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Research in the Visual Development Unit on ‘‘dorsal
stream vulnerability’ (DSV) arose from research in two
somewhat different areas. In the first, using cortical
milestones for local and global processing from our
neurobiological model, we identified cerebral visual
impairment in infants in the first year of life. In the
second, using photo/videorefraction in population
refractive screening programs, we showed that infant
spectacle wear could reduce the incidence of strabismus
and amblyopia, but many preschool children, who had
been significantly hyperopic earlier, showed visuo-motor
and attentional deficits. This led us to compare
developing dorsal and ventral streams, using sensitivity
to global motion and form as signatures, finding deficits
in motion sensitivity relative to form in children with
Williams syndrome, or perinatal brain injury in
hemiplegia or preterm birth. Later research showed that
this ‘‘DSV’’ was common across many disorders, both
genetic and acquired, from autism to amblyopia. Here,
we extend DSV to be a cluster of problems, common to
many disorders, including poor motion sensitivity, visuo-
motor spatial integration for planning actions, attention,
and number skills. In current research, we find that
individual differences in motion coherence sensitivity in
typically developing children are correlated with MRI
measures of area variations in parietal lobe, fractional
anisotropy (from TBSS) of the superior longitudinal
fasciculus, and performance on tasks of mathematics
and visuo-motor integration. These findings suggest that
individual differences in motion sensitivity reflect
decision making and attentional control rather than
integration in MT/V5 or V3A. Its neural underpinnings
may be related to Duncan’s ‘‘multiple-demand’’ (MD)
system.

Introduction

Emerging cortical function and infant cortical
impairment

The work discussed at the beginning of this review
arose out of the first twenty years of my research with
Oliver Braddick and our team in the Visual Develop-
ment Unit in Cambridge, particularly John Wattam-
Bell and Shirley Anker (Atkinson, 2000). We began by
devising new methods, both behavioral (automated
forced-choice preferential looking) and electrophysio-
logical (steady-state VEP/VERP—Visual Evoked Po-
tential/Visual Event Related Potential) to measure the
normal visual capacities of infants such as acuity and
contrast sensitivity, over the first years of life (Atkin-
son, Braddick, & Braddick, 1974; Harris, Atkinson, &
Braddick, 1976; Atkinson, Braddick, & Moar, 1977a,
1977b, 1977c; Atkinson, Braddick, & French, 1979;
Atkinson, French, & Braddick, 1981). We then looked
at the timescale of development of basic visual cortical
functions: binocularity (e.g., Braddick et al., 1980),
orientation (e.g., Braddick, Wattam-Bell & Atkinson,
1986) and direction selectivity (e.g., Wattam-Bell, 1991,
1992), symmetry of monocular optokinetic nystagmus
(Atkinson, 1979; Atkinson & Braddick, 1981) and
control of visual attention (Atkinson, Hood, Wattam-
Bell, Anker, & Braddick, 1988; Atkinson, Hood,
Wattam-Bell, & Braddick, 1992). This research led to a
neurobiological model (of which an updated version
appears as Figure 1) of the course of visual cortical
brain development, in which an initially subcortical
system came under the control of progressively
emerging cortical functions (Atkinson, 1984, 2000). The
milestones of this sequence provided the basis for
identifying cortical visual impairment in infants with
early brain injury (e.g., Hood & Atkinson, 1990;
Atkinson & van Hof-van Duin, 1993). This was a
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starting point for extended collaborations with pediat-
ric neurologists including extensive studies of the
visuocognitive consequences of perinatal brain injury in
infants identified with hypoxic ischemic encephalopa-
thy (HIE) and in infants with very preterm birth
(Mercuri et al., 1996; Mercuri, Atkinson, Braddick,
Anker, Cowan, et al., 1997; Mercuri, Atkinson,
Braddick, Anker, Nokes, et al., 1997; Mercuri et al.,
1999; Atkinson, Anker, Rae, & Weeks, 2002; Atkinson
& Braddick, 2007).

Infant refractive screening

A second strand of clinical application was in
pediatric ophthalmology and optometry. It came out of
our work, in collaboration with the ophthalmologists in
Cambridge, initially identifying amblyopia in children
with a range of paediatric visual disorders such as
congenital cataract and strabismus (e.g., Atkinson,
Braddick, & Pimm-Smith, 1982; Atkinson & Braddick,
1982, 1986; Atkinson et al., 1988) and analyzing early
binocularity (Wattam-Bell, Braddick, Atkinson, &
Day, 1987; Smith, Atkinson, Anker, & Moore, 1991).
We devised with Howard Howland isotropic photo-
refraction to study infants’ development of accommo-
dation and refraction, including early astigmatism and
its reduction (Howland, Atkinson, Braddick, & French,
1978; Braddick, Atkinson, French, & Howland, 1979;
Atkinson & French, 1979; Atkinson, Braddick, &

French, 1980). Using photo- and video-refraction we
devised and led large-scale population screening
programs to identify strabismus and refractive errors in
typically developing infants at 9 months of age,
screening over 8000 infants (Atkinson, Braddick,
Durden, Watson, & Atkinson, 1984; Atkinson, 1993).
Our controlled trial of spectacle correction of hyper-
opic infants (including hyperopic anisometropia and/or
astigmatism) showed that refractive correction could
reduce the subsequent incidence of strabismus (21% to
6%) and amblyopia (68% to 29%) (Atkinson et al.,
1996; Atkinson, Braddick, Nardini, & Anker, 2007;
Anker, Atkinson, Braddick, Nardini, & Ehrlich, 2004).
However, in the extensive follow-up in these programs,
we found that many of these children (including those
who had worn glasses in infancy) showed subtle deficits
in visuo-motor control and in measures of early
attention (Atkinson, Anker, Nardini et al., 2002;
Atkinson et al., 2005; Atkinson et al., 2007).

Thus these two strands of work converged in
findings about the vulnerability of the developing visual
brain in different disorders—neurological in one case
and ophthalmological in the other. Through this route,
and from studies of Williams syndrome discussed
below, we arrived at the idea that this vulnerability in
developmental disorders was dominated by the dorsal
cortical stream—the topic explored in the rest of this
review.

Figure 1. Model of the development of visual brain systems, and the behavior they control, on the timeline (left) from birth to one

year of age. The early connections through the pulvinar, shown in orange, have been suggested (e.g., Johnson, 2005; Warner, Kwan, &

Bourne, 2012), although such links have not been demonstrated in human development. These links, colored in orange, are additions

to earlier published versions of this figure (Atkinson, 2000; Atkinson & Braddick, 2012b).
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Infant motion sensitivity

Processing motion is one of the most fundamental
ways in which the sense of vision informs us about our
environment and our own actions, and one of the key
functions of the visual cortex. Human infants, while
they have only very limited, mostly reflexive, responses
to visual motion at birth (Kremenitzer, Vaughan,
Kurtzberg, Dowling, 1979; Atkinson & Braddick, 1981;
Mason, Braddick, & Wattam-Bell, 2003), can be shown
to discriminate directional motion from around 6–8
weeks of age, using visual evoked potential and
behavioral measures (Wattam-Bell, 1991, 1992, 1994,
1996a, 1996b, 1996c; Braddick, 1993), and also show
activation of a network of brain areas specifically by
motion stimuli (Biagi, Crespi, Tosetti, & Morrone,
2015). Only a few weeks later, by around 3–4 months of
age, they can exploit this ability in a wide variety of
complex perceptual discriminations. For example,
Arterberry and Yonas (1988, 2000) showed discrimi-
nation of 3-D structure from motion (e.g., the presence
of an interior corner on a cube, represented by random
dot kinematograms). Kellman and Spelke (1983) and
Johnson and Aslin (1996) showed that infants link the
parts of a partially occluded object by their common
motion, and Johnson et al. (2003) showed that they can
predict the trajectory of a moving object that passes
behind an occluder. Infants can discriminate the
simulated direction of heading in optic flow displays
(Gilmore, Baker, & Grobman, 2004) and have also
shown sensitivity to the patterns of point-light motion
that characterize biological motions (Fox & McDaniel,
1982; Bertenthal, Proffitt, & Cutting, 1984; Bertenthal,
Proffitt, Spetner, & Thomas, 1985; Booth, Pinto, &
Bertenthal, 2002). This ability to make these complex
inferences requires something beyond detecting the
simple, local direction of motion; it requires global
motion processing of directional signals, with integra-
tion over time and space of these signals, to allow
analysis of the global structure of the pattern of
motions.

Dorsal and ventral streams in infancy

Responses to directional motion within a local
receptive field occur in area V1 (Hubel & Wiesel, 1968),
and in both macaques and humans these are integrated
to provide responses to global motion in area V5/MT
(Zeki, 1974; Movshon, Adelson, Gizzi, & Newsome,
1986; Mikami, Newsome, & Wurtz, 1986; Maunsell &
Newsome, 1987; Newsome & Paré, 1988; Britten,
Shadlen, Newsome, & Movshon, 1992; Watson et al,
1993; Tootell, Dale, Sereno, & Malach, 1996; Morrone
et al., 2000). Adult functional magnetic resonance
imaging (fMRI) studies show that the network of areas

processing global motion goes beyond V5 to include
other extrastriate areas, including V3A and V6
(Sunaert, Van Hecke, Marchal, & Orban, 1999;
Braddick et al., 2000; Braddick et al., 2001; Pitzalis et
al., 2010; Helfrich, Becker, & Haarmeier, 2013). In our
adult fMRI study, contrasting globally coherent with
incoherent patterns for both form and motion, we
identified independent separate networks for motion
and form, each running from occipital extrastriate
areas to the intraparietal sulcus and to ventral areas
(Braddick, O’Brien, Wattam-Bell, Atkinson, & Turner,
2000). The motion areas V5/MT, V3A, V6, and
intraparietal sulcus (IPS) have been identified as part of
the dorsal cortical stream (Felleman & Van Essen,
1991), projecting to parietal cortex and serving to use
visual information for understanding movement and
spatial layout, and translating these into the control of
action (Mishkin, Ungerleider, & Macko, 1983; Milner
& Goodale, 1995). Global form information, in
contrast, is required for object recognition subserved by
the ventral stream. Areas that integrate local contours
for global shape processing are less well understood
than their counterparts for motion, but include V4, an
extrastriate area occupying a similar hierarchical
position in the ventral stream to that of V5/MT in the
dorsal stream. V4 responds to global configurations
such as concentrically arranged contours (Gallant,
Braun, & Van Essen, 1993; Gallant, Connor, Rakshit,
Lewis, & Van Essen, 1996). Measures of sensitivity to
global form and global motion can therefore serve as
comparable indicators of extrastriate ventral and dorsal
stream function, respectively.

To measure the early development of dorsal and
ventral streams in infants, we designed a novel steady-
state VERP paradigm which compared responses to
global motion with those to concentrically organized
global form. Stimulus sequences alternated between
random and coherent global structure of either form or
motion, in different blocks of trials (Braddick &
Atkinson, 2007; Wattam-Bell et al., 2010). We dem-
onstrated that infants show a neural response to
coherent motion by around 3 months of age, with
sensitivity to global motion developing earlier than
sensitivity to static form. We concluded that the
development of the extrastriate dorsal stream at this
early stage preceded that of the ventral stream
(Braddick & Atkinson, 2007). Later, using a montage
with a high density EEG (electroencephalographic)
sensor array (‘‘net’’), we confirmed that global sensi-
tivity for motion was more advanced at 4–5 months of
age than for global static form (Wattam-Bell et al.,
2010). Analogous results have been found for infant
monkeys’ behavioral sensitivity to global form and
motion (Kiorpes, Price, Hall-Haro, & Movshon, 2012).
Our EEG data showed distinct topographic patterns of
activation for form and motion stimuli, confirming that
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distinct neural systems were activated both in adults
and in infants. However, these patterns were quite
different in infants from those in adults, implying a
major reorganization of the networks processing global
motion and form sensitivity between infancy and
adulthood (Wattam-Bell et al., 2010; Wattam-Bell,
Chiu, & Kulke, 2012).

A further finding was that in comparing term-born
infants with infants born before 33 weeks gestation, the
preterm-born infants showed similar activation to
term-born for the simple VEP (Visual Evoked Poten-
tial) pattern-reversal stimulus and for global static
form. However, there was a striking difference in global
motion responses. The term-born infants and preterm-
born infants, with very mild or normal neonatal MRI
findings, showed a greater activation in this VERP
response to global motion than that seen for the group
of preterm infants with brain injury categorized as
‘‘severe’’ from neonatal MRI (Braddick, Atkinson, &
Wattam-Bell, 2011). In addition, the preterm infants
categorized as having ‘‘mild’’ or ‘‘moderate’’ perinatal
brain injury appeared to show a more immature
configuration, compared to term-born infants, in terms
of lateralization of the activation, which changes from
infancy to adulthood (Wattam-Bell et al., 2010). This
implies that in preterm infants, even those without
major brain injury, the development of the dorsal
stream underpinning motion coherence sensitivity is
already delayed compared to term-born infants (Birtles,

Braddick, Wattam-Bell, Wilkinson, & Atkinson, 2007;
Braddick et al., 2011).

Development of global form and motion
sensitivity in childhood

To compare global thresholds for form and motion
sensitivity in preschool and school age children, we first
devised two new behavioral tasks, especially suitable
for children as young as 4 years of age, but appropriate
up to adulthood. These were the ‘‘Road in the
Snowstorm’’ for measuring transverse motion coher-
ence thresholds and ‘‘the Ball in the Grass’’ for
detecting a circular array of static arc line segments.
These ventral and dorsal stream tasks, described in
detail in Atkinson et al. (1997) and Gunn et al. (2002),
both used adaptive threshold procedures to assess
relative sensitivity, and were very similar in their
cognitive demands. To make the geometry of the two
displays as directly comparable as possible, we went on
to design a dynamic (motion) version of the ‘‘Ball in the
Grass’’ test (Atkinson & Braddick, 2005), a display of
limited-lifetime random dots moving in concentric
circular arcs in one region of the field, with coherence
manipulated by varying the proportion of randomly
oriented arcs (Figure 2). For both form and motion
displays, the circular ‘‘ball’’ was presented either right
or left of center of the laptop screen, and the child

Figure 2. The ‘‘Ball in the Grass’’ test for measuring children’s thresholds for global coherence of motion and form. (A) motion test

pattern, with the target on the right. Trajectories of dots are indicated by red arrows. The boundary of the ‘‘ball,’’ shown by red

dashed line, was not present on the screen. (B) form test pattern, with target (100% coherence) on the left. (C) child performing the

form coherence test on a laptop screen. (D) movie showing a graded series of global motion patterns, with coherence values (from

left) of 100%, 75%, 50%, 25%, and 0%. (E) graded series of global form patterns, with the same coherence values as in (D).
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indicated on which side it appeared on each trial. Using
these comparable tasks, we found that adults generally
showed similar coherence thresholds for both form and
motion (around 10%–15% coherence) and that, in a
number of studies, although coherence sensitivity could
be demonstrated in early infancy for patterns with
100% coherence, improvements in sensitivity to global
coherence extended over many years of childhood
(Gunn et al., 2002; Atkinson & Braddick, 2005;
Braddick, Atkinson, Newman et al., 2016). Adult levels
of form coherence sensitivity were reached for most
typically developing children around 7–10 years, but
global motion sensitivity showed a slower develop-
mental course, being considerably poorer in 4–5 year
olds and not reaching adult levels till around 8–12 years
of age. However, the exact age at which adult global
sensitivity is found depends critically on the compara-
bility of the stimuli used to compare form with motion,
and the spatial and temporal parameters of the stimuli
used in particular studies (Meier & Giaschi, 2014;
Hadad, Schwartz, Maurer, & Lewis, 2015).

Global motion and global form in Williams
syndrome

We used these coherence measures of dorsal versus
ventral stream function to study children with
developmental disorders. This work began with young
children with Williams syndrome (WS). Children with
this developmental disorder, related to a specific
deletion on chromosome 7, were known to show a
very characteristic cognitive profile, with relatively
strong expressive language abilities, although there are
some differences in WS to normal language develop-
ment combined with unusual semantic knowledge and
‘‘hyper-social’’ behavior. Within the visual domain,
children with Williams syndrome showed relatively
good ability to recognize faces (although not neces-
sarily using the same strategies as typically developing
children (e.g., Deruelle, Mancini, Livet, Casse-Perrot,
& De Schonen, 1999; D’Souza et al., 2015), but
marked spatial difficulties (e.g., Bellugi, Lichtenberg-
er, Mills, Galaburda, & Korenberg, 1999; Atkinson et
al., 2001). We studied a large group of WS children,
between 30 and 100, aged 3 to 15 years, with the
number in each task depending on the feasibility of the
test for the mental age of the individual child. We
found that, while over 50% had basic visual problems,
including refractive errors (usually hyperopic), re-
duced acuity, stereo deficiency, and strabismus, these
sensory problems did not account for their poor
performance on relatively simple spatial tasks (At-
kinson et al., 2001).

We also tested sensitivity to form and motion
coherence, using the ‘‘Ball in the Grass’’ and ‘‘Road in

the Snowstorm’’ tests (Atkinson et al., 1997). We found
that WS children showed persistent deficits in global
motion coherence sensitivity, relative to static form
coherence, compared to typically developing children.
We suggested that this deficit was related to poor dorsal
stream development, relative to the ventral stream
(Atkinson et al., 1997), a view which was supported by
the same children’s poor performance in posting a card
through an angled slot (discussed below). The deficit in
global motion sensitivity was not just a developmental
delay, but persisted in adults with WS (Atkinson et al,
2006). The idea of a dorsal stream anomaly was
supported by results from our structural MRI study of
two very young WS children (;2.5 years of age), who
showed anomalous fiber tract development within the
centrum semiovale, together with abnormal cerebellar
structure (Mercuri, Atkinson, Braddick, Rutherford et
al., 1997). Later MRI neuroimaging work with WS
adults also showed dorsal stream abnormalities (e.g.,
Meyer-Lindenberg et al., 2004).

Dorsal-stream vulnerability: A widespread
feature of developmental disorders

However, it soon became apparent that a deficit in
global motion, compared to global form sensitivity,
was not a special characteristic seen only in children
with Williams syndrome. Work from our group and
others found that this pattern, of elevated thresholds
for motion compared to form, characterized children’s
performance in many different forms of developmen-
tal disorder and disruption, including hemiplegia
(Gunn et al., 2002), fragile-X syndrome (Kogan et al.,
2004), developmental dyslexia (e.g., Cornelissen,
Richardson, Mason, Fowler, & Stein, 1995; Hansen,
Stein, Orde, Winter, & Talcott, 2001; Ridder, Borst-
ing, & Banton, 2001), children with very preterm birth
(e.g., Atkinson & Braddick, 2007; Taylor, Jakobson,
Maurer, & Lewis, 2009), and young children with
developmental coordination disorder (Corbett, At-
kinson, & Braddick, 2016). Motion coherence deficits
in autism spectrum disorder (ASD) have been widely
reported, (e.g., Spencer et al., 2000; Koldewyn,
Whitney, & Rivera, 2010; Robertson et al., 2014), with
the relationship between local and global motion
processing in ASD and the role played by related
cognitive biases being widely debated (see Dakin &
Frith, 2005; Manning, Tibber, Charman, Dakin, &
Pellicano, 2015). Early visual deprivation due to
congenital cataract reduces global motion sensitivity
by a factor of 4.9 compared to only 1.6 for global form
(comparing Ellemberg, Lewis, Maurer, Brar, & Brent,
2002, with the same patients in Lewis et al., 2002).
Adult strabismic amblyopes also show a greater
reduction in global motion sensitivity than for static
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form (e.g., Simmers, Ledgeway, Hess, & McGraw,
2003; Ho et al., 2005; Simmers, Ledgeway, & Hess,
2005; see also the review by Hamm, Black, Dai, &
Thompson, 2014). Several results suggest that both
local motion processing and global integration are
impaired in both amblyopic and fellow eyes in
amblyopia (Aaen-Stockdale & Hess, 2008; Hou,
Pettet, & Norcia, 2008; Knox, Ledgeway, & Simmers,
2013; Levi, 2013).

Thus, there appears to be broad ‘‘dorsal stream
vulnerability’’ (Braddick, Atkinson & Wattam-Bell,
2003; Atkinson & Braddick, 2011; Braddick & Atkin-
son, 2011) in both genetic and acquired developmental
disorders. As this motion coherence deficit appears to
be a common feature across a wide variety of pediatric
disorders with very different aetiologies and neurode-
velopmental profiles, we initially suggested that it
represented an early vulnerability in neural systems
processing motion information of a very basic nature.
In the case of dyslexia, this has been described as the
‘‘magnocellular hypothesis’’ (Stein, Talcott, & Walsh,
2000), although the relationship between the magno-
cellular system, as defined at the geniculate level, and
the motion processing areas of the cortex, is not
straightforward.

Broader dorsal stream functions

The dorsal stream is an extensive network in the
brain. In considering the pathways by which the dorsal
stream provides input for the visual control of actions,
we realized that many cortical dorsal stream areas
overlapped with those which have been shown in adults
and nonhuman primates to be involved in the control
of attention. Figure 3 (see Atkinson, 2000; Atkinson &
Braddick, 2011) shows a schematic of the dorsal stream
pathways which feed specific visuomotor modules for
the control of manual and oculomotor actions, and
highlights those areas within these pathways which
have been shown to have functions related to attention
(although we have not included all the networks for
attentional control in adults).

In 2011, Kravitz, Saleem, Baker, & Mishkin,
drawing evidence from studies on nonhuman primates,
human neuropsychology, and adult neuroimaging,
reviewed the multiple branches and target areas for the
dorsal stream, and showed that their functions go
beyond visuo-motor control. Their evidence shows that
the dorsal stream has three distinct target branches
(Kravitz et al., 2011) schematized in our diagram of
Figure 4. These branches of the extended dorsal stream
are (a) one connecting through parietal areas to
premotor cortex, including the visuomotor modules for

Figure 3. Schematic summary of dorsal stream connections of visuo-motor modules for control of four behaviors—arm movements

for reaching, hand movements for grasping, saccadic eye movements, and smooth pursuit eye movements. Brain areas in white or

green are dorsal-stream, V4, TEO, STS, and IT are ventral-stream, and black are subcortical areas. Areas which have been shown to be

involved in spatial direction of attention are highlighted in green. Networks shown are based on primate studies and human

neuropsychology data reviewed by Jeannerod (1988), Milner and Goodale (1995), and Rizzolatti, Fogassi and Gallese (1997). Redrawn

from Atkinson & Braddick (2011). Key to abbreviations for brain areas: V1-5¼ visual areas 1–5; PO¼ parietal-occipital; MDP¼medial

dorsal parietal; MIP¼medial intraparietal; AIP¼ anterior intraparietal; VIP¼ ventral intraparietal; LIP¼ lateral intraparietal; BA6¼
Brodmann area 6 (F4, F5, etc., are fields within BA6); FEF¼ frontal eye fields; NOT¼ nucleus of the optic tract; sup coll¼ superior

colliculus; TEO¼ a posterior region of inferotemporal cortex; STS ¼ superior temporal sulcus; IT ¼ inferotemporal.
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the guidance of action, as exemplified for reaching and
grasping in Figure 3; (b) the second branch connecting
to the frontal eye fields, including the saccadic and
pursuit systems, with reciprocal connections to pre-
frontal areas, a branch which also underpins spatial
memory and attention; and (c) the third pathway
running from parietal areas via cingulate cortex to the
medial temporal lobe and hippocampus, which is
involved in delivering spatial information, and inte-
grating it with information from the ventral stream for
navigation and topographic cognition.

Visuomotor control and spatial cognition in
Williams syndrome

Children with Williams syndrome are commonly
described as clumsy and as having specific difficulties
with some areas of motor behaviour such as stepping

down kerbs or stairs (Chapman, du Plessis, & Pober,
1996; Withers, 1996; Atkinson et al., 2001; Hocking,
McGinley, Moss, Bradshaw, & Rinehart, 2010; Hock-
ing, Rinehart, McGinley, Moss, & Bradshaw, 2011;
Cowie, Braddick, & Atkinson, 2012). Given the key
role of dorsal stream circuits in visuo-motor control,
these problems fit the account of WS as involving a
specific dorsal stream deficit. Our assessments of WS
children included the ABCDEFV battery (Atkinson
Battery of Child Development for Examining Func-
tional Vision), a set of functional visual subtests of
sensory, perceptual, and cognitive vision which we had
normalized for typically developing children from birth
to 5 years of age (Atkinson, Anker, Rae, Hughes, &
Braddick, 2002). The battery includes block construc-
tion copying and shape-fitting subtests, suitable for
typically developing children between 2 and 5 years of
age. Fluent performance in these tasks requires
coordinated sequences of actions, using visual infor-
mation for both action selection (e.g., the next block to

Figure 4. The scheme proposed by Kravitz et al. (2011) for three networks of the dorsal stream with distinct functional roles, shown as

three horizontal bands separated by dashed horizontals. The scheme has been drawn to allow direct comparison with the visuo-

motor modules suggested in Figure 3. In Kravitz’s scheme, the modules for manual actions come within the ‘‘parieto-premotor

circuit’’ (a, middle strip of the figure) subserving action control, and those for oculomotor actions within the ‘‘parieto-prefrontal
circuit’’ (b, lower strip) involved in spatial memory and attentional control. The third ‘‘parieto-medial temporal’’ pathway (c) involves
interaction with the ventral stream in the parahippocampal cortex and hippocampus and is proposed to be involved in spatial

navigation. However this diagram is not intended as a comprehensive chart of the connections of the areas shown—for example it

omits connections with the superior temporal sulcus where motion information interacts with the ventral stream in biological

motion—a function not discussed in this review. Abbreviations as for Figure 3. Additional abbreviation: EF ¼ executive functions.
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be positioned in a block construction) and on-line
control (e.g., positioning and rotating a shape to fit into
its slot). In our study of a large cohort of children with
WS (50–100 WS children, depending on the mental age
appropriateness of specific tests) we found that all the
children showed deficits on these early spatial subtasks
of the ABCDEFV, but only around 50% of the same
WS children showed poor acuity, strabismus, and/or
marked refractive errors. We also found that the extent
of individual deficit on the spatial tasks did not
correlate well with whether that child had acuity
deficits, refractive errors and poor accommodation, or
strabismus (Atkinson et al., 2001). This suggests that
these spatial problems are more consistent with deficits
in higher levels of the dorsal stream networks rather
than lower level deficits of vision, and that there is no
simple causal link between early visual problems, such
as strabismus, and more complex spatial problems at a
later age.

In older children with WS, we found wide-ranging
visuomotor deficits. Figure 5 illustrates results from a
study of a group of WS children aged 6–15 years using
the standardized Movement Assessment Battery for
Children (Movement ABC—Henderson & Sugden,

1992). In all four components of this battery—manual
dexterity, ball skills, static balance, and dynamic
balance—the development of all the WS children fell
well below their age norms and in many cases did not
attain the minimal 4-year-old equivalent for the tests,
even when entering adolescence.

For a direct comparison of dorsal and ventral stream
function using the same visual information, we adapted
the ‘‘mailbox task’’ of Perenin and Vighetto (1988) and
Milner and Goodale (1995) as a child-friendly test. For
assessing the dorsal stream control of action, the angle
of a card is measured as the child moves it towards the
slot of the ‘‘mailbox,’’ whose orientation is varied from
trial to trial. In the ventral-stream version, the child
rotates the card in a fixed location to match the slot
orientation. The WS children showed much greater
impairment compared to typical controls in performing
a fluent posting action than they did in the matching
task, supporting the idea of specific dorsal stream
impairment (Atkinson et al., 1997).

Visuo-motor control involves using visual informa-
tion both for the on-line control of the motion
trajectory, and in selecting an appropriate motor
program to plan an action, or a sequence of actions, in
advance. Both aspects are impaired in Williams
syndrome. Table 1 lists a number of measures of motor
planning that we have used with young children, both
typically developing and with developmental disorders.
WS children showed deficits in the ‘‘handle task’’,
which requires them to select a grip before rotating a
handle, where the selected grip will lead to either a
comfortable or an uncomfortable end-state posture of
the wrist (Smyth & Mason, 1997; Newman, 2001;
Braddick & Atkinson, 2013).

Locomotion is a further domain where visual
information is required to prepare safe and accurate
motor responses. Cowie, Braddick, & Atkinson (2008)
and Cowie et al. (2010) showed that the action sequence
of the leg while descending stairs is determined by
advance visual information about the step height, in
children as young as 3 years old, but that this linkage is
seriously disrupted in WS (Cowie et al., 2012).

Spatial cognition and navigation are the domain of
Kravitz et al.’s (2011) third branch of the dorsal stream.
Nardini, Atkinson, Braddick, & Burgess (2008) showed
that WS children showed a poor and anomalous
pattern in using different frames of reference to recall
the location of a hidden object. Similar anomalies have
been found in locating objects in larger-scale space
(Mandolesi et al., 2009) and in the spatial reference
frames and strategies used by WS children for
navigation (e.g., Broadbent, Farran, & Tolmie, 2014;
Farran, Formby, Daniyal, Holmes, & Van Herwegen,
2016).

Figure 5. Performance (norm age-equivalents) of a group of 24

Williams syndrome children and adolescents (chronological

ages 6.5–15 years), shown as median scores across tests within

the four subscales of the Movement ABC battery (Henderson &

Sugden, 1992). Points plotted at 3 years on the age-equivalence

scale are children who were unable to perform at the minimum

(4-year-old equivalent) level for the test. The diagonal line

indicates age-equivalence ¼ chronological age.

Journal of Vision (2017) 17(3):26, 1–24 Atkinson 8



Visuomotor and spatial deficits in other
developmental disorders

Deficits and delays in visuomotor development and
action planning are seen not only in children with WS;
Table 1 includes a range of tasks we have used to study
a number of neurodevelopmental disorders. We found
deficits based on the visuo-motor and spatial tasks
from the ABCDEFV not only in children with WS, but
also in typically developing children who had had
significant hyperopic refractive errors in infancy (some
with continuing amblyopia) (Atkinson, Anker, Nardini
et al., 2002; Atkinson, Braddick, Nardini, & Anker,
2007), and in children who had been born very
prematurely (Atkinson & Braddick, 2007).

Action planning of a specific kind is needed in tasks
which require a coordinated sequence of operations by
the two hands. Birtles et al. (2011) describe a test
requiring young children to use one hand to lift and
hold the lid of a transparent box, so that the other hand
can pick up a toy seen inside. Smooth coordination is
typically achieved at around 18–24 months, although
the timing and synchrony of the two hands continues to
be refined through later childhood. In preterm-born
children, the initial development is sensitive to the
degree of brain injury; children with white matter
problems show an immature timing pattern even if they
achieve successful use of the two hands (Birtles et al.,
2011, 2012; Braddick & Atkinson, 2013).

Looking more broadly at the pattern of development
in children born very prematurely, we see a general
pattern of impairment in a number of functions served
by the dorsal stream. Figure 6 shows a sample of 67
children born , 33 weeks gestation and tested at 6–7

years (Atkinson & Braddick, 2007). The tests in which a
significant proportion of children performed worse
than the 5th centile of typically developing children are
indicated by an asterisk (*). As well as motion
coherence and visuomotor skills (Movement ABC),
many preterm children performed poorly on a spatial
memory task requiring different frames of reference
(Nardini et al., 2006), and on block copying, and
attention tests (whose relation to the dorsal stream is
discussed below). Studies from other research groups of
preterm-born and very low birthweight children have
found similar visuomotor deficits (e.g., de Kieviet, Piek,
Aarnoudse-Moens, & Oosterlaan, 2009; O’Connor,
Birch, & Spencer, 2009; Bos, Van Braeckel, Hitzert,
Tanis, & Roze, 2013) and visuospatial problems
(Geldof, van Wassenaer, de Kieviet, Kok, & Ooster-
laan, 2012). Both Autistic Spectrum Disorder—ASD
(e.g., Fournier, Hass, Naik, Lodha, & Cauraugh, 2010;
Whyatt & Craig, 2012; Liu, 2013; Simermeyer &
Ketcham, 2015; Paquet, Olliac, Bouvard, Golse, &
Vaivre-Douret, 2016; Purpura, Fulceri, Puglisi, Maso-
ni, & Contaldo, 2016) and dyslexia (e.g., Haslum &
Miles, 2007) have been found to be associated with
poor visuo-motor control. However, in dyslexia this
has often been manifested in poor balance control
which has been considered as reflecting a cerebellar
problem (but see Stoodley & Stein, 2013 for discussion
of this). In addition, abnormalities in hand-eye
coordination in reaching and grasping for objects has
been found in children with amblyopia and deficits in
binocularity (e.g., Grant, Suttle, Melmoth, Conway, &
Sloper, 2014), with these deficits being reduced in
children following binocularity training.

Function Test Appropriate age References

Visual control of bimanual

motor planning

Bimanual box test 18 months onwards Birtles et al. (2011) [t]; Birtles et al.

(2012) [p]; and Braddick and

Atkinson (2013) [t, p]

Visual planning of manual

actions

Atkinson Battery of Child

Development for Examining

Functional Vision (ABCDEFV)

tests—block constructions,

shape matching, envelope

1–5 years Atkinson, Anker, Rae, Hughes et al.

(2002) [t]; Atkinson et al. (2001)

[ws]; Atkinson et al. (2007) [h]; and

Atkinson and Braddick (2007) [p]

On-line visual planning of

manual actions

Postbox task . 4 years Atkinson et al. (1997) [ws]

Planning for end-state

comfort

Handle and bar tasks 3 years onwards Smyth and Mason (1997) [t,d];

Newman (2001) [t,ws]; Braddick and

Atkinson (2013) [ws]; and

Simermeyer and Ketcham (2015) [a]

On-line locomotor planning Leg kinematics in stair descent 3 years onwards Cowie, Atkinson, & Braddick (2010) [t];

and Cowie et al. (2012) [ws]

Table 1. Tests of motor planning used in studies of developmental disorders. Notes: Reference codes for developmental groups: [t]¼
typically developing; [p] ¼ preterm born; [f] ¼ full-term-born with brain injury; [ws]¼Williams syndrome; [a] ¼ autism; [d] ¼
developmental coordination disorder; [h] ¼ children following infant hyperopia.
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Thus the pattern of deficits in visuomotor and
visuospatial cognition is widely distributed in develop-
mental disorders, consistent with the concept of a
broad ‘‘dorsal stream vulnerability.’’ A further aspect
of dorsal stream function is in the control of attention,
which is discussed in the next section.

Attention in developmental disorders

Attention can be broadly defined as the ability to
deploy the resources of the brain, so as to optimize
performance towards behavioral goals. We have
summarized much of our research on the development
of attention in a recent review (Atkinson & Braddick,
2012a). This research began with the Fixation Shift test
(FS). In this test the infant’s ability to initiate a saccade
from a centrally fixated target to a newly appearing
peripheral target is measured using an adapted forced
choice preferential looking (FPL) method, where the
observer is unaware (‘‘blind’’) as to whether the
peripheral target appears on the left or right of the
initial centrally fixated target, and has to guess the side
of the appearing peripheral target from the infant’s
head and eye movements. There are two conditions: In
the ‘‘noncompetition’’ condition the central target
disappears at the same time as the peripheral target
appears, whereas in the ‘‘competition’’ condition the
central target remains visible when the peripheral target

appears (Atkinson, Hood, Wattam-Bell, & Braddick,
1988, 1992; Hood & Atkinson, 1990, 1993; Kulke,
Atkinson, & Braddick, 2015). We found that typically
developing infants were very slow to make shifts under
competition in the first 2–3 months of life and
sometimes did not shift their attention at all, showing
‘‘sticky fixation.’’ In addition, we studied two very
young infants who had undergone hemispherectomy
surgery to relieve intractable epilepsy generated in one
hemisphere. Following surgery, we found that these
infants did not make significant shifts of attention
under competition to peripheral targets in their ‘‘bad’’
half-field (i.e., the side opposite to the impaired and
removed hemisphere), but they could make shifts to
both sides under noncompetition (Braddick et al.,
1992). These results supported the idea that shifts under
competition required development of cortical mecha-
nisms which controlled disengagement from the cur-
rently fixated target.

The difference between competition and noncompe-
tition has been supported in our current studies. These
have measured the latency of the fixation shift with an
eye tracker, combined with a multielectrode geodesic
net to carry out simultaneous EEG recording. This
allows for an accurate measure of the latency of the
saccadic shift of attention, and a simultaneous EEG
recording from areas of cortex activated in making the
attention shift before the eye movement itself (Kulke,
Atkinson, & Braddick, 2017).

Figure 6. Performance of a group of 67 children born before 33 weeks gestational age on a range of cognitive and visuomotor tasks at

6–7 years. Tests related to dorsal stream function are outlined in color. Attention¼ four subtests of the TEA-Ch (Manly et al., 2001).

Spatial location memory¼ the ‘‘Town Square’’ test of Nardini, Burgess, Breckenridge, and Atkinson (2006) and Nardini et al. (2008).

Motion¼ global motion ‘‘Ball in the Grass’’ test. Block copying from the ABCDEFV battery (Atkinson et al., 2002a). Movement ABC

refers to battery of Henderson & Sugden (1992). Stereo¼ TNO test (Cooper, Feldman, & Medlin, 1979). The horizontal dashed line

indicates the 5th percentile of age norms for these tests; * indicates tests where the proportion of the preterm group performing at

or below this level was significantly greater than 5% (p , 0.05; redrawn from Atkinson & Braddick, 2007).
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The Fixation Shift (FS) test therefore provides a
probe for atypical development of the cortical attention
mechanisms. We found delays and deficits in the ability
to shift fixation, especially in the competition condition
(Atkinson & Braddick, 2012a) in many term-born
infants with perinatal brain injury (focal lesions or
hypoxic-ischemic encephalopathy; Hood & Atkinson,
1990; Mercuri et al., 1996; Mercuri, Atkinson, Brad-
dick, Anker, Cowan et al., 1997), nearly all infants born
very preterm, below 33 weeks gestational age (even
many with normal or mild structural brain anomalies
on neonatal MRI; Atkinson & Braddick, 2007;
Atkinson et al., 2008), and many young children with
WS (age between 1 and 7 years; Atkinson, Braddick,
Anker, Curran, & Andrew, 2003). In addition to the
effects of cortical damage, there appear to be areas
within the basal ganglia which play a significant role in
development of these early attention systems (Mercuri,
Atkinson, Braddick, Anker, Nokes et al., 1997). The
large size of the peripheral targets in these studies
(paired high contrast black and white bars over 208 3
58, phase reversing at 3 Hz) ensured that the problem
these infants and young children had in switching
attention was not related to any acuity losses they
might have had. We have also found that these
measures of early attention shifts using the FS test,
when used as early surrogate outcome measures,
predicted levels of later cognitive development at 2–3
years of age (Mercuri et al., 1999; Atkinson et al.,
2008).

Attention is a multidimensional concept. Based on
neuropsychological and neuroimaging studies, in nor-
mal adults and adult patients, Posner and his col-
leagues have proposed that this broad ability can be
subdivided into neural systems for selective attention,
sustained attention, and the executive control of
attention (Posner & Petersen, 1990; Fan, McCandliss,
Fossella, Flombaum, & Posner, 2005). One key aspect
of executive function is the ability to inhibit a prepotent
response (Diamond, 2013) which we tested in children
using the pointing/counterpointing test, with the same
stimulus configuration as the fixation shift test. This
can be considered a child-appropriate version of the
‘‘antisaccade’’ test, in which participants are required to
make a saccade in the opposite direction to an
appearing target (Hallett, 1978), and which requires
control by prefrontal areas (Pierrot-Deseilligny, Ri-
vaud, Gaymard, & Agid, 1991). In the pointing/
counterpointing task, the child has to first point
towards the peripheral target as soon as it appears, and
then in counterpointing trials point to the opposite side
of the screen to that containing the target. Typically
developing children over the age of 4 years can rapidly
point and counterpoint, without making any errors.
WS children between the ages of 4 years and 15 years
could point to the target rapidly when it appeared, but

in the counterpointing condition their responses were
slowed, and they frequently pointed initially to the
target rather than the other side of the screen (Atkinson
et al., 2003). We used two further tests of executive
function, the ‘‘Detour Box’’ (after Hughes & Russell,
1993) and the ‘‘Day-Night verbal opposites test’’
(devised by Gerstadt, Hong, & Diamond, 1994), finding
once again that WS children had great difficulty
inhibiting a prepotent spatial response. However, in
line with their relatively preserved verbal abilities, they
showed better ability to overcome the prepotent verbal
response in the Day-Night task (Atkinson et al., 2003).
Thus the WS deficit here seems to affect specifically the
inhibition of spatial responses, presumably reflecting a
frontal executive mechanism modulating dorsal-stream
visuo-spatial mechanisms (networks [a] and [b] in
Figure 4).

Using the spatial executive function tests, such as our
‘‘pointing/counterpointing’’ test and the ‘‘Detour Box’’
with a group of children born very prematurely, we
found similar deficits to those in children with WS
(Atkinson & Braddick, 2007). The children in this study
had neonatal structural MRI measures which were
graded in terms of severity of brain abnormality. There
was an association between the grade of severity on
MRI and scores on the executive function tests.
However, even many of those with normal or minor
signs of brain injury on MRI failed the executive
function tests (Atkinson & Braddick, 2007). We went
on to test 6–7-year-old children born preterm (gesta-
tional age under 33 weeks) across a wide range of
cognitive domains discussed above, including different
components of attention. None of the children entered
in the study had a diagnosis of cerebral palsy, and most
were in mainstream school. These children, previously
graded on neonatal structural MRI in terms of severity
of brain injury, were in either the ‘‘mild/normal’’ grade
or the ‘‘moderate’’ grade. The components of attention
were analysed by comparison with the norms for
typically developing children on a standardized battery
called the TEA-Ch (Test of Everyday Attention in
Children; Manly et al., 2001), based on Posner’s three-
component model of attention. We found that on the
TEA-Ch battery there were a significant number of
these preterm-born children who fell below the 5th
percentile norms (Figure 6; Atkinson & Braddick,
2007). In contrast, performance IQ and verbal IQ, and
vocabulary scores, did not differ from the norms.
Tinelli et al. (2015) have also reported an attention
deficit among 29 preterm born children (who were
without identified brain lesions on ultrasound) in a
motion-related task, the multiple-object tracking test.

The TEA-Ch battery is only appropriate for children
over 6 years mental age, and many of even the older
children in clinical groups are unable to perform at the
6 year-old level on any tests in the TEA-Ch, even those
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appropriate for the bottom of the age range (Breck-
enridge, Atkinson, & Braddick, 2012). The Early
Childhood Attention Battery (ECAB) devised by Kate
Breckenridge in our group uses the principles of the
TEA-Ch in a format adapted for preschool children
(age 3–6 years) and individuals with developmental
delays or abnormalities which put them in this mental
age range (Atkinson & Braddick, 2012a; Breckenridge,
Braddick & Atkinson, 2013). Work with Williams and
Down’s syndrome groups showed that there were
distinctive attention profiles for these developmental
disorders, with sustained attention being an area of
relatively greater strength in both groups relative to
mental age, and WS children showing a particular
marked impairment in visual search and executive
control related to spatially directed attention (Breck-
enridge, Braddick, Anker, Woodhouse, & Atkinson,
2013). Thus, in both disorders attention is a vulnerable
aspect of brain function beyond any general intellectual
disability, and in WS this vulnerability is most evident
in the spatial functions most likely to have strong
dorsal-stream involvement.

Recently we used some of the ECAB subtests to test a
group of children who had reached 4.5–7 years, from the
Oxford longitudinal study of infants who had been
identified with perinatal brain injury, making them at
‘‘high risk’’ of cerebral palsy. Preliminary results from
the ECAB subtests showed that this group of 37 children
showed significant correlations between ECAB scores
and motion coherence sensitivity using the Ball in the
Grass test (Atkinson et al., 2016). There was also a
significant correlation between these children’s early
measures of attention (fixation shifts at 4–7 months of
age) with their scores on the ECAB subtests. Over half
of these children had difficulty with the ECAB visual
sustained attention subtest and in understanding and
completing the spatial-counterpointing subtest and
flanker subtests (both these visual subtests measuring
aspects of executive function including a spatial
component). All these ECAB scores were expressed
relative to each child’s mental age rather than chrono-
logical age, to dissociate these measures of attention
from any overall intellectual disability. In our previous
study testing a group of older children with WS, whose
mental age equivalence spanned the 3–6 years age range,
we had found that WS children did relatively well on the
test of sustained attention, when compared to their
mental age, but had poor ECAB scores on the
counterpointing spatial subtest measuring inhibition of
prepotent responses, an executive function test. This
shows some differences, together with some similarities
between the components of attention in which WS
children and children with relatively severe perinatal
brain damage show marked attentional difficulties.

In many other studies, varying attentional deficits
have been found as a particular, long-lasting effect of

very preterm birth and/or very low birth weight
(VLBW; e.g., van de Weijer-Bergsma, Wijnroks, &
Jongmans, 2008; Mulder, Pitchford, Hagger, & Mar-
low, 2009; Anderson et al., 2011; Lindström, Lindblad,
& Hjern, 2011; Hitzert, Van Braeckel, Bos, Hunnius, &
Geuze, 2014; Geldof et al., 2016; Johnson et al., 2016;
Johnson & Marlow, 2017), although not all of these
studies have assessed deficits of attention independently
from the general level of intellectual disability found in
many of these children. In contrast, there is at least one
study (Hunnius, Geuze, Zweens, & Bos, 2008) testing
healthy preterm-born infants, showing that the devel-
opment of the ability to disengage and switch attention
is accelerated in development compared to term-born
infants. Hunnius et al. suggest that this accelerated
development may be a consequence of their extra visual
experience following premature birth. Interestingly in
an unpublished study (Atkinson et al., 1990) we found
a similar shortened latency to make a saccadic shift of
attention, in both noncompetition and competition
conditions of the Fixation Shift test, in a group of
healthy premature infants (with no identified structural
perinatal brain damage on ultrasound) tested at 6
posterm weeks of age. This acceleration in prematures’
motor control may reflect extra experience in control of
head and eye movements under gravity rather than in
utero.

Attention disorders have been found across many
other childhood developmental disorders, including
dyslexia (e.g., Sexton, Gelhorn, Bell, & Classi, 2012;
Lukasova, Silva, & Macedo, 2016) and autism (e.g.,
Craig et al., 2016) although again, many of these
studies do not take into account the level of attention
performance expected, considering the overall level of
intellectual ability in the children concerned.

Overall, it is clear that, from infancy through
childhood, quite diverse neurodevelopmental disorders
are associated with deficits of attention mechanisms.
The overlap between attention-related structures and
the dorsal stream (Figure 3), and the association of
attention scores with motion coherence sensitivity in
our perinatal brain injury group, suggest that these
deficits may have a basis in the vulnerability of the
dorsal stream. However, it is quite possible that there
are major differences between specific disorders, both
in the type of attentional deficit and in the severity of
consequent attentional problems. This remains a
question for future research.

Brain structure associated with global motion
performance in typical development

The striking deficits in global motion sensitivity in
many developmental disorders encouraged us to look
at the variations seen in typically developing children.
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Particularly between age 4–7 years, when average
motion coherence thresholds are improving steeply,
there are marked individual differences in children’s
motion coherence thresholds—more striking than those
seen in the more slowly changing form coherence
thresholds (Gunn et al., 2002; Atkinson & Braddick,
2005; Braddick, Atkinson, Newman et al., 2016). The
Pediatric Longitudinal Imaging, Neurocognition, and
Genetics (PLING) study at the University of Califor-
nia, San Diego (Jernigan et al., 2016), which has
tracked cognitive performance and brain structure in a
cohort of children from 5 years onwards, provided the
opportunity to examine these individual differences in a
wider context.

At the cognitive level, high sensitivity to motion
coherence was associated in these children with good
visuo-motor integration as assessed by Beery’s Visuo-
Motor Integration (VMI) test (copying geometrical
figures), as might be predicted for a dorsal-stream-
based function (Braddick, Atkinson, Newman, et al.,
2016). It was also associated with relatively better
numerosity judgments (Panamath test) and mathe-
matical achievement (Woodcock-Johnson tests). The
children’s form coherence thresholds showed none of
these correlations, even though form and motion
coherence were well correlated, implying that it is the
variance unique to motion processing which is linked to
mathematical and visuomotor performance. Further-
more, reading skills showed no correlation with motion
thresholds, implying that the relationship to mathe-
matical performance did not simply reflect a broader
association with level of scholastic attainment.

There is extensive evidence for a link between
numerical cognition and processing in the parietal lobe
(e.g., Dehaene, Piazza, Pinel, & Cohen, 2003; Price,
Holloway, Räsänen, Vesterinen, & Ansari, 2007;
Butterworth, Varma, & Laurillard, 2011; Ranpura et
al., 2013), and this may be the key to its relation with
motion processing. Local cortical surface area was
measured in the PLING cohort, and motion perfor-
mance was positively related to individual structural
differences in the area of the parietal lobe (allowing for
effects of age and gender), and negatively to area of the
occipital lobe (Braddick, Atkinson, Newman et al.,
2016). More detailed exploration of the effect size of
these relations across the cortical surface highlighted
the region of the intraparietal sulcus (IPS), particularly
its inferior bank. A number of occipital areas—V5/MT,
V3a—are known to have populations of neurons
sensitive to motion coherence (Newsome & Paré, 1988;
Britten et al., 1992; Sunaert et al., 1999; Braddick et al.,
2001; Orban et al., 2003; Helfrich et al., 2013). While
these areas are too small, and perhaps too variable, to
be specifically identified in the map of association, the
overall negative correlation with the occipital lobe
suggests that these areas, which are presumed to carry

out the initial integration of coherent motion infor-
mation, are not the source of children’s individual
differences in global motion processing. Single unit
studies in macaque have shown that neurons in the IPS
receive signals from V5/MT and accumulate the
evidence that is used in the animals’ decisions on
coherent motion (Shadlen & Newsome, 2001; Huk &
Shadlen, 2005). Our findings, then, support the idea
that the bottleneck which determines the individual
child’s performance may be at this stage of using
perceptual evidence for decision-making, rather than
the earlier stages where global motion signals are
generated. None of the measures correlate with global
form coherence sensitivity, so the variations are not in a
general decision-making process, but in a process
specific to the handling of motion information in the
dorsal stream (Braddick, Atkinson, Newman et al.,
2016).

A further step in the arguments comes from
analyzing fiber tracts in the PLING cohort of children
(Braddick, Atkinson, Akshoomoff et al., 2016). Our
analysis focused on the superior longitudinal fasciculus
(SLF), the major pathway carrying two-way informa-
tion between the parietal and frontal lobes, and one
associated with functions of visuo-spatial attention
(e.g., Bennett, Motes, Rao, & Rypma, 2012; Mayer &
Vuong, 2014; Chechlacz, Gillebert, Vangkilde, Peters-
en, & Humphreys, 2015). Fractional anisotropy (FA)—
a measure of how far the tract is organized so that
water molecules diffuse most easily along the direction
of the tract—revealed a statistical relationship with the
children’s motion coherence sensitivity. This relation-
ship showed a striking asymmetry (Braddick, Atkinson,
Akshoomoff et al., 2016). For the right SLF, FA was
high in the children with high global motion sensitivity,
but on the left, the reverse relationship was found.
Again, no statistical associations with global form
performance were apparent.

Right hemisphere lateralization is a clear property of
the brain network subserving spatial attention, which
includes a greater volume for the right SLF (e.g.,
Thiebaut de Schotten et al., 2011). Although it is not
obvious why the motion task should make greater
demands on the attention network than the form task,
we must consider seriously the role of attention as a
factor in individual differences in motion processing.
fMRI evidence has indicated that parietal activity is
associated with attentional modulation of the trans-
mission of motion information between V1/V2 and V5
(Friston & Büchel, 2000). Attentional effects are
presumed to have their origins in the frontal lobes, so a
possible picture emerges in which the SLF transmits
attentional signals to the IPS, which may both send
signals to control motion processing in extrastriate
areas, and receive motion signals which are integrated
in decision processing.
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The functioning of the dorsal stream, and its
impairment in neurodevelopmental disorders, may then
reflect a close and specific association between motion
processing, evaluation of sensory evidence for deci-
sions, and top-down attentional control. The appar-
ently simple task of detecting global motion may
provide a specific index of this complex nexus of
bottom-up and top-down interaction.

A further speculation arises from the close anatom-
ical relation between the IPS and the targets of the SLF
within the ‘‘multiple demand network,’’ proposed by
Duncan (2010). From a combination of single neuron
recordings in nonhuman primates and fMRI data from
human adults, the multiple-demand (MD) system is
identified as a pattern of frontal and parietal activation
which is associated with diverse cognitive demands, and

with performing standard tests of fluid intelligence
(Duncan, 2010; Mitchell et al., 2016). Figure 7
illustrates the similarity between the parietal area in
Duncan’s MD network and the area whose expansion
is related to global motion performance in Braddick,
Atkinson, Newman et al. (2016); it also shows how the
SLF is well placed to communicate between this area
and the frontal parts of the MD network.

Duncan proposes that the MD network controls the
subtasks which make up intelligent behavior, focusing
on attending to the specific content of a current
cognitive operation, and modulating goal-directed
programs in tasks demanding fluid intelligence. The
anatomical parallels with our findings on global motion
sensitivity suggest the possibility that global motion
sensitivity is a signature of these wider cognitive

Figure 7. (A) Effect size map of the association between children’s global motion sensitivity and relative local cortical expansion in the

left hemisphere (Braddick et al., 2016). Red and yellow indicate increasing t values for positive associations, especially around the

intraparietal sulcus (IPS); blue indicates negative associations, especially in the occipital lobe. (B) The ‘‘multiple demand’’ network,
indicated by BOLD measures of activity in tasks with diverse cognitive demands (from figure 1 in Duncan, 2010). (C) The superior

longitudinal fasciculus (SLF), traced from figure 4b in Wakana, Jiang, Nagae-Poetscher, van Zijl, and Mori (2004), superimposed on

Figure 7A. (D) The SLF as in (C), superimposed on Figure 7B to show potential connectivity between foci of the ‘‘multiple demand’’
system in the intraparietal sulcus and frontal cortex. Key to abbreviations: IPS¼ intraparietal sulcus; IFS¼ inferior frontal sulcus; AI¼
anterior insula; FO ¼ frontal operculum.
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processes, with their vulnerability in atypical develop-
ment arising through many different genetic and
acquired aetiological pathways.

Overview

I have ranged widely through evidence for the
particular vulnerability of the dorsal cortical stream in
development, and the value of relative sensitivity to
global motion and form as a measure of this
vulnerability and of variations even in typical devel-
opment. However, given the very different cognitive
and social-behavioral profiles in the phenotypes of
different developmental disorders and the commonality
of deficits in global motion processing, there must be
much debate as to whether the deficit originates across
all disorders at the same neural level of visual
processing, within the complex dynamic cascade from
retina to cortex and within the cortex itself—whether
we are talking about top-down constraints or bottom-
up, or both. There is the added problem of identifying
whether a deficit in early life at a relatively low level of
processing has a knock-on effect at later ages at
‘‘higher’’ levels in the visual and visuo-cognitive
systems. Lack of space prevents these issues from being
fully explored here. However, from our own work with
typically and atypically developing infants and chil-
dren, we would argue that there is unlikely to be a
single limiting constraint at one level in processing
global motion across all disorders, unless it is a very
early developing visual attentional deficit, such as
infant ‘‘disengagement’’ in selective attention tasks.
When added to the different perceptual biases (or
priors) across different disorders, this leads to an
apparently common deficit in global motion sensitivity
and to other ‘‘higher level’’ deficits in spatial, mathe-
matical, and attentional cognition.

So we are left with many unanswered questions
including the following:

� Is ‘‘dorsal vulnerability’’ determined by the shared
anatomy and neural processing of motion, atten-
tion, visuo-motor control, numerical cognition—or
are there developmental cascades between these
functions?
� Does ‘‘dorsal stream vulnerability’’ have the same
underpinning in terms of faulty neural networks
across all disorders in which it has been demon-
strated? Or can this vulnerability occur in different
areas and branches of the network, from the
magnocellular system in the geniculostriate path-
way, to target areas in frontal lobe for top-down
decision making—or even in separate pathways
through MT/V5 avoiding V1 via the pulvinar or
other routes?

� Why are the attention/decision processes that
appear to be vulnerable specific to global motion,
and not shared with global form? Is this vulnera-
bility really one of dorsal/ventral stream integra-
tion in the ‘‘motion task’’?
� Are there differences at a very early stage of
development of motion processing which funda-
mentally change the course of complex develop-
ment, underpinning later intelligent behavior?
� How do genetic and environmental differences
interplay in determining brain structure?
� Do we know how a system with the properties of
Duncan’s adult multiple demand system develops
in childhood?

These questions, and many more, need to be
answered by interdisciplinary teams in developmental
vision from psychology, cognitive neuroscience, genet-
ics, pediatric ophthalmology and optometry, pediatric
neurology, developmental computational science, and
education, especially if we are to go on to find child-
friendly, reliable interventions to reduce and overcome
these visually related problems which may affect many
aspects of everyday life. The exploration of global
motion sensitivity as a signature of some of these wider
cognitive processes, and their vulnerability in atypical
development, provides goals for future research.

Keywords: infant vision, visual brain development,
dorsal stream, motion coherence, attention
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