
1Scientific REPOrtS |  (2018) 8:11794  | DOI:10.1038/s41598-018-30198-y

www.nature.com/scientificreports

Direct compression of 170-fs 50-
cycle pulses down to 1.5 cycles with 
70% transmission
Young-Gyun Jeong1, Riccardo Piccoli1, Denis Ferachou   1,2, Vincent Cardin1,2, Michael Chini   3,  
Steffen Hädrich4, Jens Limpert5,6, Roberto Morandotti1,7,8, François Légaré   1, Bruno E. Schmidt2 
& Luca Razzari1

We present a straightforward route for extreme pulse compression, which relies on moderately 
driving self-phase modulation (SPM) over an extended propagation distance. This avoids that other 
detrimental nonlinear mechanisms take over and deteriorate the SPM process. The long propagation is 
obtained by means of a hollow-core fiber (HCF), up to 6 m in length. This concept is potentially scalable 
to TW pulse peak powers at kW average power level. As a proof of concept, we demonstrate 33-fold 
pulse compression of a 1 mJ, 6 kHz, 170 fs Yb laser down to 5.1 fs (1.5 cycles at 1030 nm), by employing a 
single HCF and subsequent chirped mirrors with an overall transmission of 70%.

Over the last decade, high-energy optical pulses close to single-cycle duration have opened new ground in the 
investigation of ultrafast and strong-field-driven laser phenomena, such as generation of high-energy isolated 
attosecond pulses1, few-femtosecond electron dynamics in molecules2, and waveform control of broadband ter-
ahertz radiation3, to name but a few. However, the direct generation of such optical pulses is still very challeng-
ing, since it requires ultra-broadband spectra exceeding the limits of common laser gain media. Therefore, in 
order to support operation in the few-cycle regime, the spectra of laser pulses have to be further extended by 
means of nonlinear effects and recompressed afterwards. In this context, a tremendous energy boost, up to the 
sub-mJ range, was reached by circumventing bulk nonlinearities through the use of gas-filled HCFs, a technique 
pioneered by Nisoli et al. in 19964. A further step in pulse compression was achieved through the invention of 
chirped mirrors5 and their use for ultra-broadband dispersion control6. This technology development peaked 
with the generation and control of sub-cycle light fields based on HCF broadening7.

Despite the large impact of these HCF-based setups for ultrafast science, ionization and self-focusing in the 
gas still limit the employable pulse energy at the mJ level for a meter-long rigid capillary. Such restraint can 
be lessened by employing circularly-polarized light or by pre-chirping the input pulses8. However, a significant 
improvement could be only achieved by using considerably longer HCFs9,10. Nowadays, pulse energies in the 
range 5–10 mJ can be obtained at the output of 3-m-long fibers11,12. Another striking capability of the HCF con-
cept is its applicability to compress pulses at unprecedentedly high average power levels of hundreds of Watts13,14. 
This high average power compression became possible with the advent of Yb lasers. Such sources outperform 
the well-established Ti:Sapphire technology on many aspects, with one major exception: the gain bandwidth. 
While Yb-glass- or Yb-CaF2-based systems can reach pulse durations as short as 200 fs15,16, the typical duration 
of multi-mJ Yb-YAG systems lies in the few-picosecond range17–19. To obtain pulse durations comparable to 
Ti:Sapphire lasers, let alone few-cycle pulses, post compression is essential. In recent years, various bulk com-
pression schemes have been developed and applied in the lower energy range below 100 µJ and for moderate 

1Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique (INRS-EMT), 1650 
Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada. 2few-cycle Inc., 2890 Rue de Beaurivage, Montréal, 
Québec, H1L 5W5, Canada. 3Department of Physics and CREOL, University of Central Florida, Orlando, Florida, 
32816, USA. 4Active Fiber Systems GmbH, Ernst-Ruska-Ring 11, 07745, Jena, Germany. 5Institute of Applied 
Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Str. 15, 07745, Jena, Germany. 
6Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745, Jena, Germany. 
7ITMO University, 199034, St. Petersburg, Russia. 8Institute of Fundamental and Frontier Sciences, University of 
Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China. Young-Gyun Jeong and Riccardo 
Piccoli contributed equally to this work. Correspondence and requests for materials should be addressed to B.E.S. 
(email: schmidt@few-cycle.com) or L.R. (email: razzari@emt.inrs.ca)

Received: 8 May 2018

Accepted: 25 July 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-4816-2493
http://orcid.org/0000-0002-9058-928X
http://orcid.org/0000-0002-3065-7156
mailto:schmidt@few-cycle.com
mailto:razzari@emt.inrs.ca


www.nature.com/scientificreports/

2Scientific REPOrtS |  (2018) 8:11794  | DOI:10.1038/s41598-018-30198-y

compression factors of 5 to 620,21. Very recently, 18-fold compression of an Yb laser has been demonstrated in a 
single, 1-m-long HCF that however required advanced phase compensation with a pulse shaper for few tens of µJ 
output energy22. Multi-stage setups have also been used to achieve high compression factors at low energies: (i) 
three-stage setup based on BBO (6-fold compression − 3 µJ, 30 fs, 75% throughput)23, (ii) three-stage setup with 
fused silica (FS) as the nonlinear medium (20-fold compression −2.5 µJ, 10 fs, 70% throughput)24, (iii) two-stage 
setup based on gas filled Kagome fibers (27-fold compression −0.37 µJ, 9 fs, 45% throughput)25, (iv) two-stage 
multi-plate setup (16-fold compression −40 µJ, 18 fs, 10% throughput)26, (v) two stages of HCF (47-fold compres-
sion −170 µJ, 6.1 fs, 35% throughput)13, respectively. Regardless of the method employed, the common strategy 
is to make the propagation “as least nonlinear as possible”27, in order to avoid that other detrimental nonlinear 
effects distort the spectral phase and thus achieve a well-defined output.

Here, we report on a straightforward route to comply with this strategy. It has the potential to be scaled 
to tens of millijoules pulse energies and unprecedented average power levels of hundreds of Watts. Instead of 
breaking down the whole task into a sequence of small compression stages, we directly employ a single step in 
which we moderately drive the nonlinear broadening for an extended propagation distance. In this manner, we 
achieve 33-fold pulse compression in a single stage, by employing a 6-m-long HCF (few-cycle Inc.). We measure 
5.1-fs-long pulses, with total transmission efficiency after compression of 70% (670 µJ of energy). Our approach 
unifies high transmission efficiency and high compression factors, for the generation of ultrashort and energetic 
few-cycle laser pulses based on Yb amplified systems.

Experimental Results
We investigated the performance of our single-stage compression scheme for two different requirements. The 
first aspect considered was maximum compactness. Therefore, we employed a 0.75-m-long HCF with a 400 µm 
inner diameter. As for the second, complementary aspect - maximum compression performance, we compared 
3-m- and 6-m-long HCFs, both with a larger inner diameter of 500 µm. In all cases, the initial input pump pulse 
condition was the same: 170 fs pulses centered at 1030 nm with an energy of 1 mJ and a repetition rate of 6 kHz 
(6 W of average power) obtained from a Yb:KGW regenerative amplifier. The pump beam was coupled into the 
fiber through an AR coated 1-mm-thick FS window, while the output window was uncoated to enable broad-
band operation. The output beam was collimated by means of an Al-coated concave mirror (f = 1000 mm) and 
compressed by using custom-made broadband chirped mirror pairs (−50 fs2/each bounce)13. Different glass 
windows were used to fine-tune the total dispersion. For all input energies and gas pressures, the total trans-
mission of the 6-m-long system, including chirped mirrors, was 70%. In the case of a 0.75-m-long fiber, the 
total transmission exceeded 75%. The excellent shot-to–shot RMS energy fluctuations of less than 0.3% at the 
input remained the same after propagation through the HCF. Finally, the compressed pulses were characterized 
via a second-harmonic autocorrelator employing a 10-μm-thick BBO crystal (see Section 1 in Supplementary 
Information).

The experimental comparison of the three fiber lengths confirms that lower instantaneous nonlinearities over 
an extended propagation distance yield a higher compressibility (Fig. 1a). Nonetheless, even the short 0.75 m fiber 
enabled a significant compression down to 14 fs FWHM at a static Ar pressure of 3.1 bar. The autocorrelation trace 
is shown as the green curve in Fig. 1a, together with the one for the 170 fs input pulse (black curve). This is the 
maximum pressure level for which we can assume the spectral broadening being dominated by SPM (i.e., ioniza-
tion does not play a significant role yet), since the critical power for self-focusing is 5.1 GW while the input one 
is 4.7 GW. To move on from here, the only way to further push the compression without compromising stability, 

Figure 1.  (a) Normalized autocorrelation traces of the input pump pulse (170 fs) and the compressed pulses 
after the 0.75-m-, 3-m-, and 6-m-long Ar-filled HCFs (FWHM: 14, 7, and 5.1 fs, respectively). The total GDDs 
required in each case are −467.2, −246.9, and −338.6 fs2 considering both chirped mirrors and the additional 
glass windows for fine-tuning. (inset) Pump pulse spectrum. (b) NIR-visible spectra for each of the three fiber 
lengths at optimum pressure conditions.
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transmission or spatial beam quality is to decrease the gas pressure while compensating the lower nonlinearity by 
a longer propagation distance (Fig. 1b).

In the following, we summarize the physical dependencies behind optimal HCF operation and demonstrate 
that our route for pushing nonlinear pulse compression is governed by “linear” scaling arguments. For the sake 
of simplicity, we assume that the pulse compression factor is directly connected to the spectral broadening and 
thus equal to Δωin/Δωout. This condition is fulfilled as long as the input pulse duration is close to be transform 
limited. In the case of pure SPM, it can be shown that the spectral broadening is proportional to the accumulated 
B-integral10,28:

∫=B k n I z dz( ) (1)
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where k0 is the wave number (k0 = 2π/λ0), n2 the nonlinear index of the gas related with the third-order Kerr term, 
L the medium length and I the intensity. Treating the noble gas as an ideal gas, where n2 is directly proportional 
to the gas pressure p, changes Eq. 1 to ~B Ln pI2 , where n2 is, in this case, the nonlinear index at atmospheric 
pressure (1 bar). This relation is strictly valid only in the absence of losses. Starting from Eq. 1, we can estimate the 
ratio of the pulse compression factors (Fcomp) for two different HCF scenarios:
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The right hand side of Eq. 2 is a simplification and valid if the laser input parameters and gas type remain the 
same, where the intensity can be related to the square of the HCF inner diameter (ID). Inserting the experimental 
values for the 0.75-m- and 3-m-long HCFs yields an expected compression improvement of 1.98. The shortest 
FWHM duration obtained for the 3-m-long fiber was 7 fs, displayed as the blue curve in Fig. 1a. The experimen-
tally achieved value for Fcomp = 14/7 = 2 shows good agreement with the calculated one based on Eq. 2. Since Eq. 2 
is true for pure SPM only, this agreement evidences that the spectral broadening is indeed dominated by SPM. 
Again, we note that a further increase of pressure in the case of the 3-m-long fiber did not yield shorter pulses but 
resulted in lower stability or transmission, indicating that other nonlinearities such as self-focusing or ionization 
become significant under such conditions29.

The final step to further increase the compression factor was to extend the fiber length to the limit of the avail-
able optical table space. Even though the 6-m-long fiber together with input/output coupling optics requires 
about 7.5 m of length, the width of the HCF setup can be kept below 10 cm. In this manner, a very short pulse 
duration of 5.1 fs (for 2.2 bar Ar; Fig. 1a, red curve) was obtained in a single compression step, starting from a 
170 fs input. This duration corresponds to 1.5 optical cycles at a center wavelength of 1030 nm. Evaluating the 
scaling according to Eq. 2, one would expect a compression ratio of 3.63 compared to the case of the 0.75-m-long 
fiber. The experimental factor of 14/5.1 = 2.75 is about 24.4% less than expected. However, for the 6-m case, linear 
loss starts to play a role in the broadening effect. More precisely, the numerator of Eq. 2 should be multiplied by a 
factor −T T( 1)/ln , where T is the power transmission of the fiber. Assuming T = 0.75 in the 6-m case, the 
expected broadening results to be 3.63 × 0.87 ~ 3.1, closer to the experimental value. We underline that linear loss 
represents the main limiting factor to the effectively usable fiber length and, therefore, the achievable spectral 
broadening. On one side, the product ⋅ ⋅I n p2  should be kept as low as possible to avoid higher order nonlinear 
effects and ionization but, on the other side, the length of the fiber cannot be increased indefinitely due to linear 
loss. Therefore, a trade-off between core diameter and fiber length should be found according to the input pulse 
conditions, in order to ensure optimal compression.

Since the extreme case of 33-fold pulse compression down to the single-cycle regime with 70% overall trans-
mission is the most striking result of our investigation, we characterized more thoroughly the 6-m HCF operation 
conditions. First, we investigated the spatial beam quality, which turned out to be very good despite the high 
broadening factor. The excellent mode quality and the absence of spatial chirp after HCF broadening are dis-
played in Section 2 of Supplementary Information.

Next, we studied the role of gas pressure on the achievable minimum pulse duration. Figure 2a displays the 
spectral evolution as a function of pressure. At the optimum operation point of 2.2 bar, the spectrum spans over 
400 nm, from about 800 nm to 1200 nm. The overall symmetry of the output spectrum and the “well-behaved” 
spectral modulation support the assumption that SPM plays a major role in the nonlinear propagation even for 
such an extraordinary broadening.

We also characterized the output pulses both temporally and spectrally, for different pressure values. As 
expected, incremented pressure enhances the Kerr nonlinearity of the gas, thus initially promoting spectral 
broadening. However, a further pressure increase beyond 2.3 bar triggers additional nonlinear effects, which in 
turn impose a complex spectral phase over the pulse envelope that cannot be simply compensated with stand-
ard chirped mirrors. Higher pressures also lead to gas ionization and the generation of strongly modulated and 
asymmetric spectra (the onset of such an effect can be seen in the blue curve of Fig. 2a). The temporal shape of the 
compressed pulses and the corresponding Gaussian fittings in the Ar pressure range from 1.7 to 2.4 bar are shown 
in Fig. 2b. In each case, the shortest pulse duration was obtained by fine-tuning dispersion with glass windows. 
When the pressure exceeds 2.2 bar, the GDD cannot be compensated effectively and the temporal shape results to 
be somehow distorted with longer pulse tails. A clear optimum is visible at 2.2 bar, where the compressed pulse 
duration decreases down to 5.1 fs, starting from 6.7 fs at 1.7 bar. The duration increases again for higher pressures 
(Fig. 2c). We can notice that the pulse shoulders increase while reaching the minimum pulse duration. This might 
be an effect of the remaining phase oscillations in our compression setup that relies on standard chirped mirrors. 
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To realize an ideal compression scenario in the future, we plan to first characterize the uncompressed phase out 
of the HCF and use this as an input for the design of the multilayer coating.

Numerical Simulations
Even though the experimental power spectrum for the 5.1 fs pulses (red curve in Fig. 2a) appears rather sym-
metric when represented as a function of lambda, it is in fact asymmetric when plotted versus frequency due 
to the Jacobian correction (light blue shadow in Fig. 3). Furthermore, a clear blue shift becomes visible. To gain 
insight into the origin of this deviation from a pure SPM picture as well as to verify the role of ionization, we com-
pare the experimental output with the results of a 1D + 1 numerical model based on the generalized nonlinear 
Schrödinger equation (see Section 3 in Supplementary Information). It includes dispersion, all the Kerr terms 
up to n10, self-steepening, multi-photon absorption and ionization. We note that, since the input peak power 
(~4.7 GW) is well below the critical value for self-focusing in Ar (≈7 GW at 1030 nm for 2.2 bar)30 and because of 
the excellent spatial homogeneity, the use of a 1D + 1 model can be justified. As can be seen in Fig. 3 (blue dotted 
curve), pure SPM would lead to a clearly different, totally symmetric output spectrum, with a long wavelength 
roll off at 220 THz. Including higher order Kerr terms still leads to a symmetric but slightly narrower spectrum. 
A good agreement is only found when self-steepening is included. Noteworthy, since this temporal re-shaping 
effect acts on both the trailing and leading edges of the pulses, the spectrum becomes stretched out on the blue 
side (steepening of the trailing pulse edge) and condensed on the red side (flattening of the leading pulse edge). 
The center of mass remains about the same, however. Thus, we conclude that SPM plays the dominant role for the 
vast spectral broadening we observe, while self-steepening, still being a Kerr effect, tends to reshape the power 
spectrum and the spectral phase. These findings suggest that an asymmetric phase term should be included in the 
design of chirped mirrors for such extreme pulse compression scenarios31,32.

Taking advantage of the good agreement between experiments and theory, we also investigated the energy 
scalability of our approach, by fixing all experimental HCF parameters and solely changing the type of gas in the 
simulations (see Section 4 in Supplementary Information). The lower energy limit to reach the same 5.1 fs pulse 
compression was found to be about 150 µJ, for 2.2 bar of Xe. On the other hand, for 2.7 bar of He, an upper limit 
of 10 mJ was achieved. Clearly, this two-order-of-magnitude tuning range of input pulse energies can be further 
extended by using other gas types/pressures or by changing the HCF inner diameter.

Figure 2.  (a) Pressure dependent output pulse spectra for the 6-m-long HCF. (b) Second harmonic 
autocorrelation traces corresponding to the minimum pulse durations achieved from 1.7 to 2.4 bar. Each 
Gaussian fitting curve is compared with the minimum pulse duration fitting (5.1 fs at 2.2 bar) by area 
subtraction (gray area). (c) Compressed pulse durations as a function of the Ar pressure, in terms of FWHM 
derived from the Gaussian fittings.
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Conclusion
In conclusion, we have demonstrated a straightforward route to direct pulse compression down to the single-cycle 
regime, starting from 50 cycles. We have shown how a well-structured spectral profile, mainly dominated by 
SPM, can be achieved by driving the pulse broadening under minimal nonlinearity for an extended propagation 
distance. This approach allows to channel the pump energy mostly into SPM broadening during propagation, 
without triggering other additional nonlinear effects that can degrade the spectral phase and prevent a simple 
post-compression down to the single-cycle. Hence, by means of a 6-m-long HCF, we achieved 33-fold pulse com-
pression of 170 fs pulses, emitted by a commonly available Yb:KGW laser, down to about 5 fs with 70% of overall 
transmission. This strategy is scalable to tens of millijoules of pulse energies and average powers of hundreds of 
Watts. Our findings open the path for the direct use of cost-effective, compact and efficient Yb laser technologies 
in ultrafast science and strong-field laser-driven experiments.
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