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Abstract

Claudin-low breast cancer is a molecular type of breast cancer originally identified by gene

expression profiling and reportedly associated with poor survival. Claudin-low tumors have

been recognised to preferentially display a triple-negative phenotype, however only a minor-

ity of triple-negative breast cancers are claudin-low. We sought to identify an immunohisto-

chemical profile for claudin-low tumors that could facilitate their identification in formalin

fixed paraffin embedded tumor material. First, an in silico collection of ~1600 human breast

cancer expression profiles was assembled and all claudin-low tumors identified. Second,

genes differentially expressed between claudin-low tumors and all other molecular subtypes

of breast cancer were identified. Third, a number of these top differentially expressed genes

were tested using immunohistochemistry for expression in a diverse panel of breast cancer

cell lines to determine their specificity for claudin-low tumors. Finally, the immunohistochem-

ical panel found to be most characteristic of claudin-low tumors was examined in a cohort of

942 formalin fixed paraffin embedded human breast cancers with >10 years clinical follow-

up to evaluate the clinico-pathologic and survival characteristics of this tumor subtype.

Using this approach we determined that claudin-low breast cancer is typically negative for

ER, PR, HER2, claudin 3, claudin 4, claudin 7 and E-cadherin. Claudin-low tumors identified

with this immunohistochemical panel, were associated with young age of onset, higher

tumor grade, larger tumor size, extensive lymphocytic infiltrate and a circumscribed tumor

margin. Patients with claudin-low tumors had a worse overall survival when compared to

patients with luminal A type breast cancer. Interestingly, claudin-low tumors were associ-

ated with a low local recurrence rate following breast conserving therapy. In conclusion, a

limited panel of antibodies can facilitate the identification of claudin-low tumors. Further-

more, claudin-low tumors identified in this manner display similar clinical, pathologic and

survival characteristics to claudin-low tumors identified from fresh frozen tumor material

using gene expression profiling.
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Introduction

In 2007, while conducting comparative gene expression analysis between transgenic mouse

models of breast cancer and human breast cancer data sets, Herschkowitz et al discovered a

novel molecular subtype of breast cancer which they named ‘claudin-low’ (CL) [1]. This sub-

type was characterized by the low expression of genes involved in tight junctions and epithelial

cell-cell adhesion, including claudins 3, 4 and 7, occludin and E-cadherin. In addition, the

human CL tumors showed low expression of luminal epithelial genes and high expression of

lymphocyte and endothelial cell markers [1].

Subsequent to this report, a number of groups have further characterized this new tumor

subtype and shown that CL tumors account for 7–14% of all invasive breast cancers, are

enriched for genes associated with epithelial to mesenchymal transition (EMT), immune cell

infiltration, IFNγ activation, mammary stem cells/breast tumor initiating cells and typically

demonstrate high levels of genomic instability [2–5]. Pathologic examination of a limited

number of tumors fitting this category, have shown a higher than expected prevalence of med-

ullary-like and metaplastic special-type tumors and tumors with a triple negative (TN) pheno-

type. Clinically, they have been associated with a poor prognosis with some evidence that they

may be relatively resistant to conventional chemotherapeutic agents [2, 3].

These studies have all identified the CL subtype by means of gene expression profiling,

however this technique requires fresh frozen tumor material, which is not available for the

majority of breast cancer patients. We sought to determine an immunohistochemical (IHC)

profile that could identify CL tumors in formalin fixed paraffin embedded (FFPE) tumor spec-

imens. Such a profile would enable us and others, to examine the pathologic and clinical signif-

icance of the CL tumors in larger cohorts of archived FFPE tumor specimens providing a

more comprehensive analysis of the tumor subtype.

To this end we collated an in silico data base comprising the expression profiles of approxi-

mately 1600 individual breast cancers. Tumors comprising this database were classified into

the known molecular subtypes; luminal A, luminal B, HER-2 enriched, basal-like, normal-like,

molecular apocrine and CL using previously published classifiers [2, 6–8]. Genes differentially

expressed between the CL and all other molecular subtypes of breast cancer were identified.

The protein products of some of the top differentially expressed genes were examined using

IHC for their ability to identify the CL subtype in a diverse panel of breast cancer cell lines.

Finally, the panel of IHC markers that in combination optimally discriminated between CL

tumor cell lines and cell lines of other molecular subtypes was examined in a large tissue

microarray (TMA) of primary invasive human breast cancers. The tumors identified in this

TMA cohort as CL using the surrogate IHC profile described were compared with tumors of

other molecular subtypes for clinical-pathologic characteristics of known prognostic impor-

tance, disease free survival (DFS), overall survival (OS) and local recurrence rates (LRR)

(S1 Fig).

Materials and Methods

In silico data collection

In the course of our study we analyzed the gene expression profiles in silico of 7 external data-

sets, obtained using Affymetrix HG-U133A GeneChip arrays. These profiles were deposited

in the Gene Expression Omibus (GEO) (accession numbers of the datasets are: GSE3494,

GSE1456, GSE7390, GSE2034, GSE6532, GSE17705 and GSE25066) and comprise a total of

2,027 samples (S1 Table). Redundant samples were removed as previously described reducing

the number of unique samples to 1,695 [8]. All samples used for our study were normalized
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with frozen Robust Multi-array Analysis (fRMA) [9], technical variation was removed using

the ComBat and DWD (Distance-Weighted Discrimination) methods [10, 11]. After combin-

ing all datasets Spearman correlation coefficients for pair-wise comparisons of samples using

68 house-keeping probe sets were computed, and only samples exhibiting a correlation higher

than 0.95 with at least half of the dataset were selected for further classification. The latter fil-

tering method yielded a dataset comprising 1,593 human breast tumor sample transcript

profiles.

In silico molecular subtype assignment

The 1,593 tumors were assigned to one of 7 molecular subtypes (luminal A, luminal B, HER-

2-enriched, basal-like, normal-like, molecular apocrine or CL) using 710 genes obtained from

previously published gene classifiers [6–8, 12]. In brief the standardized centroid was com-

puted for each subtype by taking the average expression of each gene across the subtype and

dividing it by the standard deviation of expression of that gene across that subtype. Spearman

rank correlation coefficient was computed for each sample relative to each of the 7 reference

centroids, and the subtype was assigned based on the highest correlation coefficient. For the

assignment we used a coefficient cut-off of 0.3; therefore 1,196 samples were classified into the

7 established molecular subtypes as previously described [8]. This classification yielded 80

(6.69%) samples defined as CL.

Identification of genes differentially expressed between CL tumors and

all other molecular subtypes

To identify gene patterns unique to CL tumors we used the “limma” package (Bioconductor;

[13]) to compare the expression profiles of samples assigned to the CL subtype to those of the

all other subtypes (6 pair-wise comparisons in total). To this end the moderated F-statistic was

used, followed by Benjamini-Yekutieli adjustment for multiple testing [14]. The 710 genes

belonging to the molecular subtype classifier were used for this analysis and only genes differ-

entially expressed with at least a 2 fold change were examined further.

Breast tumor cell lines representative of the molecular subtypes of

breast cancer

A total of 9 breast cancer cell lines known to replicate the luminal, basal and CL subtypes of

primary human breast tumor samples were grown using the recommended culture conditions

[15], these included 5 luminal (MCF7, ZR751, SKBR3, BT474, MDA-MB-361), 2 basal-like

(BT20, HCC 1954) and 2 CL cell lines (BT549, MDA-MB-231) [15]. Cells were fixed and paraf-

fin embedded as detailed in the supplementary information (S1 File). The paraffin embedded

cell lines were stained immunohistochemically for ER, PR, HER2, CK5, EGFR, E-cadherin,

claudin 3, claudin 4, claudin 7 and CD24 using methods as listed in S2 Table.

Human FFPE breast tumor material

942 T1 or T2, node negative breast cancers treated with breast conserving therapy, which had

been accrued as part of the Accelerated Hypofractionated Whole Breast Irradiation (AHWBI)

trial (see S1 File) were available for analysis [16, 17]. This cohort had 10 years of clinical fol-

low-up available including, LR, DFS and OS.

A single hematoxylin and eosin (H&E) stained section, representative of each invasive car-

cinoma was reviewed by the study pathologist (ALB). Tumors were assessed for tumor type,

grade, lympho-vascular space invasion (LVI), extensive lymphocytic infiltrate and margin
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circumscription. Tumors were classified according to the World Health Organization (WHO)

histologic classification of breast tumors [18] and graded using the Nottingham grading sys-

tem [19]. The lymphocytic tumor infiltrate was graded on a four point scale; none, minimal,

moderate and extensive (see S1 File). The study pathologist was blinded to the patient outcome

during the review process.

The invasive tumor component of each H&E stained section was encircled with permanent

ink for TMA construction. Three 0.6mm cores of tissue were taken from the paraffin tumor

block and used for TMA construction (Pathology Device, Sun Praire, WI) as previously

described [16].

Four μm sections were cut from all TMAs and immunohistochemical staining for ER, PR,

HER2, CK5, EGFR, Ki67, claudin 3, claudin 4, claudin 7, E-cadherin, CD24, CD44, ALDH1

and CD8 was performed using methods as listed in S2 Table. Microwave antigen retrieval was

carried out in a Micromed T/T Mega Microwave Processing Lab Station (ESBE Scientific,

Markham, Ontario, Canada). Sections were developed with diaminobenzidinetetrahy-

drochloride (DAB) and counterstained in Mayer’s hematoxylin.

Each of the immunohistochemical TMA and tumor cell line stained sections was scored

using Allred’s scoring method [20], which adds scores for the intensity of staining (absent: 0,

weak: 1, moderate: 2, and strong: 3) to the percentage of cells stained (none: 0,<1%: 1, 1–10%:

2, 11–33%: 3, 34–66%: 4 and 67–100%: 5) to yield a ‘raw’ score of 0 or 2–8. Previously validated

cut-offs for ER and PR were used (0, 2 = negative, 3–8 = positive) [21, 22]. Strong complete

membranous staining was assessed for HER2 and the cut-off of� 6 was used to indicate positiv-

ity [23]. For CK5, EGFR, CD24, CD44 and ALDH1 a score of� 4, was considered positive. For

claudin 3, 4, 7 and E-cadherin a score of�4 was considered ‘low’ expression. For Ki67 a mini-

mum of 100 tumor nuclei were counted per core and the tumor was considered Ki67 ‘low’ if the

percentage of positively stained nuclei was<14% and Ki67 ‘high’ is the percentage of positively

stained nuclei was�14% [12, 24]. The raw score data from the TMAs were reformatted using a

TMA deconvoluter software program into a format suitable for statistical analysis [25]. The

highest score from each TMA tumor triplicate was entered into the statistical analysis.

Tumors that had an Allred score of 4 or 5 for HER2 were considered equivocal or indeter-

minate for HER2 overexpression and fluorescent in situ hybridization (FISH) was performed

on representative tumor sections using the HER2 DNA probe kit (Path-Vysion, Vysis) as pre-

viously described [16]. A HER2 to centromere 17 ratio of�2 was considered to indicate ampli-

fication in accordance with guidelines [23].

Tumors were classified as luminal A if they expressed ER or PR and were negative for

HER2 and were Ki67 ‘low’; luminal B if they expressed ER or PR and were either HER2 posi-

tive or were Ki67 ‘high’; HER2 enriched if they did not express ER or PR but were positive for

HER2; basal-like if they did not express ER, PR or HER2 (triple negative) but expressed CK5

and/or EGFR and CL if they did not express ER or PR or HER2 (TN) and had low expression

of at least two of the following markers E-cadherin, claudin 3, claudin 4 and claudin 7 [16, 26].

Tumors were considered unclassified for molecular subtype when results of one or more IHC

markers were unavailable due to loss of invasive tumor on sequential TMA slides.

Ethics statement

The AHWBI FFPE samples were obtained with research ethics board (REB) approval. We did

not pursue individual patient consent for tumor samples and this was not required by our REB

process for a number of reasons, including. 1. The trial was performed many years ago from

1993 to 1996. As such we recognized that many patients had died and many others were likely

to have changed residence. 2. We believed that contacting patients’ families would be difficult
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and likely upsetting given the limited study we were conducting. 3. The analysis we planned is

limited to IHC testing and while this is linked to the patients’ original data base from the trial

all the data was grouped and made anonymous.

Statistical analysis

Summary statistics were used to describe the patient cohort and outcomes. The Kaplan-Meier

method was used to estimate time-to-event outcomes. Comparison between different subtypes

was performed using the log-rank tests, χ2 test, Cochran-Armitage test for trend or Kruskal-

Wallis test as appropriate. All statistical tests were two-sided and statistical significance was

defined as a p-value of 0.05 or less. Statistical analyses were performed in SAS version 9.0 (SAS

Institute, Cary, NC) and figures were plotted using R version 3.2.2 (www.r-project.org).

Results

Identification of CL subtype using gene expression profiling

We compiled gene expression profiles from 7 independent datasets for which clinical follow-

up was available. Together these data sets represent 1,593 non-redundant tumors. Using estab-

lished subtype classifiers [2, 6–8] 1,196 (75.1%) out of the 1,593 samples were classified into

one of the seven molecular subtypes; luminal A (n = 340, 28.43%), luminal B (n = 216,

18.06%), HER2-enriched (n = 81, 6.77%), basal (n = 280, 23.41%), normal-like (n = 179,

14.97%), molecular apocrine (n = 20, 1.68%) and CL (n = 79, 8.4%). The OS and DFS of the

molecular subtypes are presented in S2 Fig.

Identification of genes differentially expressed between the CL subtype

and all other molecular subtypes of breast cancer

Using a pair wise comparison 60 genes were identified as being differentially expressed by CL

tumors relative to all other molecular subtypes of breast cancer (Table 1, Fig 1). Some of the

genes we found to be expressed at significantly lower levels in the CL subtype relative to all

other subtypes included E-cadherin, claudin 3, claudin 4 and genes associated with luminal

epithelial differentiation including CD24, CK8 and CK18 as previously described [1, 2, 5]. As

other authors have identified low expression of claudin 7 as being a characteristic feature of CL

tumors, we examined the expression of claudin 7 across the breast cancer subtypes in our in sil-
ico database. We found that claudin 7 was expressed at a lower level in CL tumors relative to

all other subtypes with the exception of basal-like tumors (S3 Fig)

Genes expressed at significantly higher levels in CL tumors relative to other molecular sub-

types included many genes involved in immune response, host defence and apoptosis includ-

ing ADAMDEC1, BTN3A3, CD3D, COLEC12, CXCL9, LTB, PSMB10 and MAF (Table 1).

The preponderance of immune related genes in CL tumors is thought to reflect considerable

immune cells infiltrate in these tumors [5, 27].

Genes associated with tumor invasiveness and epithelial to mesenchymal transition (EMT);

CTSK and PLAC8 respectively (Table 1), were also identified as being upregulated in CL

tumors [28]. An enrichment for gene signatures associated with EMT has previously been

demonstrated for CL tumors [4, 29–31].

Evaluation of immunohistochemical markers of CL tumors in breast

cancer cell lines

We next sought to capture the CL phenotype identified in silico with a simple IHC based assay.

We first compiled a panel of breast cancer cell lines of known molecular subtype including 2
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Table 1. Genes differentially expressed between CL tumors and all other molecular subtypes of

breast cancer using gene-expression profiling.

Gene Symbol Gene Name

Genes up-regulated in CL tumors vs. all other molecular subtypes of breast cancer

ADAMDEC1 ADAM-like, decysin 1

ANXA1 annexin A1

BTN3A3 butyrophilin, subfamily 3, member A3

CASP1 caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase)

CD36 CD36 molecule (thrombospondin receptor)

CD3D CD3d molecule, delta (CD3-TCR complex)

CFLAR CASP8 and FADD-like apoptosis regulator

COLEC12 collectin sub-family member 12

CTSK cathepsin K

CTSS cathepsin S

CXCL9 chemokine (C-X-C motif) ligand 9

DPT Dermatopontin

EPAS1 endothelial PAS domain protein 1

FHL1 four and a half LIM domains 1

FUCA1 fucosidase, alpha-L- 1, tissue

GPX3 glutathione peroxidase 3 (plasma)

LAPTM5 lysosomal protein transmembrane 5

LGALS2 lectin, galactoside-binding, soluble, 2

LTB lymphotoxin beta (TNF superfamily, member 3)

LXN Latexin

MAF v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian)

PLAC8 placenta-specific 8

PSMB10 proteasome (prosome, macropain) subunit, beta type, 10

Genes Down-regulated in CL tumors vs. all other molecular subtypes of breast cancer

AKAP1 A kinase (PRKA) anchor protein 1

ANK3 ankyrin 3, node of Ranvier (ankyrin G)

BSPRY B-box and SPRY domain containing

CD24 CD24 molecule

CDH1 cadherin 1, type 1, E-cadherin (epithelial)

CLDN3 claudin 3

CLDN4 claudin 4

CTTN Cortactin

EFNA4 ephrin-A4

ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-specific)

EPN3 epsin 3

FLNB filamin B, beta

FXYD3 FXYD domain containing ion transport regulator 3

GAS2L1 growth arrest-specific 2 like 1

GCAT glycine C-acetyltransferase

GPR56 G protein-coupled receptor 56

H1F0 H1 histone family, member 0

HIST1H2BD histone cluster 1, H2bd

HIST2H2BE histone cluster 2, H2be

KRT18 keratin 18

KRT19 keratin 19

(Continued )
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Table 1. (Continued)

Gene Symbol Gene Name

KRT8 keratin 8

LASS2 LAG1 homolog, ceramide synthase 2

MB Myoglobin

MTA1 metastasis associated 1

MYO6 myosin VI

NEBL Nebulette

PBX1 pre-B-cell leukemia homeobox 1

PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (gamma)

PPM1H protein phosphatase, Mg2+/Mn2+ dependent, 1H

PTPRF protein tyrosine phosphatase, receptor type, F

SLC19A2 solute carrier family 19 (thiamine transporter), member 2

TOB1 transducer of ERBB2, 1

TOM1L1 target of myb1 (chicken)-like 1

TPD52 tumor protein D52

TPD52L1 tumor protein D52-like 1

TRAF4 TNF receptor-associated factor 4

doi:10.1371/journal.pone.0168669.t001

Fig 1. Hierarchical Clustering of 1,593 breast tumor samples using the 60 genes identified as differentially expressed between CL

tumors and tumors of all other molecular subtypes

doi:10.1371/journal.pone.0168669.g001
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CL cell lines; these were fixed in formalin and embedded in paraffin blocks to ensure that they

were processed in a manner analagous to human tumor samples and profiled for ER, PR,

HER2, CK5/6 and EGFR as previously described [16]. Taking into consideration the availabil-

ity of high quality antibodies and our in silico results (Table 1) five antibodies were selected for

testing; E-cadherin, claudin 3, claudin 4, claudin 7 and CD24. All of these 5 markers had been

shown in silico to be differentially expressed in CL tumors relative to other molecular subtypes

of breast cancer.

As illustrated in Table 2, those cell lines known to be CL had absent or low expression of the

luminal epithelial markers (ER, PR, HER-2) and the epithelial cell-cell adhesion markers (claudin

3, claudin 4, claudin 7 and E-cadherin) at the cut points described. In contrast, the luminal cell

lines were positive for at least one of the luminal epithelial cell markers (ER, PR or HER2)

together with at least two of the epithelial cell-cell adhesion markers (claudin 3, claudin 4, claudin

7 and E-cadherin). The basal cell lines were negative for all luminal epithelial cell markers (ER,

PR & HER2), positive for myoepithelial cell markers (CK5/6 & EGFR) and positive for at least 3

of the epithelial cell-cell adhesion proteins (claudin 3, claudin 4, claudin7 and E-cadherin). None

of the profiled cell lines expressed CD24, which may possibly be an artifact of cell culture.

From these experiments we concluded that a surrogate IHC panel for the identification of

tumors belonging to the CL molecular subtype would be TN (ER-, PR- and HER2-), together

with low or absent expression of at least 2 of the 4 epithelial cell-cell adhesion proteins, claudin

3, claudin 4, claudin 7 and E-cadherin.

Clinical-pathologic characteristics of CL tumors using TMAs of human

breast cancers

We next sought to examine the clinical-pathologic tumor features and survival characteristics

of CL tumors identified using the surrogate IHC panel in a large cohort of invasive breast can-

cer with long-term clinical outcome data.

942 primary invasive breast tumors arrayed in triplicate in TMAs were examined for the

expression of a panel of IHC markers; ER, PR, HER-2, Ki67, CK5/6, EGFR, claudin 3, claudin

4, claudin 7 and E-cadherin to approximate the known molecular subtypes of breast cancer

[16, 26]. 776 (82.4%) of the 942 tumors could be classified into one of the five molecular sub-

types; luminal A (n = 389, 41.3%), luminal B (n = 234, 24.8%), HER2 enriched (n = 21, 2.2%),

basal-like (n = 53, 5.6%) and CL (n = 79, 8.4%) as described in the material and methods

(Fig 2). 166 (17.6%) cases could not be classified into one of the molecular subtypes due to

unavailable IHC data and were placed into an ‘unclassified’ category for purposes of analysis.

A suitable surrogate IHC profile for the molecular apocrine group or the normal-like group is

not available and these subtypes were not considered further in this data set.

Table 2. Expression of Immunohistochemical Markers in Breast Cancer Cell Lines.

Molecular Subtype ER PR HER-2 CK5/6 EGFR Claudin 3 Claudin 4 Claudin 7 E-Cadherin CD24

MCF 7 Luminal 7 5 0 0 0 7 7 8 6 0

ZR751 Luminal 7 4 5 0 0 3 3 7 8 0

SKBR3 Luminal (HER-2 amp) 0 0 8 0 6 3 6 7 0 0

BT474 Luminal (HER-2 amp) 7 4 8 0 4 8 8 8 6 0

MDAMB361 Luminal (HER-2 amp) 4 0 8 0 4 8 7 8 7 0

BT20 Basal 0 0 0 7 8 0 5 7 6 0

HCC1954 Basal (HER2-amp) 0 0 8 8 8 0 8 8 8 0

BT549 Claudin-low 0 0 0 0 7 0 0 0 0 0

MDAMB231 Claudin-low 0 0 0 0 8 0 3 0 0 0

doi:10.1371/journal.pone.0168669.t002
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The clinical-pathologic features are listed in Table 3. There were significant differences

in median patient age, tumor size, grade, extensive lymphocytic infiltrate and margin

Fig 2. Representative H&E stained image of luminal A [A], luminal B [B], HER2 [C], basal [D] and Claudin-low [E]

tumors. ER staining in luminal A [F], luminal B [G], HER2 [H], basal [I] and Claudin-low [J] tumors. PR staining in

luminal A [K], luminal B [L], HER2 [M], basal [N] and Claudin-low [O] tumors. HER2 staining in luminal A [P], luminal

B [Q], HER2 [R], basal [S] and Claudin-low [T] tumors. Ki67 staining in luminal A [U], luminal B [V], HER2 [W], basal

[X] and Claudin-low [Y] tumors. EGFR staining in luminal A [Z], luminal B [AA], HER2 [BB], basal [CC] and Claudin-

low [DD] tumors. CK5 staining in luminal A [EE], luminal B [FF], HER2 [GG], basal [HH] and Claudin-low [II] tumors.

Claudin-3 staining in luminal A [JJ], luminal B [KK], HER2 [LL], basal [MM] and Claudin-low [NN] tumors. Claudin-4

staining in luminal A [OO], luminal B [PP], HER2 [QQ], basal [RR] and Claudin-low [SS] tumors. Claudin-7 staining

in luminal A [TT], luminal B [UU], HER2 [VV], basal [WW] and Claudin-low [XX] tumors. E-cadherin staining in

luminal A [YY], luminal B [ZZ], HER2 [AAA], basal [BBB] and Claudin-low [CCC] tumors.

doi:10.1371/journal.pone.0168669.g002
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Table 3. Clinical-pathologic Characteristics of Invasive Breast Cancers According to Molecular Subtypes in the TMA cohort.

Claudin-

Low

Luminal A Luminal B HER2-E Basal Not

Classifiable

p-

value*
Non

Claudin-

Low

p-

value&

N (%) 79 (8.4%) 389 (41.3) 234 (24.8) 21 (2.2) 53 (5.6) 166 (17.6) 863

Age Mean (sd) 52.8 (11.9) 60.5 (10.3) 58.3 (11.8) 56.4 (11.1) 51.9

(10.9)

59.0 (11.1) <0.001 59.0 (11.1) <0.001

�50 47 (59.5) 317 (81.5) 161 (68.8) 14 (66.7) 29 (54.7) 130 (78.3) <0.001 651 (75.4) 0.003

Tumor Grade I 5/72 (6.9) 109/360

(30.3)

26/209

(12.4)

1/19 (5.3) 1 (2.3) 36 (24.3) <0.001 173/779

(22.2)

II 18 (25.0) 238 (66.1) 143 (68.4) 10 (52.6) 6 (14.0) 91 (61.5) 488 (62.6) <0.001

III 49 (68.1) 13 (3.6) 40 (19.1) 8 (42.1) 36 (83.7) 21 (14.2) 118 (15.2)

Tumor Size �2 cm 26 (32.9) 51 (13.1) 61 (26.1) 7 (33.3) 18 (34.0) 23 (13.9) <0.001 160 (18.5) 0.005

Prior Treatment Tamoxifen 16 (20.3) 199 (51.2) 111 (47.4) 2 (9.5) 5 (9.4) 64 (38.6) <0.001 381 (44.2) <0.001

Chemotherapy 32 (40.5) 11 (2.8) 18 (7.7) 9 (42.9) 31 (58.5) 15 (9.0) 84 (9.7)

None 31 (39.2) 179 (46.0) 105 (44.9) 10 (47.6) 17 (32.1) 87 (52.4) 398 (46.1)

Lymphocytic

Infiltrate

Extensive 31/74

(41.9)

4/377 (1.1) 20/219

(9.1)

7/21 (33.3) 22/48

(45.8)

12/156 (7.7) <0.001 <0.001

65/821 (7.9)

Circumscribed

Margins

Positive 35/79

(44.3)

66/389

(17.0)

53/233

(22.8)

6/21 (28.6) 20/52

(38.5)

34/166 (20.5) <0.001 179/861

(20.8) <0.001

LVI Positive 10/79

(12.7)

42/389

(10.8)

49/233

(21.0)

1/21 (4.8) 9/52

(17.3)

13/166 (7.8) <0.001 114/861

(13.2)

1

ALDH1 Positive 12/70

(17.1)

14/321

(4.4)

16/217

(7.4)

2/19 (10.5) 11/42

(26.2)

4/48 (8.3) <0.001 47/647 (7.3) 0.01

CD44+ /CD24-/low N (%) 21/67

(31.3)

68/308

(22.1)

39/215

(18.1)

1/18 (5.6) 17/42

(40.5)

14/59 (23.7) 0.006 139/642

(21.7)

0.09

Overall Survival N (%) Deaths 18 (22.8) 75 (19.3) 50 (21.4) 6 (28.6) 15 (28.3) 40 (24.1) 0.4 186 (21.5) 0.68

3-year OS 93.6 (85.3–

97.3)

98.2 (96.3–

99.1)

97.9 (94.9–

99.4)

90.5

(67.0–

97.5)

84.6

(71.6–

92.0)

94.5 (89.7–

97.1)

96.4 (94.9–

97.4)

5-year OS 89.7 (80.4–

94.7)

95.9 (93.3–

97.4)

93.5 (89.4–

96.0)

90.5

(67.0–

97.5)

82.6

(69.3–

90.6)

92.0 (86.6–

95.3)

93.6 (91.7–

95.0)

10-year OS 81.6 (70.9–

88.7)

85.8 (81.8–

89.0)

83.9 (78.4–

88.2)

90.5

(67.0–

97.5)

78.6

(64.7–

87.6)

81.0 (74.0–

86.3)

84.1 (81.4–

86.4)

Local Recurrence N (%)

Recurrences

1 (1.3) 21 (5.4) 16 (6.8) 6 (28.6) 4 (7.5) 13 (7.8) <0.001 60 (6.9) 0.068

5-year LR 98.7 (91.2–

99.8)

99.0 (97.2–

99.6)

96.4 (92.9–

98.2)

84.2

(58.7–

94.6)

93.9

(82.3–

98.0)

96.7 (92.3–

98.6)

97.2 (95.8–

98.1)

10-year LR 98.7 (91.2–

99.8)

95.0 (92.0–

96.8)

93.1 (88.6–

95.9)

78.9

(53.2–

91.5)

91.4

(78.5–

96.7)

92.3 (86.4–

95.7)

93.4 (91.3–

94.9)

Disease-Free

Survival

N (%) Events 27 (34.2) 126 (32.4) 90 (38.5) 15 (71.4) 21 (39.6) 69 (41.6) 0.002 321 (37.2) 0.71

5-year DFS 79.3 (68.4–

86.8)

86.6 (82.8–

89.6)

81.0 (75.3–

85.5)

71.4

(47.2–

86.0)

73.1

(58.8–

83.1)

77.9 (70.8–

83.6)

82.2 (79.5–

84.6)

10-year DFS 72.5 (60.9–

81.1)

72.2 (67.4–

76.4)

65.7 (59.1–

71.5)

56.7

(33.3–

74.7)

61.2

(46.6–

73.0)

64.4 (56.4–

71.3)

67.9 (64.6–

71.0)

* = p-value for comparison between the 6 different subtypes
& = p-value for comparing claudin-low versus non-claudin low

doi:10.1371/journal.pone.0168669.t003
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circumscription between subtypes. Patients also varied according to adjuvant systemic therapy

received.

When compared to all other subtypes combined, CL tumors were more likely to occur at a

younger age (mean = 52.8 versus 59.0, p<0.001) be high grade (68.1% versus 15.2% were grade

III, p<0.001), larger size (32.9% versus 18.5% were�2cm, p = 0.005) and to be characterized

by an extensive lymphocytic infiltrate (41.9% versus 7.9%, p<0.001) and to have pushing or

circumscribed tumor margins (44.3% versus 20.8%, p<0.001) (Table 3, Fig 3).

CL tumors and association with markers of breast cancer stem cells/

tumor initiating cells

We examined the association between CL tumors in our TMA cohort and known markers of

breast cancer stem cells/tumor initiating cells including ALDH1 and CD44hi/CD24-/low [32–

35]. When compared to all other subtypes combined, CL tumors were more likely to express

ALDH1 (17.1% versus 7.3%, p = 0.010) and they showed a trend towards an association with

the CD44hi/CD24-/low phenotype (31.3% versus 21.7%, p = 0.090) (Table 3, S4 Fig).

Prognosis

In the final cohort of 942 patients, 348 had a disease-related event, 61 had a local recurrence

and 204 deaths were observed. With respect to DFS, luminal A and CL cancers had the best

Fig 3. Disease-Free Survival (DFS) of Patients enrolled in the AHWBI trial by Tumor Subtype

doi:10.1371/journal.pone.0168669.g003
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prognosis at 10 years (72.2% and 72.5% respectively) whereas basal-like and HER2 enriched

had the worst (61.2 and 56.7% respectively), (p = 0.002; Table 3, Fig 3). The majority of the

recurrences associated with CL tumors occurred within the first 5 years of diagnosis. Although

not statistically significant (p = 0.40) the groups with the worst OS were patients with basal-

like and CL tumors (Table 3, Fig 4). With regards to local recurrence (LR), only 1 of 79 (1.3%)

patients with a CL tumor had a LR as compared to 21 (5.4%) of luminal A, 15 (6.8%) of luminal

B, 6 (28.6%) of the HER2 enriched patients, 4 (7.5%) of the basal-like (p<0.001, Table 3, Fig 5).

Discussion

An appropriate IHC surrogate approach for the classification of CL breast tumors has not

been heretofore rigorously identified limiting our ability to recognize and study this subtype in

further detail. To this end, using an in silico dataset of 1,196 breast tumors each of which could

be assigned to one of 7 molecular subtypes; luminal A, luminal B, HER2 enriched, basal-like,

normal-like, molecular apocrine and CL we identified that 6.69% (n = 80) of the tumors were

CL. These CL tumors differed from other molecular subtypes by their lower expression of epi-

thelial cell-cell adhesion factors, markers of luminal epithelial cell differentiation and by their

elevated expression of genes involved in immunity and host defence and tumor cell invasive-

ness and EMT. These results reaffirm the dominant biological pathways functioning in CL

tumors. Breast cancer cell lines reflective of the CL subtype were also found to express low or

absent levels of the epithelial cell-cell adhesion proteins examined (E-cadherin, claudin 3,

Fig 4. Overall Survival (OS) of Patients enrolled in the AHWBI trial by Tumor Subtype

doi:10.1371/journal.pone.0168669.g004
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claudin 4 and claudin 7) and markers of breast luminal epithelial cell differentiation (ER, PR

and HER-2). This unique IHC profile (TN and cell adhesion protein low/absent) could distin-

guish the CL subtype in cell line preparations from the other breast cancer molecular subtypes

studied.

Furthermore, when we examined a large retrospective collection of 942 primary human

breast cancers with clinical, pathologic and outcome data for the surrogate CL IHC profile

we identified a tumor group with distinguishing morphologic and outcome characteristics.

We observed that the incidence of the CL subtype was 8.4% similar to the 7–14% incidence

reported previously [2, 5]. Phenotypic characteristics of this subtype when compared to other

subtypes included an association with high tumor grade, large tumor size, an extensive lym-

phocytic infiltrate and circumscribed/pushing tumor margins. Many of these features are

component features of medullary or atypical medullary breast cancer, a subtype of TN breast

cancer. An association between these medullary-like features and CL tumors has been previ-

ously identified [2]. The extensive lymphocytic infiltrate associated with CL tumors in our pri-

mary breast tumor cohort correlates well with the preponderance of immune associated genes

upregulated in this subtype as identified by our in silico experiments.

CL tumors have previously been shown to be enriched for genes associated with mammary

stem cells/breast cancer tumor initiating cells, from which it has been inferred that this tumor

subtype may be enriched for these primitive cells types and even potentially derived from the

Fig 5. Local Recurrence (LR) of Patients enrolled in the AHWBI trial by Tumor Subtype

doi:10.1371/journal.pone.0168669.g005
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malignant transformation of a mammary epithelial stem cell [29, 36–40]. To test if our IHC

profile accurately captures this aspect of CL tumor biology we examined the expression of

known cancer stem cell/breast tumor initiating cell markers; ALDH1 and CD44hi/CD24low/- in

our TMA cohort of human tumors [33–35]. The CL subtype was significantly more likely to

express the mammary stem cell/breast tumor initiating cell marker ALDH1 (p = 0.01) than

non-CL tumors and there was a trend for association between CL tumors and the CD44hi/

CD24low/- phenotype (p = 0.09). These results suggest that the surrogate IHC profile used is

accurately identifying the CL subtype of tumors.

CL tumors as identified by gene expression profiling have been shown to have an outcome

intermediate between that of luminal A and poor prognostic subtypes such as luminal B,

basal-like and HER2 enriched subtypes [2, 5]. Using the IHC definition described we show

that while not statistically significant (p = 0.04) patients with CL had a worse OS at 10 years

(81.6%) compared to patients with luminal A disease (85.8%) (Table 3). The relatively good

outcome described for patients with CL tumors in our cohort may be attributable to the pres-

ence of an extensive lymphocytic infiltrate in many of these tumors. Increased quantities of

tumor infiltrating lymphocytes have been shown by a number of investigators to be associated

with good outcome in breast cancer in general and TN tumors in particular [41–44]. The rela-

tive good outcome for CL tumors in our cohort could also be ascribed to the low tumor stage

of all patients eligible for entry onto this trial (T1 /T2 and N0).

This is the first study to report on the LR rates for CL tumors. The CL subtype had the low-

est rate of LR (1.3% at 5 and 10 years) of any molecular subtype studied. Given that all patients

in this cohort were treated with breast conserving surgery and whole breast irradiation this

finding may suggest that CL tumors are particularly sensitive to radiation. However, given the

low number of CL tumors and the overall low LR rate in the study population this result

should be considered hypothesis generating and would need to be validated in other data sets.

In summary, we have taken a two step approach to identify a surrogate IHC profile to iden-

tify CL tumors in FFPE tumor samples. We tested this profile (TN and low expression of at least

two of four epithelial cell-cell adhesion markers; claudin 3, claudin 4, claudin 7 and E-cadherin)

in a large cohort of breast tumors with long-term follow up. We have demonstrated that approx-

imately 8% of all invasive breast cancer fall into this unique molecular subtype and the tumor

type is characterized by distinguishing morphologic features including high tumor grade, large

size and some of the characteristic features of medullary-type cancers. Uniquely we demonstrate

that CL tumors have a low incidence of LR following breast conserving therapy (BCT). In addi-

tion, CL tumors show an association with known cancer stem cell markers when compared with

all other molecular subtypes of breast cancer. While our results are encouraging and suggest that

using the IHC panel described, CL tumors can be identified it would be valuable to validate

these findings in an independent breast cancer cohort with long-term follow-up,
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