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Abstract
Observational longitudinal data on treatments and covariates are increasingly
used to investigate treatment effects, but are often subject to time-dependent con-
founding.Marginal structural models (MSMs), estimated using inverse probabil-
ity of treatment weighting or the g-formula, are popular for handling this prob-
lem. With increasing development of advanced causal inference methods, it is
important to be able to assess their performance in different scenarios to guide
their application. Simulation studies are a key tool for this, but their use to eval-
uate causal inference methods has been limited. This paper focuses on the use
of simulations for evaluations involving MSMs in studies with a time-to-event
outcome. In a simulation, it is important to be able to generate the data in such
a way that the correct forms of any models to be fitted to those data are known.
However, this is not straightforward in the longitudinal setting because it is nat-
ural for data to be generated in a sequential conditional manner, whereas MSMs
involve fitting marginal rather than conditional hazard models. We provide gen-
eral results that enable the form of the correctly specified MSM to be derived
based on a conditional data generating procedure, and show how the results can
be appliedwhen the conditional hazardmodel is anAalen additive hazard or Cox
model. Using conditional additive hazard models is advantageous because they
imply additiveMSMs that can be fitted using standard software.We describe and
illustrate a simulation algorithm. Our results will help researchers to effectively
evaluate causal inference methods via simulation.

KEYWORDS
additive hazard model, causal inference, congenial models, longitudinal data, marginal struc-
tural model, simulation study, survival analysis, time-dependent confounding

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Biometrical Journal published by Wiley-VCH GmbH.

1526 www.biometrical-journal.com Biometrical Journal. 2021;63:1526–1541.

https://orcid.org/0000-0001-6504-3253
https://orcid.org/0000-0003-3726-5937
https://orcid.org/0000-0002-4207-8733
mailto:ruth.keogh@lshtm.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://www.biometrical-journal.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbimj.202000040&domain=pdf&date_stamp=2021-05-13


KEOGH et al. 1527

1 INTRODUCTION

Observational longitudinal data are increasingly used to investigate the effects of treatments and exposures on health out-
comes. To estimate treatment effects from observational data wemust account for confounding of the treatment-outcome
association, sometimes referred to as ‘confounding by indication’, and recent years have seen huge developments in sta-
tistical and epidemiological methods for this task. In this paper, we focus on the setting of estimating the joint effects of
treatment across time-points on a time-to-event outcome using longitudinal data on treatment use and covariates, where
time-dependent confounding is a specific challenge.When there is time-dependent confounding, standard analysis meth-
ods, such as Cox regression with adjustment for baseline or time-updated covariates, do not in general enable estimation
of the causal effects of interest (Daniel et al., 2013).
Several methods have been described for estimating the causal effects of longitudinal treatment regimes on time-to-

event outcomes. Marginal structural models (MSM) estimated using inverse probability of treatment weighting (IPTW)
for time-to-event outcomes were introduced byHernán et al. (2000), who described use ofmarginal structural Coxmodels
(Cox MSM). Other methods include estimation of MSMs using the g-formula (also called g-computation) (Robins, 1986;
Daniel et al., 2011; Keil et al., 2014), structural nested accelerated failure time models (Robins, 1992; Hernán et al., 2005),
structural nested failure time models (Robins et al., 1992; Vansteelandt and Joffe, 2014), structural nested cumulative
failure time models (Picciotto et al., 2012), and structural nested cumulative survival time models (Seaman et al., 2019).
A recent review (Clare et al., 2018) found that among these, the Cox MSM approach is by far the most commonly used
method in practice.
With the increasing development of more advanced causal inference methods, it is important to be able to evaluate

method performance in different scenarios and make comparisons between methods to guide their use in practice. Sim-
ulation studies are a key tool for such investigations and can be used to assess properties such as bias, efficiency and
coverage of confidence intervals. The results help analysts to choose which methods are most appropriate for answering
research questions using their data. The importance of well-conducted simulation studies was highlighted byMorris et al.
(2019), who provide detailed guidance for their planning and reporting. In this paper, we focus on the use of simulation
studies for evaluations involving MSMs in the setting of a time-to-event outcome using longitudinal data on treatment
use and covariates. When conducting a simulation study, it is desirable to be able to generate the data in such a way that
the correct form of any analysis model to be fitted to those data is known, so that we know that the analysis model is
correctly specified. For example, suppose that we wished to use a simulation study to assess the performance of the IPTW
estimation approach for MSMs when the models for the weights are mis-specified in some way. It would be important to
know that the MSM itself is correctly specified, so that any bias in the estimates can be attributed to mis-specification of
the models used for the weights. As a second example, suppose that we wished to use a simulation study to compare the
relative efficiency of the estimates of survival probabilities obtained using IPTW and using the g-formula. To make a fair
comparison, the models involved in each approach should be correctly specified.
Generating longitudinal and time-to-event data in such a way that the forms of models used in methods applied to the

data are known is not straightforward. A reason for this is that it is natural for the data to be generated in a sequential con-
ditional manner, generating each individual’s covariates, treatment status, and survival status at each measurement time
in turn conditional on the past, starting at time zero. This makes use of conditional models, including conditional haz-
ard models for the time-to-event component. Analysis methods based onMSMs, on the other hand, make use of marginal
(population average) rather than conditional hazardmodels. In this paper, we provide general results that enable the form
of the correctly specified MSM for estimating causal treatment effects to be derived from an underlying conditional haz-
ard model used in the data simulation procedure, and show how the results can be applied when the conditional hazard
model is an additive hazard model (Aalen, 1989; Aalen et al., 2008) or a Cox model (Cox, 1972). We show that there is an
advantage to using conditional additive hazard models for the data simulation, because this results in an additive form
for the MSM, which can be fitted using standard software. The same does not hold for the Cox model. Martinussen and
Vansteelandt (2013) provided results on the relation between conditional and marginal Cox models and conditional and
marginal additive hazardmodels in the point-treatment setting. This paper extends their results to the longitudinal setting
with time-dependent confounding. Young and Tchetgen Tchetgen (2014) investigated compatibility between conditional
and marginal Cox models in the longitudinal and discrete-event-time setting under certain assumptions, but did not con-
sider additive hazard models. We make use of earlier work on the g-formula (Robins, 1986; Keil et al., 2014; Daniel et al.,
2013) to provide general results on the derivation of marginal hazard models based on an underlying conditional hazard
model for a very general situation with time-dependent confounding.
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F IGURE 1 Causal directed acyclic graph (DAG) illustrating relationships between treatment 𝐴, time-dependent covariates 𝐿, an
unmeasured frailty term 𝑈 and time-to-event, illustrated for a discrete-time setting where 𝑌𝑘 = 𝐼(𝑇 > 𝑘)

The primary aim of this paper is to show how to simulate longitudinal data on treatments and covariates together with
a time-to-event outcome in such a way that the form of the MSM that specifies the marginal hazard of the outcome is
known, and hence that we know or are able to derive the true values of its parameters and of causal estimands of inter-
est such as risk differences or risk ratios. The general results that we provide concerning the relation between conditional
andmarginal hazardmodels are key to informing the simulation algorithm. Our results will help researchers to effectively
evaluate causal inferencemethods via simulation; a task of high importance but which is currently very rarely performed.
Havercroft and Didelez (2012), Young et al. (2010),and Young and Tchetgen Tchetgen (2014) outlined algorithms for simu-
lating longitudinal and time-to-event data to correspond with a specified Cox MSM, but their methods require restrictive
assumptions about longitudinal relationships between variables or about distributions of variables, therefore limiting the
simulation scenarios that can be generated—we discuss this earlier work in Section 7. We instead place an emphasis
on use of additive hazard models, and the scenarios to which our results can be used are not limited, as in the earlier
work.
The paper is organised as follows. In Section 2, we outline the longitudinal data set up and the notation. In Sec-

tion 3, we review briefly why standard methods of analysis based on regression adjustment do not estimate the causal
effects of interest and describe the use of MSMs in causal inference. Our main results are presented in Section 4, where
we derive the relationship between a conditional hazard model and an MSM for the hazard and show the advan-
tages of simulating data using an additive hazard model. In Section 5, we provide an example simulation algorithm
and the algorithm is illustrated in Section 6. R code corresponding to the algorithm and the illustration is provided at
https://github.com/ruthkeogh/causal_sim. We conclude with a discussion in Section 7.

2 LONGITUDINAL DATA AND TIME-DEPENDENT CONFOUNDING

We consider a study in which 𝑛 individuals are observed at regular visits up until the earlier of the time of the event of
interest and the censoring time. The visit times, assumed to be the same for everybody, are 𝑘 = 0, 1, … , 𝐾. At each visit
we observe binary treatment status 𝐴𝑘 and a set of time-dependent covariates 𝐿𝑘. A bar over a time-dependent variable
indicates the history, that is �̄�𝑘 = {𝐴0, 𝐴1, … ,𝐴𝑘} and �̄�𝑘 = {𝐿0, 𝐿1, … , 𝐿𝑘}.We let𝐴𝑘

= {𝐴𝑘, 𝐴𝑘+1, … ,𝐴𝐾} denote treatment
from visit 𝑘 up to 𝐾. The event time is denoted 𝑇. For simplicity we assume that all censoring is administrative at time
𝐾 + 1, but the analysis methods that we focus on in this paper also accommodate loss to-follow-up and we discuss this in
Section 7. Temporal causal relationships between variables are illustrated using a directed acyclic graph (DAG) in Figure 1.
In the DAG the relationships are illustrated for a discrete-time setting where 𝑌𝑘 = 𝐼(𝑇 > 𝑘). One can imagine extending
the DAG by adding a series of small time intervals between each visit, at which 𝐼(𝑇 > 𝑡) is observed. As the time intervals
become very small we approach the continuous time setting. The DAG also includes a variable𝑈, which has direct effects
on 𝐿𝑘 and 𝑌𝑘 but not on 𝐴𝑘. 𝑈 is an unmeasured individual frailty and we include it because it is realistic that such
individual frailty effects exist in practice. Because 𝑈 is not a confounder of the assocation between 𝐴𝑘 and the outcome
𝑇, the fact that it is unmeasured does not affect our ability to estimate causal effects of treatments.
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It is possible to use the longitudinal data to estimate the impact of treatment at visit 𝑘,𝐴𝑘 on the concurrent hazard, for
example using a Cox regression with time-updated treatment variable and with adjustment for confounding by the past
treatment and covariate history, (�̄�𝑘−1, �̄�𝑘). This is discussed in Section 3.1. However, questions about causal joint effects
of treatments over time are more difficult to answer, due to the presence of time-dependent confounding. An example
of a question about causal joint treatment effects is whether there is a difference in the probability of survival up to 𝜏

years had an individual been assigned by an intervention to have 𝐴 = 1 at all time points versus had they been assigned
to have 𝐴 = 0 at all time points. Time-dependent confounding occurs when there are time-dependent covariates that
predict subsequent treatment use, are affected by earlier treatment, and affect the outcome through pathways that are not
just through subsequent treatment. The 𝐿𝑘 are time-dependent confounders in the DAG in Figure 1. The DAG could be
extended in various ways, in particular so that there are long term effects of 𝐿 on 𝐴 and vice versa. For example, we could
add arrows from 𝐿𝑘 to𝐴𝑘+1 and from𝐴𝑘 to 𝐿𝑘+2. Long term effects of𝐴 and 𝐿 on survival could also be added, for example
by adding arrows from 𝐿𝑘 and 𝐴𝑘 to 𝑌𝑘+2.

3 ESTIMATING TREATMENT EFFECTS USING LONGITUDINAL DATA

3.1 Traditional survival analysis

We begin by briefly reviewing traditional methods of analysis for investigating the association between a time-dependent
treatment variable and a time-to-event outcome. By far the most popular approach is Cox regression (Cox, 1972). Consider
a Cox regression model in which the hazard at time 𝑡, incorporating time-dependent covariates, is

𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋) = 𝜆0(𝑡) exp

(
𝛽𝐴0𝐴⌊𝑡⌋ + 𝐼(𝑡 > 1)

⌊𝑡⌋∑
𝑗=1

𝛽𝐴𝑗𝐴⌊𝑡⌋−𝑗 +
⌊𝑡⌋∑
𝑗=0

𝛽𝐿𝑗𝐿⌊𝑡⌋−𝑗
)

(1)

where 𝐴⌊𝑡⌋ and 𝐿⌊𝑡⌋ denote the values at the most recent visit prior to time 𝑡 (in a slight abuse of standard notation, ⌊𝑡⌋ is
the largest integer less than 𝑡), 𝜆0(𝑡) is the baseline hazard, and the 𝛽 parameters are log hazard ratios. The hazard ratio
exp(𝛽𝐴0) is the instantaneousmultiplicative effect of the current treatment𝐴⌊𝑡⌋ on the hazard among individuals at risk at
time 𝑡, assumed to be the same for all 𝑡, adjusted for past variables (including past treatment), which are confounders of the
association between𝐴⌊𝑡⌋ and the current hazard. The othermodel parameters donot have a straightforward interpretation.
For example, the coefficient for 𝐴⌊𝑡⌋−1, 𝛽𝐴1, is conditional on covariates that include 𝐴⌊𝑡⌋ and 𝐿⌊𝑡⌋, which are on the
mediating pathway from𝐴⌊𝑡⌋−1 to survival, and so its interpretation is complicated. Hence, the estimation of joint effects of
treatments over time is not accommodated using the traditional Coxmodelling approach with time-dependent covariates.
Furthermore, a growing body of work has explained that hazard ratios do not have a straightforward causal interpretation
(Hernán, 2010; Aalen et al., 2015; Martinussen et al., 2019) and so there are subtleties in the interpretation of 𝛽𝐴0 even
when all confounders have been included.
Aalen’s additive hazard model (Aalen, 1989; Aalen et al., 2008) has been much less used in practice, but its attractive

properties are increasingly being recognised (Martinussen and Vansteelandt, 2013). Consider an additive hazard model in
which the hazard at time 𝑡, incorporating time-dependent covariates, is

𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋) = 𝛼0(𝑡) + 𝛼𝐴0(𝑡)𝐴⌊𝑡⌋ + 𝐼(𝑡 > 1)

⌊𝑡⌋∑
𝑗=1

𝛼Aj(𝑡)𝐴⌊𝑡⌋−𝑗 +
⌊𝑡⌋∑
𝑗=0

𝛼Lj(𝑡)𝐿⌊𝑡⌋−𝑗 (2)

where the parameters 𝛼0(𝑡), 𝛼𝐴𝑗(𝑡), 𝛼𝐿𝑗(𝑡) (𝑗 = 0,… , 4) are arbitrary functions of time, meaning that the model is fully
non-parametric. The results from the additive hazard model are typically presented as cumulative coefficients, for exam-
ple ∫ 𝑡

0
𝛼𝐴0(𝑠)𝑑𝑠. The discussion above about the interpretation of 𝛽𝐴0 is equally relevant to 𝛼𝐴0(𝑡), and again the presence

of time-dependent confounding means that joint effects of treatments over time cannot be estimated directly from the
traditional additive hazard model. An advantage of the additive hazard model relative to the Coxmodel is that the param-
eters of the additive hazard model are collapsible, meaning that the parameter associated with a given covariate in a given
model has the same interpretation as that in a model which is additionally adjusted for variables that are not associated
with that covariate (Martinussen and Vansteelandt, 2013). By contrast, hazard ratios are non-collapsible, meaning that the
Cox model does not have this property. Collapsibility has implications for the relation between conditional models and
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marginal models. In Section 4, we use this property to show that a conditional additive hazard model, of a form such as
that in (2), has a useful role in the simulation of longitudinal data in such a way that the form of the correctly specified
MSM for the hazard is known.

3.2 Marginal structural hazard models

MSMs are models for counterfactual outcomes. We let 𝑇𝑎
0 denote the counterfactual event time for a given individual had

they followed treatment regime 𝑎
0
from visit 0 onwards. The marginal hazard at time 𝑡 under the possibly counter-to-fact

treatment regime 𝑎
0
is the hazard in the population if everyone were to follow that treatment regime, and is denoted

𝜆𝑇𝑎
0 (𝑡).
In the context of time-to-event outcomes, the MSM is usually assumed to take the Cox proportional hazards form

𝜆𝑇𝑎
0 (𝑡) = 𝜆0(𝑡) exp

{
𝑔(�̄�⌊𝑡⌋; 𝛽𝐴)} (3)

where 𝜆0(𝑡) is the baseline counterfactual hazard, �̄�⌊𝑡⌋ denotes treatment pattern up to the most recent visit prior to time
𝑡, 𝑔(�̄�⌊𝑡⌋; 𝛽𝐴) is a function (to be specified) of treatment pattern �̄�⌊𝑡⌋, and 𝛽𝐴 is a vector of log hazard ratios. The hazard
model could take any form, however, and we also consider MSMs based on Aalen’s additive hazard model:

𝜆𝑇𝑎
0 (𝑡) = �̃�0(𝑡) + 𝑔(�̄�⌊𝑡⌋; �̃�𝐴(𝑡)) (4)

The MSM must specify how the hazard at time 𝑡 depends on the history of treatment up to time 𝑡, �̄�⌊𝑡⌋, through the
function 𝑔(⋅). In a simple form for the MSM, the hazard at time 𝑡 is specified to depend only on the current level of
treatment, so that 𝑔(�̄�⌊𝑡⌋; 𝛽𝐴) = 𝛽𝐴𝑎⌊𝑡⌋ in the Cox MSM and 𝑔(�̄�⌊𝑡⌋; �̃�𝐴(𝑡)) = �̃�𝐴(𝑡)𝑎⌊𝑡⌋ in the Aalen MSM. Other exam-
ples are for the hazard at 𝑡 to depend on duration of treatment, using 𝑔(�̄�⌊𝑡⌋; 𝛽𝐴) = 𝛽𝐴

∑⌊𝑡⌋
𝑗=0

𝑎⌊𝑡⌋−𝑗 in the Cox MSM

and 𝑔(�̄�⌊𝑡⌋; �̃�𝐴(𝑡)) = �̃�𝐴(𝑡)
∑⌊𝑡⌋

𝑗=0
𝑎⌊𝑡⌋−𝑗 in the Aalen MSM, or on the history of treatment through main effect terms for

treatment at each visit, using 𝑔(�̄�⌊𝑡⌋; 𝛽𝐴) = ∑⌊𝑡⌋
𝑗=0

𝛽𝐴𝑗𝑎⌊𝑡⌋−𝑗 in the Cox MSM and 𝑔(�̄�⌊𝑡⌋; �̃�𝐴(𝑡)) = ∑⌊𝑡⌋
𝑗=0

�̃�𝐴𝑗(𝑡)𝑎⌊𝑡⌋−𝑗 in the
Aalen MSM.
When there is confounding an MSM cannot be estimated by fitting the model to the observed data using standard

regression. The most commonly used estimation approach uses IPTW, in which individuals are reweighted using time-
dependent weights (Daniel et al., 2013; Cole andHernán, 2008). Further details on the weights are given in the Supporting
Information (SectionA1).MSMs can also be estimated using the g-formula (Robins, 1986; Daniel et al., 2011), and themeth-
ods described in Section 4 make use of this. The use of MSMs estimated using these methods to estimate causal effects of
joint treatments over time involves the four key assumptions of no interference, positivity, consistency, and conditional
exchangeability (no unmeasured confounding) (Robins et al., 2000; VanderWeele, 2009; Daniel et al., 2013). The no inter-
ference assumption is that the counterfactual event time for a given individual, 𝑇𝑎

0 , does not depend on the treatment
received by any other individuals. The positivity assumption is that each individual has a strictly non-zero probability of
receiving each given pattern of treatments over time. Consistencymeans that an individual’s observed outcome is equal to
the counterfactual outcome when the assigned treatment pattern is set to that which was actually received, i.e. 𝑇𝑖 = 𝑇

𝐴
0,𝑖

𝑖
.

The conditional exchangeability assumption can be expressed formally as 𝑇�̄�𝑘−1,𝑎𝑘 ⟂⟂ 𝐴𝑘|�̄�𝑘−1, �̄�𝑘, 𝑇 ≥ 𝑘 for all feasible
𝑎
𝑘
, where 𝑇�̄�𝑘−1,𝑎𝑘 denotes the counterfactual event time had an individual followed their observed treatment pattern up

to time 𝑘 − 1, �̄�𝑘−1, and had their treatments been set to 𝑎𝑘 from time 𝑘 onwards, given survival to time 𝑘. The conditional
exchangeability assumption means that among individuals who remain at risk of the event at time 𝑘, the treatment 𝐴𝑘

received at time 𝑘 may depend on past treatment and covariates �̄�𝑘−1 and �̄�𝑘, but that, conditional on these, it does not
depend on the remaining lifetime that would apply if all future treatments were set to any particular values 𝑎

𝑘
.

The Cox MSM gives rise to estimates of the log hazard ratios 𝛽𝐴, and the Aalen MSM to estimates of cumulative regres-
sion coefficients ∫ 𝑡

0
�̃�𝐴(𝑠)𝑑𝑠. As noted in Section 3.1, hazard-based estimands, which include hazard ratios from a Cox

model and cumulative regression coefficients from Aalen’s additive hazard model, have been shown not to have a direct
causal interpretation. Therefore, it is desirable to translate the estimates from the MSM into an estimate for a causal esti-
mand such as a risk difference or a risk ratio. For example, the marginal risk difference at time 𝑡 had all individuals been
treated up to time 𝑡 versus had all individuals not been treated up to time 𝑡 is Pr(𝑇𝑎

0
=1 ≥ 𝑡) − Pr(𝑇𝑎

0
=0 > 𝑡)Based on the
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Cox MSM in (3), the counterfactual survival probability at time 𝑡 is

Pr(𝑇𝑎
0 ≥ 𝑡) = exp

(
−𝑒𝑔(𝑎0;𝛽𝐴) ∫

1

0

𝜆0(𝑠)𝑑𝑠 − 𝑒𝑔(�̄�1;𝛽𝐴) ∫
2

1

𝜆0(𝑠)𝑑𝑠⋯ − 𝑒𝑔(�̄�⌊𝑡⌋;𝛽𝐴) ∫
𝑡

⌊𝑡⌋ 𝜆0(𝑠)𝑑𝑠
)

(5)

where the baseline cumulative hazard can be estimated using (an inverse probability weighted) Breslow’s estimator. The
counterfactual survival probability based on the Aalen MSM in (4) is

Pr(𝑇𝑎
0 ≥ 𝑡) = exp

(
−∫

𝑡

0

�̃�0(𝑠)𝑑𝑠 − ∫
1

0

𝑔(𝑎0; �̃�𝐴(𝑠))𝑑𝑠 − ∫
2

1

𝑔(�̄�1; �̃�𝐴(𝑠))𝑑𝑠⋯ − ∫
𝑡

⌊𝑡⌋ 𝑔(�̄�⌊𝑡⌋; �̃�𝐴(𝑠))𝑑𝑠
)

(6)

4 SIMULATION FROMMSMs

As noted in Section 1, when conducting a simulation study to evaluate and compare the properties of analysis methods, it
is important to be able to generate the data in such a way that the forms of anymodels to be estimated using the simulated
data are known based on the data generating mechanism. In our context, for evaluations involving MSMs it is therefore
important to know the correct form of theMSM, and hence know or be able to derive the true values of its parameters and
of causal estimands of interest such as risk differences or risk ratios. It may also be of interest in some contexts to evaluate
the impact of using a mis-specfiedMSM, in which case we need to understand how the model under consideration differs
from the correctly specified MSM.
When simulating longitudinal and time-to-event data, such as for the situation depicted in the DAG in Figure 1, it is

natural to generate the data sequentially in time.We provide a detailed algorithm in Section 5. Briefly, the procedure starts
by generating𝑈, then 𝐿0|𝑈, then 𝐴0|𝐿0,𝑈, and then event times in period 0 < 𝑡 < 1 using the hazard 𝜆(𝑡|𝐴0, 𝐿0, 𝑈). The
next step is to generate 𝐿1|𝐴0, 𝐿0, 𝑈, 𝑇 ≥ 1, followed by 𝐴1|𝐴0, 𝐿0, 𝐿1, 𝑈, 𝑇 ≥ 1, and then event times in period 1 ≤ 𝑡 < 2

using the hazard 𝜆(𝑡|𝐴0,𝐴1, 𝐿0, 𝐿1, 𝑈). Analogous steps are then carried out for each of visits 2, 3 and so on up to 𝐾.
This procedure uses the conditional hazards 𝜆(𝑡|�̄�⌊, �̄�⌊, 𝑈). The MSM describes instead the marginal hazard, which is a
function only of the assigned treatment up to time 𝑡, �̄�⌊𝑡⌋, and not of �̄�⌊𝑡⌋ or 𝑈. The question therefore arises as to what
the form of the MSM is under the sequential data generating procedure outlined above, which uses a conditional hazard
model and conditional models for the time-dependent covariates.

4.1 Link between conditional and marginal hazard models

In this section we derive general results for the link between the conditional models used to simulate the longitudinal
and time-to-event data and the MSM 𝜆𝑇𝑎

0 (𝑡). These general results are then used in the context of additive hazard mod-
els and Cox models. This extends some of the work of Martinussen and Vansteelandt (2013) to the longitudinal setting.
Our overall approach is to first use the g-formula for time-to-event outcomes (Robins, 1986; Keil et al., 2014; Daniel et al.,
2013) to express the survivor function for counterfactual event times, Pr(𝑇𝑎

0 ≥ 𝑡), in terms of conditional distributions of
observed event times and variables 𝐴, 𝐿,𝑈, and then use the fact that the hazard can be expressed as minus the deriva-

tive of the log of the survivor function: 𝜆𝑇𝑎
0 (𝑡) =

−
𝑑

𝑑𝑡
Pr(𝑇

𝑎
0≥𝑡)

Pr(𝑇
𝑎
0≥𝑡) . We first consider the effect of treatment at time 0, 𝑎0, on

the hazard at times 0 < 𝑡 < 1, and then the effect of treatment at times 0 and 1 on the hazard at times 1 ≤ 𝑡 < 2, and
so on.
The DAG in Figure 1 is just one example of a situation to which the general results given in this section apply. The

results also apply for extended settings, noted in Section 2, in which there could be longer term effects of 𝐿 on 𝐴 and vice
versa, and longer term effects of𝐴 and 𝐿 on the hazard. The results do not rely on the existence of the unobserved variable
𝑈. We focus on a setting in which events are observed in continuous time.
By averaging over 𝐿0 and 𝑈, the marginal survival probability Pr(𝑇

𝑎
0 ≥ 𝑡) for 0 < 𝑡 < 1 can be expressed as

Pr(𝑇𝑎
0 ≥ 𝑡) = ∫ Pr(𝑇𝑎

0 ≥ 𝑡|𝐿0,𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈
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= ∫ Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈 (7)

where the second line follows from the conditional exchangeability assumption 𝑇𝑎
0 ⟂⟂ 𝐴0|𝐿0 and consistency. Using the

relation between the hazard and the survivor function the hazard corresponding to the survival function in (7) can be
written

𝜆𝑇𝑎
0 (𝑡) =

− ∫ 𝑑

𝑑𝑡
Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈

∫ Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈

=
∫ 𝜆(𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈) Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈

∫ Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈

=
𝐸𝐿0,𝑈{𝜆(𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈) Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)}

𝐸𝐿0,𝑈{Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈)}

=
𝐸𝐿0,𝑈

{
𝜆(𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈) exp

(
− ∫ 𝑡

0
𝜆(𝑠|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑑𝑠

)}
𝐸𝐿0,𝑈

{
exp

(
− ∫ 𝑡

0
𝜆(𝑠|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑑𝑠

)} (8)

where 𝐸𝐿0,𝑈
(⋅) denotes the expectation over the joint distribution of 𝐿0 and 𝑈. For 0 < 𝑡 < 1, the MSM 𝜆𝑇𝑎

0 (𝑡) can there-
fore be expressed as a function of the conditional hazard 𝜆(𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈) and conditional distributions of variables
𝐴0, 𝐿0, 𝑈.
Next, we derive an expression for themarginal survivor function Pr(𝑇𝑎

0 ≥ 𝑡) for 1 ≤ 𝑡 < 2, followed by an expression for
the corresponding hazard. To derive the survivor function, first consider averaging over the baseline variables 𝐿0 and 𝑈:

Pr(𝑇𝑎
0 ≥ 𝑡) = ∫ Pr(𝑇𝑎

0 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈, 𝑇𝑎
0 ≥ 1) Pr(𝑇𝑎

0 ≥ 1|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈

= ∫ Pr(𝑇𝑎
0 ≥ 𝑡|𝐴0 = 𝑎0, 𝐿0, 𝑈, 𝑇 ≥ 1) Pr(𝑇 ≥ 1|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑓(𝐿0,𝑈)𝑑𝐿0𝑑𝑈. (9)

The second line follows because the events that 𝑇𝑎
0 ≥ 1 and 𝑇 ≥ 1 are the same for individuals with 𝐴0 = 𝑎0.

In the next step we first average over 𝐿1|𝐿0,𝑈, 𝑇 ≥ 1 and then use the conditional exchangeability assumption
𝑇𝑎

0 ⟂⟂ 𝐴1|�̄�1, 𝐴0 = 𝑎0, 𝑇 ≥ 1 and consistency to give

Pr(𝑇𝑎
0 ≥ 𝑡) = ∫ Pr(𝑇𝑎

0 ≥ 𝑡|𝐴0 = 𝑎0, �̄�1, 𝑈, 𝑇 ≥ 1) Pr(𝑇 ≥ 1|𝐴0 = 𝑎0, 𝐿0, 𝑈)

×𝑓(𝐿1|𝐴0 = 𝑎0, 𝐿0, 𝑈, 𝑇 ≥ 1)𝑓(𝐿0,𝑈)𝑑�̄�1𝑑𝑈

= ∫ Pr(𝑇 ≥ 𝑡|𝐴0 = 𝑎0, 𝐴1 = 𝑎1, �̄�1, 𝑈, 𝑇 ≥ 1) Pr(𝑇 ≥ 1|𝐴0 = 𝑎0, 𝐿0, 𝑈)

×𝑓(𝐿1|𝐴0 = 𝑎0, 𝐿0, 𝑈, 𝑇 ≥ 1)𝑓(𝐿0,𝑈)𝑑�̄�1𝑑𝑈

= 𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1

{
Pr(𝑇 ≥ 𝑡|�̄�1 = �̄�1, �̄�1, 𝑈, 𝑇 ≥ 1) Pr(𝑇 ≥ 1|𝐴0 = 𝑎0, 𝐿0, 𝑈)

}]
(10)

Finally, using the relation between the hazard and survivor function it can be shown that for 1 ≤ 𝑡 < 2

𝜆𝑇𝑎
0 (𝑡) =

𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1

{
𝜆(𝑡|�̄�1 = �̄�1, �̄�1, 𝑈) exp

(
− ∫ 1

0
𝜆(𝑠|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑑𝑠 − ∫ 𝑡

1
𝜆(𝑠|�̄�1 = �̄�1, �̄�1, 𝑈)𝑑𝑠

)}]
𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1

{
exp

(
− ∫ 1

0
𝜆(𝑠|𝐴0 = 𝑎0, 𝐿0, 𝑈)𝑑𝑠 − ∫ 𝑡

1
𝜆(𝑠|�̄�1 = �̄�1, �̄�1, 𝑈)𝑑𝑠

)}]
(11)

It follows that for 1 ≤ 𝑡 < 2 the MSM 𝜆𝑇𝑎
0 (𝑡) can be expressed as a function of the conditional hazard 𝜆(𝑡|�̄�1, �̄�1, 𝑈) and

conditional distributions of variables �̄�1, �̄�1, 𝑈.
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A general expression for the MSM at times 𝑘 ≤ 𝑡 < 𝑘 + 1 is

𝜆𝑇𝑎
0 (𝑡) =

𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1

{
⋯𝐸𝐿𝑘|�̄�𝑘−1=�̄�𝑘−1,�̄�𝑘−1,𝑈,𝑇≥𝑘

(
𝜆(𝑡|�̄�𝑘 = �̄�𝑘, �̄�𝑘, 𝑈, )𝑘

)}]
𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1

{
⋯𝐸𝐿𝑘|�̄�𝑘−1=�̄�𝑘−1,�̄�𝑘−1,𝑈,𝑇≥𝑘(𝑘)

}] (12)

where 𝑘 =
∏𝑘−1

𝑗=0
exp(− ∫ 𝑗+1

𝑗
𝜆(𝑠|�̄�𝑗 = 𝑎𝑗, �̄�𝑗, 𝑈)𝑑𝑠) exp(− ∫ 𝑡

𝑘
𝜆(𝑠|�̄�𝑘 = 𝑎𝑘, �̄�𝑘, 𝑈)𝑑𝑠).

The above results showhow theMSM 𝜆𝑇𝑎
0 (𝑡) can be expressed in terms of the conditional hazardmodel for the observed

data, 𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈), and conditional distributions for the observed time-dependent covariates. The results were derived
by making use of the g-formula. We next apply these results to the situations in which the conditional hazard model
𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) follows an Aalen additive hazard model or a Cox model.

4.2 Results using conditional additive hazard models

Suppose that the conditional hazard model is of the additive form

𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) = 𝛼0(𝑡) + 𝛼⊤
𝐴
(𝑡)𝑣(�̄�⌊𝑡⌋) + 𝛼⊤

𝐿
(𝑡)𝑤(�̄�⌊𝑡⌋) + 𝛼𝑈(𝑡)𝑈 (13)

where 𝛼𝐴(𝑡) and 𝛼𝐿(𝑡) are vectors of parameters and the hazard at time 𝑡 depends on a known vector function of �̄�⌊𝑡⌋,
𝑣(�̄�⌊𝑡⌋), and a known vector function of �̄�⌊𝑡⌋, 𝑤(�̄�⌊𝑡⌋).
It can be shown that 𝜆𝑇𝑎

0 (𝑡) also takes the form of an additive hazardmodel in this case.We provide results for 0 < 𝑡 < 1

and 1 ≤ 𝑡 < 2 to illustrate the point. For 0 < 𝑡 < 1, using the general expression in (8), we have

𝜆𝑇𝑎
0 (𝑡) = 𝛼0(𝑡) + 𝛼⊤

𝐴
(𝑡)𝑣(𝑎0) +

𝐸𝐿0,𝑈

{(
𝛼⊤
𝐿
(𝑡)𝑤(𝐿0) + 𝛼𝑈(𝑡)𝑈

)
exp

(
− ∫ 𝑡

0
(𝛼⊤

𝐿
(𝑠)𝑤(𝐿0) + 𝛼𝑈(𝑠)𝑈)𝑑𝑠

)}
𝐸𝐿0,𝑈

{
exp

(
− ∫ 𝑡

0
(𝛼⊤

𝐿
(𝑠)𝑤(𝐿0) + 𝛼𝑈(𝑠)𝑈)𝑑𝑠

)} (14)

This expression for 𝜆𝑇𝑎
0 (𝑡) (0 < 𝑡 < 1) is of the additive form, 𝜆𝑇𝑎

0 (𝑡) = �̃�0(𝑡) + 𝛼⊤
𝐴
(𝑡)𝑣(𝑎0). The coefficient for 𝑣(𝑎0), 𝛼𝐴(𝑡),

is the same as in the conditional hazard model, whereas the intercept �̃�0(𝑡) is now the sum of 𝛼0(𝑡) and the third term in
the expression in (14). Note that since the treatment is binary 𝑣(𝑎0) = 𝑎0 (or, trivially, 𝑣(𝑎0) = 1 if the conditional hazard
(13) at times 0 < 𝑡 < 1 does not depend on𝐴0). The result in (14) is similar to that derived byMartinussen andVansteelandt
(2013), who considered the form of themarginal hazard in the setting of a point treatment, except they did not incorporate
a 𝑈 variable.
For 1 ≤ 𝑡 < 2 it can be shown using (11) that the MSM is of the form

𝜆𝑇𝑎
0 (𝑡) = 𝛼0(𝑡) + 𝛼⊤

𝐴
(𝑡)𝑣(�̄�1) +

𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1

{
(𝛼⊤

𝐿
(𝑡)𝑤(�̄�1) + 𝛼𝑈(𝑡)𝑈)(�̄�1, 𝑈)

}]
𝐸𝐿0,𝑈

[
𝐸𝐿1|𝐴0=𝑎0,𝐿0,𝑈,𝑇≥1{(�̄�1, 𝑈)}

] (15)

where(�̄�1, 𝑈) = exp(− ∫ 1

0
(𝛼⊤

𝐿
(𝑠)𝑤(𝐿0) + 𝛼𝑈(𝑠)𝑈)𝑑𝑠 − ∫ 𝑡

1
(𝛼⊤

𝐿
(𝑠)𝑤(�̄�1) + 𝛼𝑈(𝑠)𝑈)𝑑𝑠). The third term of (15) is a function

of 𝑎0. It follows from this expression that for a binary treatment the MSM 𝜆𝑇𝑎
0 (𝑡) is of the additive hazard form 𝜆𝑇𝑎

0 (𝑡) =

�̃�0(𝑡) + 𝛼⊤
𝐴
(𝑡)𝑣(�̄�1) + �̃�∗

𝐴
(𝑡)𝑎0. In the setting where 𝛼⊤

𝐴
(𝑡)𝑣(�̄�1) = 𝛼𝐴0(𝑡)𝑎1 + 𝛼𝐴1(𝑡)𝑎0, the coefficient for 𝑎1 in the MSM

𝜆𝑇𝑎
0 (𝑡) (1 ≤ 𝑡 < 2) is the same as that in the conditional hazard model, 𝛼𝐴0(𝑡), whereas the intercept and the coefficient

for 𝑎0 are different from those in the conditional hazard model.
The result that the MSM 𝜆𝑇𝑎

0 (𝑡) is of an additive form when the conditional hazard model is an additive model does
not rely on distributional assumptions for 𝐿 and 𝑈. Finding expressions for the third terms in (14) and (15) (ratios of
nested expectations) is in general intractable (see Supporting Information Section A2 for an example where closed form
expressions are available). In Section 6.2, we describe a general simulation-based approach to deriving the true values of
the parameters of the MSM, which is straightforward to implement.
In the conditional additive hazardmodel in (13) the treatment history is included in the general form𝑣(�̄�⌊𝑡⌋). In practice,

as discussed in Section 3.2, this form has to be specified. Suppose that the conditional hazard model was of a form such
that the hazard at time 𝑡 depends only on the current treatment status𝐴⌊𝑡⌋, that is 𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) = 𝛼0(𝑡) + 𝛼𝐴(𝑡)𝐴⌊𝑡⌋ +
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𝛼⊤
𝐿
(𝑡)𝑤(�̄�⌊𝑡⌋) + 𝛼𝑈(𝑡)𝑈. The result in (15) shows that even if the conditional hazard at time 𝑡 (1 ≤ 𝑡 < 2) depends on treat-

ment only through the current level, 𝑎1, the MSM depends on both 𝑎0 and 𝑎1 for 1 ≤ 𝑡 < 2. The intuition behind this
result is that 𝐴0 affects 𝐿1 and hence after the averaging over 𝐿1, the marginal hazard at time 𝑡 (1 ≤ 𝑡 < 2) depends on 𝑎0.
In general, even if the conditional hazard at time 𝑡 depends on treatment only through the current level, 𝑎⌊𝑡⌋, the MSM
depends on the whole history of treatment �̄�⌊𝑡⌋. In the Supporting Information (Section A3) we extend the results to the
setting where the conditional hazard model (13) additionally includes interactions between �̄�⌊𝑡⌋ and �̄�⌊𝑡⌋.

4.3 Results using conditional Cox models

Suppose instead that the conditional hazard model is of the Cox proportional hazards form

𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) = 𝜆0(𝑡) exp
(
𝛽⊤
𝐴
𝑣(�̄�⌊𝑡⌋) + 𝛽⊤

𝐿
𝑤(�̄�⌊𝑡⌋) + 𝛽𝑈𝑈

)
(16)

For 0 < 𝑡 < 1, using the general expression in (8), the MSM takes the form

𝜆𝑇𝑎
0 (𝑡) = 𝜆0(𝑡) exp

(
𝛽⊤
𝐴
𝑣(𝑎0)

)⎡⎢⎢⎢⎣
𝐸𝐿0,𝑈

{
exp

(
𝛽⊤
𝐿
𝑤(𝐿0) + 𝛽𝑈𝑈

)
exp

(
− ∫ 𝑡

0
𝜆0(𝑠)𝑒

𝛽⊤
𝐴
𝑣(𝑎0)+𝛽

⊤
𝐿
𝑤(𝐿0)+𝛽𝑈𝑈𝑑𝑠

)}
𝐸𝐿0,𝑈

{
exp

(
− ∫ 𝑡

0
𝜆0(𝑠)𝑒

𝛽⊤
𝐴
𝑣(𝑎0)+𝛽

⊤
𝐿
𝑤(𝐿0)+𝛽𝑈𝑈𝑑𝑠

)} ⎤⎥⎥⎥⎦ (17)

The ratio of expectations in the third term in the above expression is a complicated function of both 𝑡 and 𝑎0, and 𝜆𝑇𝑎
0 (𝑡)

no longer takes the Cox model form. A closed form expression for the third term of (17) is not generally available, even in
the setting of bivariate normality for 𝐿0,𝑈.
Similar results to those provided here for the Cox model were derived by Young and Tchetgen Tchetgen (2014), who

focused on a setting in which events are observed in discrete time. In our setting time-dependent treatment status and
covariates are observed at discrete time intervals, but events are observed in continuous time. We discuss the results of
Young and Tchetgen Tchetgen (2014) further in Section 7.

4.4 Summary

When the conditional hazard model 𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) is additive, we have shown that the MSM 𝜆𝑇𝑎
0 (𝑡) is also additive.

The coefficients for �̄�𝑡 in the MSM differ from those in the conditional model except for 0 < 𝑡 < 1—that is, except up to
visit 𝑘 = 1. The intercepts in the conditional model differ from those in theMSM at all time points. Even if the conditional
hazard model depends on treatment only through the current level, the MSM depends on the whole treatment history.
When the conditional hazard model is a Cox model, the MSM is no longer a Coxmodel; instead it takes a complex form

with the effect of �̄�𝑘 on the hazard being a complex function of time.

5 SIMULATION ALGORITHM

It follows from the results of Section 4 that if longitudinal data are simulated according to a conditional additive hazard
model, then the marginal hazard model used in a MSM analysis is also additive and hence can be correctly specified.
In this section, we describe an example simulation algorithm which results in a known additive form for the MSM. The
data generating mechanism corresponds to the DAG in Figure 1, but with event times generated in continuous time. This
is intended as a particular illustration of a general approach and the algorithm can easily be modified for other data-
generating mechanisms. In Section 6, we illustrate the practical implementation of the algorithm, and R code is provided
at https://github.com/ruthkeogh/causal_sim.
Longitudinal data are generated at 5 visits 𝑘 = 0,… , 4 for a single time-dependent continuous variable 𝐿, for example

representing a biomarker, and for a binary treatment𝐴 and continuous variable𝑈, representing an individual frailty term.
The example algorithm uses a conditional hazard of the form 𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) = 𝛼0 + 𝛼𝐴𝐴⌊𝑡⌋ + 𝛼𝐿𝐿⌊𝑡⌋ + 𝛼𝑈𝑈. Here we
focus on constant conditional baseline hazard and constant coefficients, which simplifies the generation of event times. An
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extension of the algorithm to accommodatemore complex forms for the hazard is described in the Supporting Information
(Section A4), and is based on generating event times from a piecewise exponential distribution. The conditional hazard at
time 𝑡 depends on the current values of𝐴 and 𝐿, but not on past values. The implied form of the MSM is 𝜆𝑇𝑎

0 (𝑡) = �̃�0(𝑡) +∑⌊𝑡⌋
𝑗=0

�̃�𝐴𝑗(𝑡)𝑎⌊𝑡⌋−𝑗 . In the example algorithm, higher values of the biomarker 𝐿 are associated with higher propensity to
receive the treatment and higher hazard. The biomarker value also increases with time. The treatment lowers the value of
𝐿 and lowers the hazard. Event times are generated in the range 0 < 𝑇 < 5 and there is administrative censoring at time
5. Other types of right-censoring could be incorporated, and an example with non-administrative censoring is provided in
the example R code.
The steps to generate the longitudinal data are as follows for each individual 𝑖 = 1, … , 𝑛:

1. Generate the individual frailty term 𝑈 from a normal distribution with mean 0 and standard deviation 0.1.
2. Generate 𝐿0 from a normal distribution with mean 𝑈 and standard deviation 1.
3. Generate 𝐴0 from a Bernoulli distribution with logit Pr(𝐴0 = 1|𝐿0) = −2 + 0.5𝐿0.
4. The conditional hazard is 𝜆(𝑡|�̄�⌊𝑡⌋, �̄�⌊𝑡⌋, 𝑈) = 0.7 − 0.2𝐴⌊𝑡⌋ + 0.05𝐿⌊𝑡⌋ + 0.05𝑈. Event times are generated in the period

0 < 𝑡 < 1 as follows. First generate 𝑉 ∼ Uniform(0, 1) and calculate 𝑇∗ = − log(𝑉)∕𝜆(𝑡|𝐴0, 𝐿0, 𝑈). If 𝑇∗ < 1 the event
time is set to be 𝑇 = 𝑇∗. Individuals with 𝑇∗ ≥ 1 remain at risk of the event at time 𝑡 = 1.
For individuals who remain at risk of the event at visit time 𝑘 = 1:

5. Generate 𝐿𝑘 from a normal distribution with mean 0.8𝐿𝑘−1 − 𝐴𝑘−1 + 0.1𝑘 + 𝑈 and standard deviation 1.
6. Generate 𝐴𝑘 from a Bernoulli distribution with logit Pr(𝐴𝑘 = 1|�̄�𝑘−1, �̄�𝑘, 𝑇 ≥ 𝑘) = −2 + 0.5𝐿𝑘 + 𝐴𝑘−1.
7. Generate event times in the period 𝑘 ≤ 𝑡 < 𝑘 + 1. First generate 𝑉 ∼ Uniform(0, 1) and calculate 𝑇∗ =

− log(𝑉)∕𝜆(𝑡|�̄�𝑘, �̄�𝑘, 𝑈). If 𝑇∗ < 1 the event time is set to be 𝑇 = 𝑘 + 𝑇∗. Individuals with 𝑇∗ ≥ 1 remain at risk
of the event at time 𝑘 + 1.

8. Repeat steps 5–7 for 𝑘 = 2, 3, 4. Individuals who do not have an event time generated in the period 0 < 𝑡 < 5 are admin-
istratively censored at time 5.

6 SIMULATION ILLUSTRATION

6.1 Methods and estimands

We illustrate the algorithm described in Section 5 by generating 1000 simulated data sets for each of 𝑛 = 5000 individuals.
Our theoretical results imply that the conditional data generating mechanism outlined in Section 5 leads to the correctly
specified MSM being of the form 𝜆𝑇𝑎

0 (𝑡) = �̃�0(𝑡) +
∑⌊𝑡⌋

𝑗=0
�̃�𝐴𝑗(𝑡)𝑎⌊𝑡⌋−𝑗 . This MSM is fitted to each simulated data set using

IPTW (MSM-IPTW). Stabilized weights were used for the IPTW estimation and the weights were estimated using logistic
regression, with logit Pr(𝐴𝑘 = 1|�̄�𝑘−1, 𝑇 ≥ 𝑘) = 𝛾0 + 𝛾𝐴𝐴𝑘−1 and logit Pr(𝐴𝑘 = 1|�̄�𝑘, �̄�𝑘−1, 𝑇 ≥ 𝑘) = 𝛾0 + 𝛾𝐴𝐴𝑘−1 + 𝛾𝐿𝐿𝑘
(see Supporting Information Section A1). The secondmodel, used in the denominator of the stablised weights, is correctly
specified according the data generation mechanism.
The estimands of interest are the cumulative coefficients ∫ 𝑡

0
�̃�0(𝑠)𝑑𝑠 and ∫ 𝑡

0
�̃�𝐴𝑗(𝑠)𝑑𝑠 (𝑗 = 0, 1, 2, 3, 4) and marginal sur-

vival probabilities for two treatment regimes: ‘always treated’ (Pr(𝑇𝑎
0
=1 ≥ 𝑡)) and ‘never treated’ (Pr(𝑇𝑎

0
=0 ≥ 𝑡)). For each

estimandwe present themean value of the estimates across simulations at times 1, 2, 3, 4, 5 and the corresponding bias.We
also obtained the empirical standard errors of the estimates as the standard deviation of the estimates across simulations
at times 1, 2, 3, 4, 5. For the bias we obtained Monte Carlo standard errors (Morris et al., 2019). Results are also shown
graphically across all time points. Because the analyses are based on a correctly specified MSM and correctly specified
models for the weights, we expect the resulting estimates to be approximately unbiased.

6.2 Obtaining true values

To calculate the bias we need to know the true values of the estimands. We recommend a simulation-based approach.
This involves generating longitudinal data in a similar way to that described in the algorithm but for a large ‘randomized
controlled trial’ (RCT) where the relationships between the variables are the same as in the observational study (Figure 1),
with the exception that 𝐿𝑘 does not affect 𝐴𝑘. Instead, 𝐴𝑘 is set by intervention to the fixed value determined by the
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TABLE 1 Cumulative coefficients at times 1–5: true values, mean of the estimates (and empirical SE) obtained using MSM-IPTW from
1000 simulations, and bias in the estimates (and Monte Carlo SE) obtained using MSM-IPTW

MSM-IPTW

Time True value
Mean estimate
(Empirical SE)

Bias
(Monte Carlo SE)

Cumulative coefficient ∫ 𝑡

0
�̃�0(𝑠)𝑑𝑠

1 0.700 (0.009) 0.699 (0.016) −0.001 (0.000)
2 1.408 (0.016) 1.407 (0.028) −0.000 (0.001)
3 2.128 (0.026) 2.129 (0.045) 0.002 (0.001)
4 2.863 (0.040) 2.867 (0.070) 0.003 (0.002)
5 3.623 (0.058) 3.630 (0.110) 0.007 (0.003)
Cumulative coefficient ∫ 𝑡

0
�̃�𝐴0(𝑠)ds

1 −0.198 (0.010) −0.199 (0.037) −0.001 (0.001)
2 −0.396 (0.017) −0.397 (0.065) −0.000 (0.002)
3 −0.594 (0.023) −0.592 (0.100) 0.001 (0.003)
4 −0.790 (0.033) −0.788 (0.150) 0.002 (0.005)
5 −0.987 (0.042) −0.968 (0.231) 0.018 (0.007)
Cumulative coefficient ∫ 𝑡

0
�̃�𝐴1(𝑠)ds (equal to zero for 𝑡 ≤ 1)

2 −0.098 (0.013) −0.102 (0.057) −0.004 (0.002)
3 −0.195 (0.021) −0.206 (0.096) −0.011 (0.003)
4 −0.291 (0.030) −0.303 (0.155) −0.013 (0.005)
5 −0.386 (0.039) −0.390 (0.245) −0.005 (0.008)
Cumulative coefficient ∫ 𝑡

0
�̃�𝐴2(𝑠)ds (equal to zero for 𝑡 ≤ 2)

3 −0.077 (0.017) −0.076 (0.078) 0.001 (0.002)
4 −0.153 (0.027) −0.153 (0.139) 0.000 (0.004)
5 −0.228 (0.039) −0.222 (0.232) 0.006 (0.007)
Cumulative coefficient ∫ 𝑡

0
�̃�𝐴3(𝑠)ds (equal to zero for 𝑡 ≤ 3)

4 −0.060 (0.021) −0.061 (0.115) −0.001 (0.004)
5 −0.121 (0.035) −0.128 (0.211) −0.007 (0.007)
Cumulative coefficient ∫ 𝑡

0
�̃�𝐴4(𝑠)ds (equal to zero for 𝑡 ≤ 4)

5 −0.047 (0.028) −0.039 (0.176) 0.008 (0.006)

treatment regime. With 5 visit times and a binary treatment, there are 25 = 32 possible longitudinal treatment regimes.
We generated trial data with𝑚 = 1000 individuals assigned to each of the 32 possible treatment regimes. The 1000 values
of 𝐿0 were generated once and set to be the same in each regime. The trial therefore contains in total 32,000 individuals.
We simulated 1000 trials. The correctly specified MSM was fitted in each simulated trial data set without any weights—
since there is no time-dependent confounding in the trial data there is no need for any weights. This provides estimates of
the cumulative coefficients ∫ 𝑡

0
�̃�0(𝑠)𝑑𝑠, ∫ 𝑡

0
�̃�𝐴𝑗(𝑠)𝑑𝑠, 𝑗 = 0,… , 4. Estimates of marginal survival probabilities in the ‘always

treated’ and ‘never treated’ groups were obtained using (6). Note that the survival probabilities could in fact have been
directly estimated using simple proportions from the RCT data, since there is only administrative censoring. This is shown
in the example code provided. The true values of the estimands were taken to be the average of the estimates obtained
from the large randomized trials across the 1000 simulated data sets.

6.3 Results

The results from the simulation illustration are shown in Tables 1 and 2 and Figures 2 and 3. The estimated cumulative
coefficients from the MSM are approximately unbiased. The small bias in some of the cumulative coefficients is thought
to be due to finite sample bias, and the plots show that it is negligible. The same applies for the survival probabilities
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TABLE 2 Survival probabilities for the treatment regimes ‘never treated’ and ‘always treated’ at times 1–5: true values, mean of the
estimates (and empirical SE) obtained using MSM-IPTW from 1000 simulations, and bias in the estimates (and Monte Carlo SE) obtained
using MSM-IPTW

MSM-IPTW

Time True value
Mean estimate
(Empirical SE)

Bias
(Monte Carlo SE)

Never treated: Pr(𝑇𝑎
0
=0 ≥ 𝑡)

1 0.497 0.497 (0.008) 0.000 (0.000)
2 0.245 0.245 (0.007) 0.000 (0.000)
3 0.119 0.119 (0.005) −0.000 (0.000)
4 0.057 0.057 (0.004) −0.000 (0.000)
5 0.027 0.027 (0.003) −0.000 (0.000)
Always treated: Pr(𝑇𝑎

0
=1 ≥ 𝑡)

1 0.606 0.607 (0.021) 0.001 (0.001)
2 0.401 0.404 (0.031) 0.003 (0.001)
3 0.283 0.288 (0.040) 0.005 (0.001)
4 0.208 0.216 (0.051) 0.007 (0.002)
5 0.157 0.165 (0.066) 0.009 (0.002)

under the ‘always treated’ and ‘never treated’ regimes, which are derived from the cumulative coefficients. The cumulative
coefficients are imprecisely estimated, resulting in a large pointwise confidence intervals for the survival curves.

7 DISCUSSION

In this paper, we have provided results on the link between the conditional models used in the simulation of longitudinal
and time-to-event data and the MSMs used in causal inference investigations to estimate the marginal effects of longitu-
dinal treatment regimes on time-to-event outcomes. We have shown (Section 4) that when data are generated under an
additive conditional hazard model, the form of the MSM is also additive. By contrast, when data are generated under a
conditional Cox model, the form of the MSM is not a Cox model and in fact takes a complex non-standard form. Also, we
have described in detail how to simulate longitudinal and time-to-event data based on the additive hazard model (Section
5). We illustrated the simulation algorithm (Section 6), firstly to provide a template for other researchers, and secondly as
a validation of the theoretical results in Section 4.2.
Our results and simulation algorithm will help other researchers in the conduct of simulation studies to assess perfor-

mance ofmethods under different conditions and to compare properties of differentmethods. Assessment and comparison
of causal inference methods is rarely happening up to now and some comparisons are flawed. Karim et al. (2018) com-
pared results from an analysis using a Cox MSM with an alternative sequential Cox approach described by Gran et al.
(2010). However they compared estimands (hazard ratios) from a marginal model with those from a conditional model,
concluding incorrectly that the sequential Cox approach provides biased estimates. Gran and Aalen (2019) pointed out
that Karim et al. (2018) had not made a fair comparison of the two approaches, firstly because they compared marginal
with conditional estimands and secondly because the data generating procedure did not ensure thatmodels were correctly
specified under the two approaches.
The results in Section 4 were derived using the g-formula to express the MSM in terms of conditional models for

the observed data. As noted in Sections 1 and 3.2, MSMs can be estimated using observed data using IPTW or the g-
formula, under the assumptions outlined in Section 3.2. In the simulation illustration in Section 6, we focused on the
IPTW approach, which is the most popular (Clare et al., 2018). The general results can also be used to ascertain the form
of the correctly specified MSMwhen using a g-formula analysis with particular specifications for the conditional models.
In futurework, it would be of interest to compare the efficiency of estimates of survival probabilities (for example) obtained
using MSMs estimated using IPTW and using the g-formula. Our simulation algorithm could be employed for this pur-
pose, and would enable us to ensure that all models used in the analyses were correctly specified according to the data
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F IGURE 2 Cumulative coefficients: true values, estimates obtained using MSM-IPTW from 1000 simulated data sets (faded grey lines),
and mean estimated cumulative coefficients using MSM-IPTW

generating mechanism, including the MSM, the conditional models used in the g-formula analysis, and the propensity
score models used in the IPTW analysis.
Our results also highlight the benefits of the additive hazard model for use in causal inference research, which result

from its collapsibility property. More causal inference methods are emerging that make use of the additive hazard model
for this reason, for example Seaman et al. (2019); Ryalen et al. (2019); Aalen et al. (2019). Ourwork adds to earlier results on
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F IGURE 3 Survival curves for the treatment regimes ‘never treated’ and ‘always treated’: true survival curves, estimated survival curves
obtained using MSM-IPTW from 1000 simulated data sets (faded grey lines), and the mean estimated survival curves using MSM-IPTW

how to simulate fromMSMs in the setting of longitudinal and time-to-event data by Havercroft and Didelez (2012), Young
et al. (2010), and Young and Tchetgen Tchetgen (2014), who all focused on proportional hazards models. The approach of
Havercroft and Didelez (2012) was restricted to a setting similar to that depicted in our DAG in Figure 1, but with the direct
arrow from 𝐿𝑘 to 𝑌𝑘+1 omitted. This is likely to be unrealistic for most purposes. Also, their algorithm does not generate
the data depicted in the DAG in the natural sequential way. Young and Tchetgen Tchetgen (2014) provided results for the
Cox model, which are related to those given in Section 4.3, but in a less general situation. They showed that the form of
the MSM can be derived under certain conditions. Their results focused on a situation in which the conditional hazard
at time 𝑡 depends on 𝐴⌊𝑡⌋, 𝐴⌊𝑡⌋−1 and 𝐿⌊𝑡⌋, but not additionally on the further history �̄�⌊𝑡⌋−1 or �̄�⌊𝑡⌋−2, and in which the
distribution of 𝐿𝑘+1 depends on 𝐴𝑘 but not on �̄�𝑘 or �̄�𝑘−1. Certain results also required a probit model for the conditional
distribution of 𝐿𝑘 or the assumption that the event of interest is rare. The earlier work of Young et al. (2010) derived
data generating conditions under which a Cox MSM, a structural nested cumulative failure time model (Picciotto et al.,
2012) and a structural nested accelerated failure time model (Robins, 1992) can coincide, enabling fair comparison of the
three approaches.
While the linear form of the additive hazard model brings advantages, there are also drawbacks. The additive hazard

model does not restrict the hazard to be non-negative, which in turn can result in survival probabilities derived from
the fitted hazard model being greater than 1. When the hazard depends on continuous covariates it may be impossible to
guarantee that the hazard is always positive in simulated data, butmodel parameter values can be chosen so that a negative
hazard is very unlikely. In preliminary investigations for our simulation, we tried different values for the parameters of the
hazardmodel and the parameters determining the distribution of𝐿𝑘, which affects the hazard, and chose parameter values
for the example simulation algorithm and simulation illustration so that the probability of obtaining a negative hazard
was negligible. We recommend that researchers using this approach perform similar investigations to ensure that their
simulation procedure results in only a small probability of seeing a negative hazard. In the example simulation algorithm,
we include a line that sets the hazard to 0 when, as happens with small probability, the hazard is negative.
We focused in this paper on a simplified setting with no loss-to-follow-up except through administrative censoring.

The general results apply also when there are other types of right-censoring, including censoring that depends on time-
dependent treatment status or covariates, because the compatibility of the MSM with the conditional data generating
mechanism is not affected by censoring. When fitting the MSM, censoring that depends on treatment or covariates can
be handled through inverse probability of censoring weights, which are multiplied together with the inverse probability
of treatment weights. In the R code we provide an example that includes non-administrative censoring.
It is straightforward to extend our simulation algorithm to incorporate more than one 𝐿 variable, and even tomore than

one treatment variable. We focused on a binary treatment, though the results extend in theory to continuous treatments
(e.g. dose). However, estimating MSMs using IPTW is not generally recommended for use with continuous exposures,
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since it is difficult to specify a correct distribution for the continuous treatment and even mild incorrect specification of
the weights model can have significant impact on estimates (Goetgeluk et al., 2008; Naimi et al., 2014). We focused on
a setting in which the visits times are regular and the same for all individuals. This is not representative of many of the
observational data sets faced in practice, for example from electronic health records. Most causal inference methods for
longitudinal and time-to-event data have also focused on this simplified setting. However, recent work has been done
to extend to the setting where visits time may be at non-regular intervals and differ across individuals, by Ryalen et al.
(2019) who useMSMs based on additive hazardmodels, and by Seaman et al. (2019), who use structural nested cumulative
survival time models. It would be of interest to extend our simulation algorithm to this situation to enable comparisons
involving these emerging methods. Finally, we focused on a situation with a single event of interest, such as death. It
would also be of interest to extend our results to situations with recurrent events or competing risks following recent
developments in this area (Young et al., 2020), therefore enabling simulation investigations to assess causal inference
methods available for these more complex scenarios.
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