, and nifJ—from
K. oxytoca) in Saccharomyces cerevisiae opened the possibility of a functional nitrogenase com-
plex in eukaryotic hosts [189]. Earlier, 16 nif genes were individually targeted to tobacco
mitochondria and detectable levels of encoded proteins were observed in the matrix [190].

In the recent past, remarkable progress has been made in various possibilities of
biological nitrogen supply or fixation within cereals. The dream conceived in 1970, however,
has yet to be realized. Nonetheless, it looks more probable now than in the past that cereal
production systems will have less dependence on synthetic nitrogen in future. Assuming
successful functioning of nitrogenase in cereals, the task for the scientific community
will be far from over. As discussed earlier, conversion of N2 into its usable form is an
energy or resource-intensive process, and there will likely be negative consequences of
N self-sufficiency on plant productivity. Increased photosynthesis and mobilization of
photosynthates to root may be a remedial path in that scenario. In conclusion, there will be
many unknowns during the improvement of BNF that will require innovative solutions for
commercial acceptability of new developments.

5. Future Perspectives

Improvement of biological nitrogen fixation for higher nitrogen productivity will
increase the sustainability of agriculture production systems. Various strategies have been
used to improve the process in an existing symbiotic relationship and widen the scope
to non-symbiotic commercial crops. The success of many of such strategies will depend
on how well the process of nitrogen fixation is understood. Genomic studies and high-
throughput data computing capabilities can play a great role in discerning the underlying
mechanism of communication, occupation in the host and nitrogen fixing ability. Equally
important is to gain in-depth knowledge of factors responsible for rhizobial persistence in
the community of microbiome. The rhizobial genome with some dispensability of genes
provides flexibility and opportunity to substitute them with more useful cellular functions.
The challenges notwithstanding, many of the genetic traits could be stacked to produce
elite strains with overall enhanced performance or for specific environmental conditions.
The advent of synthetic biology allows manipulation of large blocks of DNA harboring
multiple genes with combined or individual control of gene expression.

Although tremendous efforts over a long time period have resulted in significant
progress in different areas of strain improvement (Table 1), the introduction and adoption
of such strains in agriculture have been dismally low so far [191–194]. Many factors that
include social, regulatory, environmental and economic considerations are contributing
to the lack of application of scientific breakthroughs. One important aspect deserving
attention is that most of the studies were confined to lab or controlled environment con-
ditions. The intended effect of such strains under field conditions is unpredictable and
their competitiveness with native wild types is unknown [192]. Therefore, rigorous field
testing, which requires knowledge of a regulatory framework, appropriate permissions
and facility, demonstrating the benefit of elite strains over wild types would greatly help
in commercialization of the former. The regulatory constraints of genetically modified
microorganisms (GMOs), which are not uniform across different countries, slow down
the testing process. To provide a resource for the reader, the US, Canadian and Asian
laws regulating GMOs have been reviewed in detail [195–197]. In general, there have been
concerns on the application of GMOs in food, feed and on native microflora. Irrespective
of whether the concerns are unfounded, have scientific merit or simply are a consequence
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of unknowns, smooth integration of the elite strains in agricultural practices would require
parallel studies to allay the fear of GMOs. The available data on the ecological impact of
GMOs on native microflora apparently have not raised serious concerns. More studies
covering all dimensions of the impact of elite strains will help formulate a strong scientific
argument in favor or against. The current advances in high-throughput microbiome and
metagenomics analyses are likely to provide a better picture in near future. Molecular
biology will continue to play a vital role in the development of elite strains with wide
applications that outweigh the risks, if any.

Author Contributions: R.K.G. conceptualized and wrote the manuscript; M.A.S. and M.F.H. con-
tributed to the writing and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: The research was funded by Alberta Pulse Growers and Alberta Agriculture and Forestry
through grant number, 2019F003R.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; The MIT Press: Cambridge, MA,

USA, 2001; 338p, ISBN 0-262-19449-X.
2. Strebel, O.; Duynisveld, W.H.M.; Böttcher, J. Nitrate pollution of groundwater in western Europe. Agric. Ecosyst. Environ. 1989,

26, 189–214. [CrossRef]
3. Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A.

Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [CrossRef]
[PubMed]

4. Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008,
311, 1–18. [CrossRef]

5. Lindström, K.; Mousavi, S.A. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol. 2020, 13, 1314–1335. [CrossRef]
6. Sands, D.C.; Morris, C.E.; Dratz, E.A.; Pilgeram, A.L. Elevating optimal human nutrition to a central goal of plant breeding and

production of plant-based foods. Plant Sci. 2009, 177, 377–389. [CrossRef]
7. Voisin, A.S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.H.; Magrini, M.B.; Meynard, J.M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes

for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Dev. 2014, 34, 361–380. [CrossRef]
8. Via, V.D.; Zanetti, M.E.; Blanco, F. How legumes recognize rhizobia. Plant Signal. Behav. 2016, 11. [CrossRef]
9. Mavingui, P.; Flores, M.; Romero, D.; Martinez-Romero, E.; Palacios, R. Generation of Rhizobium strains with improved symbiotic

properties by random DNA amplification (RDA). Nat. Biotechnol. 1997, 15, 564–569. [CrossRef]
10. Prithiviraj, B.; Zhou, X.; Souleimanov, A.; Kahn, W.; Smith, D. A host-specific bacteria-to-plant signal molecule (Nod factor)

enhances germination and early growth of diverse crop plants. Planta 2003, 216, 437–445. [CrossRef]
11. Gautam, K.; Schwinghamer, T.D.; Smith, D.L. The response of soybean to nod factors and a bacteriocin. Plant Signal. Behav. 2016,

11, e1241934. [CrossRef]
12. Hogg, B.; Davies, A.E.; Wilson, K.E.; Bisseling, T.; Downie, J.A. Competitive nodulation blocking of cv. Afghanistan pea is related

to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv. viciae. Mol. Plant Microbe Interact. 2002,
15, 60–68. [CrossRef] [PubMed]

13. Sanjuan, J.; Olivares, J. Multicopy plasmids carring the Klebsiella pneumoniae nifA gene enhance Rhizobium meliloti nodulation
competitiveness on alfalfa. Mol. Plant Microbe Interact. 1991, 4, 5. [CrossRef]

14. Wang, T.; Zhao, X.; Shi, H.; Sun, L.; Li, Y.; Li, Q.; Zhang, H.; Chen, S.; Li, J. Positive and negative regulation of transferred nif genes
mediated by indigenous GlnR in Gram-positive Paenibacillus polymyxa. PLoS Genet. 2018, 14, e1007629. [CrossRef] [PubMed]

15. Yang, C.; Yu, G.; Shen, S.; Zhu, J. Functional difference between Sinorhizobium meliloti NifA and Enterobacter cloacae NifA. Sci.
China Ser. C Life Sci. 2004, 47, 44–51. [CrossRef] [PubMed]

16. Bosworth, A.H.; Williams, M.K.; Albrecht, K.A.; Kwiatkowski, R.; Beynon, J.; Hankinson, T.R.; Ronson, C.W.; Cannon, F.;
Wacek, T.J.; Triplett, E.W. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy
of dctABD and/or modified nifA expression. Appl. Environ. Microbiol. 1994, 60, 3815–3832. [CrossRef]

17. Peralta, H.; Mora, Y.; Salazar, E.; Encarnación, S.; Palacios, R.; Mora, J. Engineering the nifH promoter region and abolishing
poly-β -hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl.
Environ. Microbiol. 2004, 70, 3272–3281. [CrossRef] [PubMed]

http://doi.org/10.1016/0167-8809(89)90013-3
http://doi.org/10.1126/science.1136674
http://www.ncbi.nlm.nih.gov/pubmed/18487183
http://doi.org/10.1007/s11104-008-9668-3
http://doi.org/10.1111/1751-7915.13517
http://doi.org/10.1016/j.plantsci.2009.07.011
http://doi.org/10.1007/s13593-013-0189-y
http://doi.org/10.1080/15592324.2015.1120396
http://doi.org/10.1038/nbt0697-564
http://doi.org/10.1007/s00425-002-0928-9
http://doi.org/10.1080/15592324.2016.1241934
http://doi.org/10.1094/MPMI.2002.15.1.60
http://www.ncbi.nlm.nih.gov/pubmed/11843305
http://doi.org/10.1094/MPMI-4-365
http://doi.org/10.1371/journal.pgen.1007629
http://www.ncbi.nlm.nih.gov/pubmed/30265664
http://doi.org/10.1360/02yc0268
http://www.ncbi.nlm.nih.gov/pubmed/15384181
http://doi.org/10.1128/AEM.60.10.3815-3832.1994
http://doi.org/10.1128/AEM.70.6.3272-3281.2004
http://www.ncbi.nlm.nih.gov/pubmed/15184121


Microorganisms 2021, 9, 125 18 of 24

18. da-Silva, J.R.; Menéndez, E.; Eliziário, F.; Mateos, P.F.; Alexandre, A.; Oliveira, S. Heterologous expression of nifA or nodD genes
improves chickpea-Mesorhizobium symbiotic performance. Plant Soil 2019, 436, 607–621. [CrossRef]

19. da-Silva, J.R.; Paço, A.; Alexandre, A.; Brígido, C.; Menéndez, E. Genetic engineering as a strategy to improve rhizobial symbiotic
performance. In Agricultural Research Updates; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2018; Volume 24, pp. 45–84.

20. Mongiardini, E.J.; Pérez-Giménez, J.; Althabegoiti, M.J.; Covelli, J.; Quelas, J.I.; López-García, S.L.; Lodeiro, A.R. Overproduction
of the rhizobial adhesin RapA1 increases competitiveness for nodulation. Soil Biol. Biochem. 2009, 41, 2017–2020. [CrossRef]

21. Robleto, E.A.; Kmiecik, K.; Oplinger, E.S.; Nienhuis, J.; Triplett, E.W. Trifolitoxin production increases nodulation competitiveness
of Rhizobium etli CE3 under agricultural conditions. Appl. Environ. Microbiol. 1998, 64, 2630–2633. [CrossRef]

22. Chien, H.-L.; Huang, W.-Z.; Tsai, M.-Y.; Cheng, C.-H.; Liu, C.-T. Overexpression of the chromosome partitioning gene parA in
Azorhizobium caulinodans ORS571 alters the bacteroid morphotype in Sesbania rostrata stem nodules. Front. Microbiol. 2019, 10.
[CrossRef]
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