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Summary: A key challenge in clinical proteomics of cancer is the identifi cation of biomarkers that could allow detection, 
diagnosis and prognosis of the diseases. Recent advances in mass spectrometry and proteomic instrumentations offer unique 
chance to rapidly identify these markers. These advances pose considerable challenges, similar to those created by 
microarray-based investigation, for the discovery of pattern of markers from high-dimensional data, specifi c to each patho-
logic state (e.g. normal vs cancer). We propose a three-step strategy to select important markers from high-dimensional 
mass spectrometry data using surface enhanced laser desorption/ionization (SELDI) technology. The fi rst two steps are the 
selection of the most discriminating biomarkers with a construction of different classifi ers. Finally, we compare and validate 
their performance and robustness using different supervised classifi cation methods such as Support Vector Machine, Linear 
Discriminant Analysis, Quadratic Discriminant Analysis, Neural Networks, Classifi cation Trees and Boosting Trees. We 
show that the proposed method is suitable for analysing high-throughput proteomics data and that the combination of logistic 
regression and Linear Discriminant Analysis outperform other methods tested. 

Keywords: mass spectrometry, Wilcoxon’s test, logistic regression, supervised classifi cations

Introduction
Over recent years, scientifi c knowledge in cancer biology has progressed considerably. However, the 
practical impact of this research on screening, diagnosis, prognosis and monitoring remains limited. 
New methods must be developed to identify the physiological and pathological mechanisms in the 
origin and spread of tumors. Such approaches are essential for the discovery, identifi cation and valida-
tion of new bio-markers. Recently, progress in mass spectrometry system, such as surface enhanced 
laser desorption/ionization time-of-fl ight (SELDI-TOF), has opened up interesting perspectives for 
identifying these markers or establishing specifi c protein profi les that may be used for cancer diagnosis 
(Adam, 2002; Petricoin, 2002; Zhang, 2004; Solassol, 2006). In this work, we considered SELDI raw 
data in attempt to discriminate cancer from benign diseases. After protein ionization and desorption 
with a laser, the mass spectrum is represented by the intensity of the proteins fi xed on the chip 
(y-coordinate) as a function of the mass-to-charge (m/z) ratio (x-coordinate). From the spectra, the 
initial pre-processing steps are (a) the normalization and calibration to limit any bias caused by the 
instruments or the operator, (b) baseline subtraction, (c) peak detection, and (d) peak alignment to allow 
the same x-coordinate in all the spectra. One of the best challenges and the most important steps is then 
to reduce the high- dimension of these spectra to extract the discriminatory features or the best combi-
nation of markers capable of differentiating between two classes of interest (Duda, 2001). For this last 
step, spectra are processed using computerized algorithms based on multivariate statistical analyses. 
Several different mathematical algorithms have been applied to elucidate statistically signifi cant differ-
ences such as cluster analysis, genetic algorithms, discriminate analysis, neural networks or hierarchical 
classifi cation (Bauer, 1999; Petricoin, 2002; Vlahou, 2003; Wu, 2003). 
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In this work, we developed a three-step 
strategy to extract markers or combination of 
markers from high-dimensional SELDI data. 
From the pre-processing step, we detected 228 
peaks, but among them some were not charac-
teristic of the disease and were identically 
expressed in the two considered groups (cancer 
and benign disease). To allow an optimal iden-
tification of differentially expressed peaks, a 
preselection strategy of discriminating biomar-
kers combinations was chosen, rather than a 
simple filtering of the data by only a two-sided 
statistical test which was not taking into account 
the biomarkers inter-correlation. Next, we 
focused on different supervised classification 
methods due to the consideration that an a priori 
information coming from the training sample 
can allow the identification of the optimal diag-
nostic combinations. We compared the perform-
ance and the robustness of these various super-
vised classification methods and discussed their 
respective strengths and weaknesses.

Data Set and Pre-Processing
The study involved a total of 170 serum samples 
collected at the Arnaud de Villeneuve University 
Hospital (Montpellier, France) with institutional 
approval: 147 patients with pathologically 
confi rmed cancer and 23 patients suffering from a 
benign disease in the related organ. Whole blood 
was collected during fasting and all samples were 
processed within 1 h of collection and rapidly 
frozen at –80 °C before analysis. An anion-
exchange fractionation procedure was performed 
before surface-enhanced laser desorption/ionisa-
tion time-of-fl ight mass spectrometry analysis. 
Serum samples were thus separated into six 
different pH gradient elution fractions, referred as 
to F1, F2, F3, F4, F5 and F6. Each fraction was 
randomly applied to a weak cation exchange 
ProteinChip array surface (CM10) in a 96-well 
format. F2 was not subjected to analysis due to the 
weak number of peaks detected in preliminary 
experiments. Arrays were read on a Protein Biolog-
ical System II ProteinChip reader (Ciphergen 
Biosystem). Peak detection was performed using 
the ProteinChip Biomarker software (version 3.2.0, 
Ciphergen Biosystem Inc.). Spectra were back-
ground subtracted and the peak intensities were 
normalized to the total ion current of m/z between 
2.5 and 50 kDa. Automatic peak detection was 

performed in the range of 2.5 to 50 kDa with the 
following settings: i) signal-to-noise ratio at 4 for 
the fi rst pass and 2 for the second pass, ii) minimal 
peak threshold at 15% of all spectra, iii) cluster 
mass window at 0.5% of mass. The resulting CSV 
fi le containing absolute intensity and m/z ratio was 
exported into Microsoft Excel (Microsoft, 
Redmont) for subsequent analysis.

Biomarkers Selection
Initially, a selection of the most discriminating 
biomarkers was carried out. The 228 peaks detected 
by Ciphergen software are aligned. A peak is 
defi ned as discriminating when the intensities of 
the individuals of the cancer group are signifi cantly 
different than the reference group. Initially the 
peaks differentially expressed in the two groups 
were selected using the two-sided Wilcoxon’s test. 
After this preselection, a combination of discrim-
inating peaks is required by using a logistic regres-
sion (Pepe, 2006). 

Wilcoxon’s test
The assumption that each peak intensity follows a 
normal distribution has been rejected using a 
Shapiro-Wilk normality test in each group. A two-
sided Wilcoxon’s test was employed to test the  H0 
assumption of equality of the intensities in the two 
groups. We correct the loss of power induced by 
multiple tests by the false discovery rate (FDR) 
approach (Verhoeven, 2005; Benjamini, 1995). 
FDR is the expected proportion of type I errors 
among all signifi cant results (V/r), where V is the 
number of type I errors (‘‘false discoveries”), and 
r is the number of signifi cant tests. A procedure to 
control FDR at level α was proposed by Benjamini 
and Hochberg (1995). That consists initially of 
ranking by ascending order the 228 p-values that 
we note now by : p(1) � p(2) � … � p(228), and H(i) 
denote the null hypothesis corresponding to p(i). 
The second stage consists of the search for k which 
is largest i for which:

 p ii( ) .�
α

228  

This resulting p-value p(k) is the threshold p-value 
for each test taken individually, such as we reject 
all the null assumptions H(1) , …, H(k) (Fig. 1). The 
null assumption has been rejected for k = 100 
biomarkers.
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Binary logistic regression
The Wilcoxon’s retains the most discriminating 
peaks. On the other hand, the logistic regression 
combines several biomarkers to fi nd the best model 
allowing classifi cation in cancer/control groups. 
Let us consider the diagnosis variable Y to be 
modelled, which takes two values:
• Y = 1 for all the individuals that  belong to the 

cancer group.
• Y = 0 for all the individuals that belong to the 

control group. 
The outputs to be modelled Yi|xi follows a 
Bernouilli distribution of parameter πi = P(Yi = 
1|xi), where xi is a vector line of the actual values 
for the explanatory variables. The logit of the 

multiple logistic regression (Hosmer, 2000) is 
given by 

 f (x) = logit (P(Y = 1|x)) = β0 + β1x1 + ... + βp xp . 

where (x1,…, xp) is a collection of p biomarkers 
selected in the model.

The classical model-building strategy is to fi nd 
the most parsimonious model that explains the 
data. This provides a general and numerically 
stable model. To study the robustness of the logistic 
regression predictor’s selection, the two strategies 
of models-building forward and stepwise were 
employed. The signifi cance level of the score chi-

Wilcoxon’s test p-values
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Figure 1. Application of Benjamini and Hochberg FDR control on the 228 Wilcoxon’s test p-values ranked by ascending order.
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square for entering an effect into the model was fi xed 
at 0.05 in the forward and stepwise logistic regres-
sions. A signifi cance level of 0.05 is considered in 
the Wald chi-square test to test if an effect must 
stay in the stepwise logistic regression which was 
implemented with SAS software (version 8.1). A 
weight of 1 and 147/23 was affected to the cancer 
and control groups, respectively. This weighting 
was employed because the control sample is 
subsampled. 

The estimated logit in the forward selection is 
given by the following expression:

 
f̂(x) 13.46 0.58 0.34 29.76= − + × + × +

×

P P

P

F F
3
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51
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5

+ × −

× + ×
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The estimated logit in the stepwise selection is 
given by the following expression:

 
f̂(x) 38.60 0.99 2.05 123.8= − − × + × +

×
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where P
j
Fk designed the jth peak in the original 

biomarkers matrix which contains 228 peaks and 
Fk indicates that this peak was detected in the kth 
fraction. The AUC for the two models were 0.988 
for the forward strategy and 0.995 for the stepwise 
strategy. The forward and stepwise logistic regres-
sion modelled the logit with 6 and 8 biomarkers 
ranging from 3 to 48 kDa. The most stable peaks 
were the 5 common peaks of the two models i.e. 
P P P P PF F F F F

22
1

51
3

56
3

136
5

156
5, , , , . The model with these 

peaks is estimated by:

f̂(x) 11.85 0.41 25.55 20.66= − + × + × +

×

P P

P

F F
22

1
51
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156
5F F FP P− × + ×0.18 5.00

 
 

for an AUC of 0.973.
These three models produced  above were used 

in the comparison  of the supervised classifi cation 
techniques. For the moment, the AUC is the only 
criterion which makes it possible to evaluate the 
model in term of classifi cation. 

Overview of the Supervised 
Classifi cations Used
Supervised classifi cation techniques consist in a 
defi nition of a classifi cation rule based on a training 
set for which the true class-label is known. The 
matrix x denotes the biomarkers matrix with 
n = 169 lines (i.e. individuals) and p columns, 
where p is the number of biomarkers retained in 
the different logistic regressions. Also, x1,…, xp 
denote the p biomarkers contained in the columns 
of x. The training data consist of N pairs {(x(1), y(1)), 
(x(2), y(2)), …, (x(N), y(N))} with x(i) ∈ℜp and the N 
class-labels corresponding y(i) ∈{−1,1}. In the 
training set, the true class-label y(i) adopted in 
the next sections are the following:
y(i) = –1, if the sample point x(i) belongs to the

 cancer group,
y(i) = 1, if the sample point x(i) belongs to the

 control group.

where, the ith line of the matrix x(i) represents 
the p coordinates of the ith training sample 
point.

Support vector machine
A Support Vector Machine (SVM) is a supervised 
learning technique that constructs an optimal 
separating hyperplane from the training set with 
an aim of classifying the test set (Vapnik, 1998; 
Hastie, 2001; Lee, 2004; Li, 2004). When the data 
are not linearly separable, one solution for the 
classifi cation problem is to map the data into the 
feature space that is usually a higher-dimensional 
space using a function φ usually non linear. Thus, 
for x(i) the ith vector in the original input space  
φ(x(i)) is the corresponding vector in the feature 
space. The value of the kernel function K on (x(i), 
x(j)) computes the inner product of φ(x(i)) and φ(x(j)) 
in the feature space. The radial basis kernel is 
employed in this article. Its formulation is the 
following:

radial basis: K(x(i), x(j)) = exp,(–||x(i)_x(j)||2/c), 
where c > 0 is a scalar. 

The search of the discriminant function  f (x) = 
φ(x)T β + β0 is formulated into the following opti-
mization problem

 min
,β β

β γ ξ
0

1
2

2

1
+

=
∑ i
i

N

 



299

Supervised Classifi cation Methods for Protein Profi ling

Cancer Informatics 2007:3 

subject to ξ φ β β ξi
i i T

iy x i� �0 10, ( ) ,( ) ( ) +( ) − ∀ ,

where γ > 0 is a constant and ξi are the slack vari-
ables. This optimization problem is solved by 
maximizing the Lagrangian dual objective function. 
The solution β̂  for β has the form of linear combi-
nation of the terms y xi i( ) ( )( )φ  and β̂ 0 is the common 
value that solve y xi i T( ) ( )[ ( ) ˆ ˆ ]φ β β+ =0 1  for each i. 
The decision function can be written as

 
ˆ ( ) ˆ( ) ( ) ˆ ˆ .G x sign f x sign x T= ⎡

⎣
⎤
⎦ = +⎡

⎣
⎤
⎦φ β β0  

In other words, if Ĝ(x(j)) = −1 then j th observation  
x(j) of the sample test has a class-label y(j) equal to 
–1 and will belong to the cancer group, else the 
class-label is equal to 1 and the individual x (j) will 
belong to the control group.

Linear discriminant analysis 
and quadratic discriminant analysis
Suppose that fk (x) is the density of the observations 
x in the k th class, and π k  denote the prior proba-
bility of class k, where π kk =∑ =1

2 1. The Bayes 
theorem gives us

 P Y k X x
f x

f x
k k

l ll

( )
( )

( )
= = =

=∑
π

π
1

2 and k ∈{ }1 2, . 

The classifi cation rule for the test set is to affect 
the observation x' at the k th class with maximal  
probability P Y k X x( )= = ' .  For linear and 
quadratic discriminant analysis, the densities fk are 
modelled as p-multivariate Gaussian (Webb, 2002; 
Lee, 2004). To compare the two classes k and l, the 
log-ratio was defi ned as

 log
( )
( )

log
( )
( )

log
( )
( )

P Y k X x

P Y l X x

f x

f x

x

x
k

l

k

l

k

l

= =
= =

= + =
π
π

δ
δ

 
.

• Quadratic discriminant analysis (QDA) is the 
general discriminant problem, where  the deci-
sion boundary x x xk l: ( ) ( )δ δ={ } between the 
two classes is a quadratic equation in x. The 
quadratic discriminant function is defi ned as

 δ μ μ

π

k k k
T

k k

k

x x= − − − −

+

−1
2

1
2

1log ( ) ( )

log .

Σ Σ
 

• Linear discriminant analysis (LDA) arises when 
the covariance matrix Σk

 and Σl  are assume 
equals Σ Σ

k
k= ∀, . Then, the decision bound-

ary between classes k and l is an equation linear 
in x in a p-dimensions hyperplane.

In practice, the true parameters of the Gaussian 
distributions are not known, but we can estimate 
them using the training set. Also, an estimate δ̂

k
 of 

δ
k can be obtained and the decision rule can be 

written as

 ˆ ( ) argmax ˆ ( ).G x x
k

k
= δ  

Single-layer neural network
Artifi cial neural networks (ANN) are learning 
algorithms that are modelled on the neural activity 
of the brain (Hastie, 2001; Dreyfus, 2002; Chen, 
2004; Lee, 2004). Each node represents a neuron, 
and the connections represent the synapses (Fig. 2). 
A constant entry x0 = 1N is included in the whole 
perceptron entries, affected of a weight w0. The 
constant w0 is often referred as the bias and –w0 is 
called the threshold. Also, x = (x0, x1, x2, …, xp) 
denote the input variables such as xj ∈ℜN; w = (w0, 
w1, w2, …, wp) denote the associated weight vector. 
The training set is used to fi nd the appropriate 
values of the synaptic weights vector (w0, w1, w2, 
…, wp) in neural networks to solve the classifi ca-
tion problem. If the two classes are linearly sepa-
rable, it exists a decision boundary {x: wT x = 0}. 
If wT x > 0, is in the fi rst class and if wTx > 0, x is 
in the second class. A decision rule Ĝ(x) can be 
defi ned in terms of a linear function of the input x 
as follows

 Ĝ(x) = sign (wT x),  

where sign(z) denotes the sign of the quantity z. 
Let the risk function R(w) measures the success of 
a decision rule by comparing the true labels y(i) 
with the predicted labels Ĝ(x(i)). The weight vector  
w is chosen to minimize the risk function. A current 
choice for the risk function is the sum of squared 
errors. The gradient descent procedure can be used 
to fi nd optimum weights ŵ in term of risk, and the 
decision rule can be written as

 Ĝ(x) = sign (wT x). 
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Classifi cation trees
A classification tree is a multi-stage decision 
process that divides successively the whole of the 
N training sample observations in two homoge-
neous segments with regard to the class-labels by 
using the p biomarkers x1, …,  xp (Hastie, 2001;Yang, 
2005). The algorithm needs to select automatically 
a splitting rule for each internal node. This means 
determining a splitting variable x j j pl l ∈{ }1 2, , ,…  with 
an associated threshold Sl that has been used to 
partition the data set at each node in two regions : 
RL(jl, sl) = {x|xjl  ≤ sl} and RR(jl, sl) = {x|xjl > sl}. For 
each splitting variable xjl, the threshold sl is deter-
mined by scanning through all of the inputs 
x j

i
i Nl

( )
, , ,=1 2 … , and the determination of the best pair 

(jl, sl) in term of maximization of the decrease in 
the node impurity function. In this article, the 
decrease in the node impurity function is expressed 
according to the Gini criterion. The splitting 
process is repeated on each of the two resulting 
regions of the previous step, and this until the stop-
ping rule stops the process. The splitting process 

(Nakache, 2003) is stopped when the segment is 
pure (it contains subjects of the same class), if it 
contains identical observations, or if it contains a 
small number of subjects. Then this large tree is 
pruned using cost-complexity pruning. The fi nal 
tree retained is noted by Tâ (Fig. 3). For the K class 
(here K = 2) and the M nodes in the fi nal tree Tâ , 
the proportion of class k observations in terminal 
node m was computed as

 ˆ ( )
( )

p
Nmk

m
y k

x R

i

i
m

=
={ }

∈

∑1
1  

where Nmis the size of the training sample in 
the region Rm. For x Rm∈  the decision rule is to 
affect x in the majority class in node m, and it can 
be written as

 ˆ ( ) argmax ˆG x p
m

k
mk

=  

Output
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Figure 2. Schematic of a single-layer neural network.
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In other words, in the particular case where K = 2 
for each fi nal node m of the fi nal tree the assign-
ment rule can be also written in the following 
term:

If ˆ .p
mk

� 0 5 then the individuals of the node m 
are assigned  to the class k, else they are assigned 
to the remaining class.

Boosting trees
The purpose of boosting is to apply M times the 
weak classification algorithm on the weighted 
training data, so as to produce a sequence of 
weak classifiers Gm(x), m = 1,2, …, M (Hastie, 
2001; Fushiki, 2006). Then, a strong classifier 
is built by making a linear combination of the 
weighted sequence of weak classifiers. For a 
vector variables X, a classifier Gm(X) produces 
a prediction of the class-label Y that  belongs 
to {–1,1}. The error rate on the training 
sample is

 ε
m

m
i i

m
i

i

N

m
i

i

N

N
w I y G x

w

=
≠( )

=

=

∑

∑

1

1

1

( ) ( ) ( )

( )

( )
.  

where w
m
i( )  is the weight associated to the i th 

observation of the training sample at the mth 
step. A weak classifier is one whose error rate 
is only slightly better than random guessing. 
The weights are initialized with w Ni

i N1 1 21( )
; , ,/ .= = …  

For each iteration m = 2,3,…, M the observation 
weights are modified and the classification 
algorithm is reapplied to the weighted observa-
tions. The error rate εm is computed and the 
weights of the observations at the m+1th step 
are recomputed as 

 w w I y G xm
i
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i

m
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+ = ≠( )⎡⎣ ⎤⎦1
( ) ( ) ( ) ( ).exp . ( ) ,�  

 i = 1,2, …,  N 

Terminal node (m = 5)

Internal node 
Final tree:Tα̂

x
j2

R
1 
=

N
1 
, p

11
, p

12
N

2 
, p

21
, p

22 N
3 
, p

31
, p

32

N
4 
, p

41
, p

42 N
5 
, p

51
, p

52

R
L

x (i)

x (a)

≤ S
2

x
j1 ≤ S

1
x

j1 > S
1

x
j2 > S

2
x

j3 ≤ S
3

x
j3 > S

3

x
j4 ≤ S

4
x

j4 > S
4

∈R
m

G
m

( ) = arg max p
mk

is:
The decision rule for

( j
2
, S

2
)

R
L ( j

1
, S

1
 ) R

R ( j
1 
, S

1
)

R
2 
= R

R ( j
2
, S

2
) R

3 
= R

L ( j
3
, S

3
)

R
4 
= R

L ( j
4 
, S

4
) R

5 
= R

R ( j
4 
, S

4
)

R
R ( j

3
,S

3
)

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆˆ ˆ

All of the data

ΣN =
m

l=1
N

l

k

Figure 3. Schematic of an example of classifi cation tree with 5 terminal nodes.
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where αm = log((1–εm)/εm). In other words, at the 
step m the observations misclassified at the 
previous step have their weights increased 
(Nakache, 2003), and on the contrary the weights 
of the well classifi ed observations are decreased. 
The predictions from all of them are then combined 
trough a weighted majority vote to produce the 
fi nal prediction:

 ˆ ( ) ( ) .G x sign G x
m m

m

M

=
⎛

⎝⎜
⎞

⎠⎟=
∑α

1

 

Cross-validation
The cross-validation is applied on biomarker selec-
tions combined with different classifi cation methods. 
The logistic regression, which took part at the prese-
lection step, was also used as a discriminant analysis 
method in the cross-validation. The aim of this step 
is to validate our method of marker selections, while 
comparing the predictive power of the different 
supervised classifi cation methods with this selection 
method. We applied the holdout method for the 
cross-validation. That consists on repeating the 
algorithm of decision rules construction described 
below, and to estimate their performances. First, the 
cross-validation consists on a random drawing of a 
training sample. The training sample size N was 
varied from 40%, 60%, and 80% of the total sample 
size n = 169. The remaining sample is named test 
sample. The features number of the training sample 
is limited to these p most discriminating features 
described above, such as x ∈ℜN×p. The decision rule 
G(x) is evaluated using the training set whose class-
labels are known, and that for the different super-
vised classifi cation techniques studied in this article. 
The class-label of each test sample observation is 
predicted using the decision rules G(x). The class-
labels of the test sample being known, the predic-
tions of the different methods can be evaluated by 
the calculation of TP, TN, FP, FN, where TP, TN, 
FP, FN means the number of true positive, true 
negative, false positive and false negative samples, 
respectively. These numbers are computed in each 
test set of the 1000 iterations of the cross-validation 
and summed. For each classifi cation method, the 
sensitivity, the specifi city and the accuracy was 
calculated to compare them. The sensitivity is 
defi ned as TP/(TP+FN) which represents the ability 
of a classifi cation method to classify correctly the 
patients reached of cancer, and the specificity 

defi ned as TN/(TN+FP) the percentage of observa-
tion of the control sample correctly classifi ed. The 
accuracy is defi ned as (TP+TN)/(TP+TN+FP+FN) 
and measures the percentage of whole of observa-
tions correctly classifi ed. The cross-validation was 
applied to the three biomarkers selections using, 
under the R software, the package CaMassClass 
(www.r-project.org) dedicated to the treatment of 
Protein Mass Spectra (SELDI) Data.

Results and Discussion
The goal of our article was to detect biomarkers 
and to assess their discriminating capacity using 
the different several supervised classification 
methods. In this way, we believe that cross-validation 
can answer to this question. We developed a three-
step strategy to extract markers or combination of 
markers and to evaluate the robustness of these 
classifi ers. First, protein peaks from 228 protein 
clusters were selected by a Wilcoxon test. Then, 
logistic regression models were used to construct 
two discriminating subsets of features composed 
of 6 and 8 protein peaks, ranging from 3 to 48 kDa, 
using forward (Table 1) and stepwise (Table 2) 
logistic regressions respectively. A third subset of 
discriminating markers (Table 3) was built by 
taking the intersection of the two fi rst. Since there 
was no gold standard method for classifi cation of 
mass spectrometry data, we were interested in 
comparing the performance and the robustness of 
different classifi cation approaches. The unsuper-
vised and supervised classifi cation methods have 
been evaluated, but only the latter that showed the 
most satisfying results was presented in this 
paper.

The mean performance (accuracy, sensibility 
and specifi city) of our classifi ers on 1000 randomly 
generated 80:20, 60:40 and 40:60 set of samples 
were evaluated using different class-prediction 
models. The results showed that the forward 
logistic regression is better than the stepwise 
logistic regression in terms of accuracy and 
specifi city. Interestingly, 5 protein peaks were 
common to the two models. A classifi er with the 
protein peaks common to these two model selection 
methods allowed a more parsimonious model, as 
effective as the forward logistic regression 
(Table 3).  Then it can be pointed out that the 
specifi city was lower than the sensitivity and did 
not exceed the 0.86. The least effective supervised 
classifi cation methods was the classifi cation trees 
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Table 1. Cross-validation forward.

 Training  TP TN FP FN Sensitivity Specifi city Accuracy
 sample 
 size (%)
Binary logistic  0.4 82371 11148 2852 5629 0.9360 0.7963 0.9169
regression 0.6 53525 7547 1453 4475 0.9228 0.8386 0.9115
 0.8 26657 4289 711 2343 0.9192 0.8578 0.9102
SVM 0.4 83580 9666 4334 4420 0.9498 0.6904 0.9142
 0.6 55035 6761 2239 2965 0.9489 0.7512 0.9223
 0.8 27677 3868 1132 1323 0.9544 0.7736 0.9278
LDA 0.4 82465 11603 2397 5535 0.9371 0.8288 0.9222
 0.6 54676 7510 1490 3324 0.9427 0.8344 0.9281
 0.8 27483 4159 841 1517 0.9477 0.8318 0.9306
QDA 0.4 82687 6647 7353 5313 0.9396 0.4748 0.8758
 0.6 52177 6695 2305 5823 0.8996 0.7439 0.8787
 0.8 25860 4064 936 3140 0.8917 0.8128 0.8801
Neural  0.4 86408 10132 4830 1592 0.9819 0.6772 0.9376
Networks 0.6 56932 6819 2181 1068 0.9816 0.7577 0.9515
 0.8 28535 3828 1172 465 0.9840 0.7656 0.9519
Classifi cation  0.4 80945 3508 10492 7055 0.9198 0.2506 0.8280
Trees 0.6 53202 2554 6446 4798 0.9173 0.2838 0.8322
 0.8 26804 1354 3646 2196 0.9243 0.2708 0.8282
Boosting  0.4 84585 4921 9153 3415 0.9612 0.3497 0.8769
Trees 0.6 55461 3278 5918 2539 0.9562 0.3565 0.8741
 0.8 27708 1668 4580 1292 0.9554 0.2670 0.8334

Table 2. Cross-validation stepwise.

 Training  TP TN FP FN Sensitivity Specifi city Accuracy
 sample          
 size (%)        
Binary logistic 0.4 78024 9594 4406 9976 0.8866 0.6853 0.8590
regression 0.6 50115 6878 2122 7885 0.8641 0.7642 0.8506
 0.8 24871 3942 1058 4129 0.8576 0.7884 0.8474
SVM 0.4 81876 7211 6789 6124 0.9304 0.5151 0.8734
 0.6 53604 5122 3878 4396 0.9242 0.5691 0.8765
 0.8 26802 2941 2059 2198 0.9242 0.5882 0.8748
LDA 0.4 79379 10253 3747 8621 0.9020 0.7324 0.8787
 0.6 52929 6682 2318 5071 0.9126 0.7424 0.8897
 0.8 26691 3614 1386 2309 0.9204 0.7228 0.8913
QDA 0.4 83320 3909 10091 4680 0.9468 0.2792 0.8552
 0.6 52004 5052 3948 5996 0.8966 0.5613 0.8516
 0.8 25690 3219 1781 3310 0.8859 0.6438 0.8503
Neural  0.4 85758 7750 6694 2242 0.9745 0.5366 0.9128
Networks 0.6 56802 5317 3683 1198 0.9793 0.5908 0.9271
 0.8 28527 2891 2541 473 0.9837 0.5322 0.9125
Classifi cation  0.4 81399 3459 10541 6601 0.9250 0.2471 0.8319
Trees 0.6 53351 2592 6408 4649 0.9198 0.2880 0.8350
 0.8 26680 1388 3612 2320 0.9200 0.2776 0.8255
Boosting  0.4 80072 3654 7799 1401 0.9828 0.3190 0.9010
Trees 0.6 52540 2480 5605 849 0.9841 0.3067 0.8950
 0.8 26102 1408 5322 455 0.9829 0.2092 0.8264
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and the boosting trees that failed to correctly 
classify individuals of the control group. Although 
the sensitivity of both methods was acceptable, it 
was not the case for the specifi city that was found 
lower than 0.36. Comparing to Quadratic Discrim-
inant Analysis, the Linear Discriminant Analysis 
gave the best performance result to discriminate 
both samples achieving a mean classification 
accuracy of 0.93, a sensitivity of 0.95, and a 
specifi city of 0.83 with a 80:20 cross-validation 
set samples (Table 1). The Linear Discriminant 
Analysis was slightly better than the Logistic 
Regression in terms of accuracy, and sensitivity. 
The results from SVM and Neural Networks were 
similar in terms of mean performance but showed 
a lower mean specificity (0.78) compared to 
Discriminant Analysis and Logistic Regression 
methods (0.86). Finally, the model selection robust-
ness was confi rmed by using different training 
sample sizes that varied from 40 to 80%. Interest-
ingly, all the selection methods were stable with 
all the training sample size tested, except for 
Quadratic Discriminant Analysis. The Linear 
Discriminant Analysis remained the most robust 
method with a mean specifi city ranging from 0.82 
to 0.83, and sensitivity from 0.93 to 0.95 with the 
different sample sizes tested (Table 1).

We showed that Linear Discriminant Analysis, 
Quadratic Discriminant Analysis, Logistic 
Regression, Support Vector Machine and Neural 
Networks were the fi ve most robust supervised 
classifi cation methods in our study. The combina-
tion of the two-sided Wilcoxon’s test and the 
Logistic Regression for the markers pre-selection 
and the Linear Discriminant Analysis seemed to 
be the more effective in term of classifi cation of 
samples in control and cancer groups. We observed 
that once the most discriminating markers are 
selected, the results of sensitivity, specifi city and 
accuracy can be radically different from one 
method to another. The choice of these classifi cation 
methods depends on the data, on the choice made 
for the pre-selection and on the problem that has 
to be solved. Also, it is essential to test several 
classifi cation methods on the selected biomarkers. 
The question of the bias between the selection 
method and the Discriminant Analysis can arise. 
Accordingly we evaluated the whole method 
(i.e. the preselection stage combined with the 
Discriminant Analysis) in a 5-fold cross-validation 
(Ambroise, 2002). If we consider the preselection 
method with the logistic regression forward, we 
found an accuracy of 0.8763, a sensitivity of 
0.9027, and a specifi city of 0.7. The combination 

Table 3. Cross-validation for common peaks.

 Training  TP TN FP FN Sensitivity Specifi city Accuracy
 sample       
 size (%)      
Binary logistic   0.4 80169 10970 3030 7831 0.9110 0.7836 0.8935
regression 0.6 52459 7542 1458 5541 0.9045 0.8380 0.8955
 0.8 26258 4256 744 2742 0.9054 0.8512 0.8975
SVM 0.4 81890 9144 4856 6110 0.9306 0.6531 0.8925
 0.6 54293 6543 2457 3707 0.9361 0.7270 0.9080
 0.8 27333 3769 1231 1667 0.9425 0.7538 0.9148
LDA 0.4 81219 11258 2742 6781 0.9229 0.8041 0.9066
 0.6 54271 7380 1620 3729 0.9357 0.8200 0.9202
 0.8 27320 4021 979 1680 0.9421 0.8042 0.9218
QDA 0.4 78654 8663 5337 9346 0.8938 0.6188 0.8560
 0.6 50593 6991 2009 7407 0.8723 0.7768 0.8595
 0.8 25080 4048 952 3920 0.8648 0.8096 0.8567
Neura 0.4 86002 9173 5197 1998 0.9773 0.6383 0.9297
Networks 0.6 56730 6180 2820 1270 0.9781 0.6867 0.9390
 0.8 28511 3341 1659 489 0.9831 0.6682 0.9368
Classifi cation  0.4 80836 3530 10470 7164 0.9186 0.2521 0.8271
Trees 0.6 53349 2623 6377 4651 0.9198 0.2914 0.8354
 0.8 26795 1439 3561 2205 0.9240 0.2878 0.8304
Boosting 0.4 79569 2546 9603 1164 0.9856 0.2096 0.8841
Trees 0.6 52099 1478 8392 852 0.9839 0.1497 0.8529
 0.8 25924 708 9136 440 0.9833 0.0719 0.7355
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of this selection method and this classifi cation 
method is robust. But these performances could be 
better if the difference between sizes of the two 
groups had not been so important. The relatively 
low specifi city obtained with our data could be 
explained by this strong imbalance in the size of 
both sample groups, or by the choice of a control 
group with high-risk of developping cancer. This 
last condition could explain the very low specifi city 
observed with the Classifi cation Trees and the 
Boosting Trees classifi cation methods, which uses 
thresholds. In conclusion, this biomarkers selection 
method should be employed on other studies, to 
validate its robustness. It also would be interesting 
to ensure a medium term follow-up of this control 
group population to allow the reappraisal of benign 
condition and rule out the possibility of infra 
clinical and radiological cancer development in 
this group of patient. In this case, it could allow a 
correct reallocation of the patient in the correct 
group and a more effi cient re-evaluation of the 
different classifi cation methods. Finally, the poten-
tial markers selected should be clearly identifi ed 
and annotated using extra purifi cation such as 
standard chromatography and/or electrophoresis 
and analysis by peptide mass fi ngerprint using 
more resolutive MS techniques or peptide 
sequencing via tandem MS analysis. This identi-
fication presents several interesting features, 
particularly during the discovery phase, by adding 
a supplementary validation phase using inde-
pendent immunological methods, such as ELISA, 
and by increasing the predictive value of the 
molecular signature.
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