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Adoptive cell transfer (ACT) represents a prominent form 
of immunotherapy against malignant diseases. ACT is 
conceptually distinct from dendritic cell-based approaches 
(which de facto constitute cellular vaccines) and allogeneic 
transplantation (which can be employed for the therapy 
of hematopoietic tumors) as it involves the isolation of 
autologous lymphocytes exhibiting antitumor activity, their 
expansion/activation ex vivo and their reintroduction into the 
patient. re-infusion is most often performed in the context of 
lymphodepleting regimens (to minimize immunosuppression 
by host cells) and combined with immunostimulatory 
interventions, such as the administration of Toll-like receptor 
agonists. Autologous cells that are suitable for ACT protocols 
can be isolated from tumor-infiltrating lymphocytes or 
generated by engineering their circulating counterparts for 
the expression of transgenic tumor-specific T-cell receptors. 
Importantly, lymphocytes can be genetically modified prior 
to re-infusion for increasing their persistence in vivo, boosting 
antitumor responses and minimizing side effects. Moreover, 
recent data indicate that exhausted antitumor T lymphocytes 
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Introduction

During the past three decades, it has become clear that the immune 
system does not constitute a mere bystander of oncogenesis, tumor 
progression and response to treatment, a conceptual shift that has 
driven the development and clinical evaluation of several forms of 
anticancer immunotherapy.1–5 These include relatively unspecific 
approaches, such as the administration of immunostimulatory 
cytokines like interleukin-2 (IL-2) or immunological checkpoint 
blockers like anti-CTLA4 antibodies (i.e., ipilimumab),6–11 as well 
as precisely targeted interventions, encompassing anticancer vac-
cines12–14 and adoptive cell transfer (ACT).1–3,15

ACT involves the re-infusion into a lymphodepleted patient of 
large numbers (often up to 1011) of lymphocytes with antitumor 

may be rejuvenated in vitro by exposing them to specific 
cytokine cocktails, a strategy that might considerably improve 
the clinical success of ACT. Following up the Trial watch that we 
published on this topic in the third issue of OncoImmunology 
(May 2012), here we summarize the latest developments in 
ACT-related research, covering both high-impact studies that 
have been published during the last 13 months and clinical 
trials that have been initiated in the same period to assess the 
antineoplastic profile of this form of cellular immunotherapy.
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cyclophosphamide (an alkylating agent currently approved for 
the treatment of several cancers), fludarabine (a nucleoside analog 
often employed against hematological neoplasms) and total body 
irradiation.45 Since the intensity of lymphodepletion has been 
clearly correlated with the clinical efficacy of ACT, precondition-
ing lymphodepletion is now part of standard ACT protocols.45

Along similar lines, it is relatively common to reintroduce TILs 
into lymphodepleted patients together with high doses of IL-2,46,47 
even though this approach is being increasingly questioned owing 
to its potential immunosuppressive side effects.48–50 Several alter-
native agents have been investigated for their capacity to potenti-
ate the clinical efficacy of ACT, including (1) immunostimulatory 
cytokines other than IL-2, such as IL-7, IL-12, IL-15 and inter-
feron (IFN)γ;51–54 (2) inhibitors of angiogenesis, which facilitate 
the homing to TILs to neoplastic lesions;55,56 (3) Toll-like receptor 
(TLR) agonists, as they exert potent adjuvant effects and limit 
endogenous immunosuppression;57–60 and (4) a wide panel of 
immunostimulatory chemotherapeutics, encompassing (but not 
limited to) metronomic cyclophosphamide, gemcitabine (a nucle-
oside analog that is used for the treatment of various carcinomas 
and some forms of lymphoma) and several anthracyclines.61–63

Importantly, although the efficacy of ACT is generally attrib-
uted to CD8+ T cells, the administration of CD4+ T cells alone has 
also been shown to induce durable clinical responses in melanoma 
patients.64 Moreover, at least theoretically, immune effector cell 
types other than T lymphocytes, including B and NK cells, can be 
used in ACT protocols. So far, the adoptive transfer of autologous 
B cells has only been investigated at the preclinical level.65 This 
is presumably linked to the fact that B cells are known to medi-
ate immunosuppressive effects and sustain tumor growth, at least 
in some models of carcinogenesis.66,67 Conversely, NK cell-based 
ACT strategies have already been evaluated in clinical trials, with 
relatively deceiving results.68,69 This is at odds with encouraging 
preclinical observations as well as with the established efficacy of 
allogeneic NK cells against acute myeloid leukemia (AML).70–72 
Promising results have been obtained with “young TILs,” i.e., 
minimally cultured, bulk TILs that can be generated in a rela-
tively inexpensive and rapid manner that does not entail individu-
alized tumor-reactivity screening steps.73–75 By abating the costs 
that are associated with the generation of ACT-compatible TILs, 
this technology may significantly increase the number of centers 
that will offer ACT immunotherapy to eligible patients in the 
near future. As it stands, however, there are no ACT protocols 
approved by the US FDA or other international regulatory agen-
cies for use in cancer patients (source www.fda.gov).

Along the lines of our monthly Trial Watch series,9–15,57,59,76–79 
here we will summarize the latest advances in the use of ACT as 
an active immunotherapeutic strategy against cancer, focusing 
on high-impact studies that have been published and clinical tri-
als that have been launched during the last 13 mo.

Literature Update

Since the submission of our previous Trial Watch on this topic 
(January 2012),15 the results of no more than 10 clinical trials inves-
tigating the therapeutic potential of ACT in cancer patients have 

activity,1–5 hence constituting one—but not the only—form of 
cell-based anticancer therapy. ACT should indeed be conceptually 
discriminated from dendritic cell (DC)-based approaches, which 
de facto constitute anticancer vaccines (and are never performed 
in the context of lymphodepletion),12,16–18 as well as from alloge-
neic hematopoietic stem cell transplantation (HSCT), a thera-
peutic option for patients affected by hematological malignancies 
that relies on the elimination of most tumor cells by lymphoab-
lating regimens followed by the re-establishment of an allogenic 
(and hence potentially tumor-reactive) immune system.19,20

In a few settings, i.e., melanoma and renal cell carcinoma 
patients, the starting material for ACT is a surgical specimen 
or tumor biopsy, from which tumor-infiltrating lymphocytes 
(TILs) are isolated and sometimes selected for T-cell receptor 
(TCR) specificity.21 Prior to re-infusion, these lymphocytes are 
expanded ex vivo in the presence of appropriate growth factors 
(e.g., IL-2) and optionally activated with agonistic anti-CD3 
antibodies, alone or combined with tumor-associated antigen 
(TAAs).22 In the majority of cases, however, this approach can-
not be undertaken, as (1) surgical/biopsic material is not available 
or (2) tumor lesions contain reduced number of TILs. In these 
cases, ACT protocols can be implemented starting from circulat-
ing lymphocytes that are genetically engineered for the expres-
sion of tumor-reactive TCRs.1 Importantly, genetic engineering 
can also be used to endow lymphocytes with several other fea-
tures,23 including (but not limited to) an increased proliferative 
potential,24,25 a prolonged in vivo persistence,26 the capacity to 
self-provide immunostimulatory cytokines and/or growth fac-
tors,24 an improved capacity to migrate to tumor tissues27,28 and 
robust cytotoxic functions.29 Finally, so-called chimeric antigen 
receptors (CARs) can be employed as valid alternatives to TCRs. 
CARs recognize TAAs through antibody-derived complementar-
ity-determining regions, yet rely on TCR-associated signal trans-
ducers, de facto triggering the activation of T cells even when 
TAA are not presented in complex with MHC molecules.30,31 
Obviously, the efficacy (and safety) of ACT is dramatically influ-
enced (if not entirely dictated) by the specificity of re-infused 
cells. We have extensively discussed all these aspects one year ago, 
in the first Trial Watch of the series dealing with ACT,15 and 
more recently, in three distinct Trial Watches dealing with anti-
cancer vaccines.12–14

Initially, autologous TILs expanded and activated ex vivo 
were administered to virtually untreated patients, an approach 
that was episodically associated with measurable, though not 
durable, clinical responses.32 This was likely due to the facts 
that (1) upon re-infusion, TILs normally fail to persist for long 
periods in vivo;33,34 (2) the antineoplastic activity of re-infused 
TILs is rapidly annihilated by local and systemic immunosup-
pressive networks, such as those established by myeloid-derived 
suppressor cells (MDSCs)35–37 and FOXP3+ regulatory T cells 
(Tregs);38–42 and (3) endogenous immune effector cells, including 
T, B and natural killer (NK) lymphocytes, might enter in com-
petition with re-infused TILs for key cytokines such as IL-7 and 
IL-15, a phenomenon that is known as “cytokine sink.”43,44 To 
circumvent these issues, various lymphodepleting regimens have 
been developed, mostly relying on combinations of high-dose 
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previously reported side effects linked to insertional mutagen-
esis93,94 are either stem cell- or transgene-intrinsic and hence do 
not constitute a relevant issue for ACT immunotherapy.92

During the last 13 months, an intense wave of (preclinical) 
investigation has focused on the characterization of novel fac-
tors that may influence the clinical efficacy of ACT as well as 
on the refinement of protocols for the isolation, expansion and 
activation of clinical-grade material for this immunotherapeutic 
regimen. Moreover, considerable efforts have been dedicated at 
the identification of maneuvers that may improve the persistence 
of re-infused lymphocytes and boost their antineoplastic activity 
while keeping potential side effects at bay.

The refinements of expansion/activation protocols that have 
recently been suggested to quantitatively and/or qualitatively 
improve cellular preparations for ACT include, but are not limited 
to: (1) the addition of an in vitro re-stimulation step with relevant 
peptides prior to expansion, resulting in an increased proportion 
of tumor-specific T cells among cultured PBMCs;95 (2) the use of 
IL-12 or IFNγ for the priming of TILs with TAA-derived pep-
tides, resulting in increased antitumor activity in vivo;96,97 (3) the 
use of low-dose IFNγ as a pre-treatment for autologous cancer 
(melanoma) cells employed to activate TILs in co-culture set-
tings, de facto boosting their cytotoxic activity;98 (4) the use of an 
antigen-presenting cell (APC) platform engineered for the expres-
sion of the co-stimulatory molecule 4–1BBL and the secretion of 
IL-21, resulting in the superior expansion of T cells that exhibit a 
“young” CD27+CD28+ phenotype and increased cytotoxic func-
tions, but not of Tregs;99 (5) the treatment of T cells with the 
selective A3 adenosine receptor agonist Cl-IB-MECA prior to 
infusion, resulting in increased tumor necrosis factor α (TNFα) 
secretion and hence superior cytotoxic potential in vivo;100 (6) the 
use of CD8+ T cell-specific lentiviral vectors (as opposed to vector 
that unselectively target T cells) for the transduction of TAA-
targeting TCR-coding genes, resulting in increased granzyme B 
levels and CD8 expression by a subpopulation of transfected cells 
and hence in improved antineoplastic effects in vivo;101 (7) the 
downregulation of the E3 ubiquitin ligase Casitas B-lineage lym-
phoma B (CBLB) in T cells prior to infusion, de facto limiting 
their sensitivity to immunosuppressive signals such as those deliv-
ered by transforming growth factor β (TGFβ);102 (8) the down-
regulation of protein tyrosine phosphatase, non-receptor type 6 
(PTPN6, also known as SHP1), resulting in a superior short-term 
accumulation of T cells upon re-infusion and increased therapeu-
tic activity;103 (9) the transgene-driven expression of an ubiquiti-
nation-resistant linker for activation of T cells (LAT), resulting 
in increased TCR signaling and cytotoxic potential;104 (10) the 
expression of a constitutively active form of signal transducer 
and activator of transcription 5 (STAT5), significantly boost-
ing the proliferative potential of TAA-experienced T cells;105 
(11) the expression of a co-receptor-independent TCR, result-
ing in a increased fraction of cytotoxic CD3+ cells (including 
CD4−CD8− cells);106 (12) the expression of single-chain IL-12, 
resulting in the local self-provision of immunostimulatory sig-
nals that appear to be required for the clinical efficacy of CAR-
expressing T cells in several mouse tumor models;107 and (13) 
the depletion of CD137+CD44highCD4+ cells prior to infusion, as 

been published (source www.ncbi.nlm.nih.gov/sites/entrez/). 
Six of these studies involved individuals bearing hematological 
(most often B-cell) malignancies,80–85 especially in settings of 
post-HSCT relapse.80,81,83,85 The remaining 4 trials investigated 
the clinical potential of ACT in patients with neuroblastoma, 
nasopharyngeal carcinoma, melanoma or recurrent ovarian car-
cinoma.86–89 The clinical protocols employed in some of these 
studies were relatively conventional, such as (1) the infusion of 
autologous T cells expanded and activated ex vivo to pediatric 
neuroblastoma patients early after HSCT;86 (2) the administra-
tion of autologous TILs in combination with low-dose IL-2 to 
lymphodepleted metastatic melanoma patients,87 (3) the infu-
sion of autologous T cells genetically modified for the expres-
sion of a HA-1-specific TCR to leukemia patients relapsing 
upon HSCT;83 (4) the administration of originally allogeneic 
T lymphocytes isolated from B-cell malignancies that failed to 
respond to HSCT (upon expansion and activation ex vivo with 
anti-CD3/anti-CD28-coated beads);80 (5) the infusion of autolo-
gous peripheral blood mononuclear cells (PBMCs) expanded ex 
vivo in the presence of Epstein-Barr virus (EBV)-infected cells 
to individuals affected by EBV-associated nasopharyngeal car-
cinoma;89 and (6) the administration of cytokine-induced killer 
(CIK) cells, i.e., an heterogeneous population of T lymphocytes 
and CD3+CD56+, non-MHC-restricted cells exhibiting a mixed 
T-cell/NK-cell phenotype,90 to patients with hematological 
malignancies relapsing upon HSCT.85

Alongside, four studies evaluated the clinical profile of CAR-
based ACT immunotherapy.81,82,84,88 Thus, the groups of Steven 
Rosenberg (National Cancer Institute, Bethesda, MD) and 
George Coukos (University of Pennsylvania, Philadelphia, PA) 
independently investigated (in Phase I clinical trials) the safety 
and efficacy of autologous T cells genetically modified to express 
an anti-CD19 CAR in patients bearing advanced B-cell malig-
nancies, either upon a course of conventional chemotherapy82 or 
during HSCT.81 Along similar lines, Oliver Press and collabora-
tors (Fred Hutchinson Cancer Research Center, Seattle, WA) con-
ducted a Phase I clinical trial to preliminarily assess the clinical 
potential of autologous T cells stably expressing a CD20-specific 
CAR in indolent B-cell or mantle cell lymphoma patients pre-
viously subjected to lymphodepletion with cyclophosphamide.84 
Finally, Coukos and colleagues tested the safety and activity of 
autologous T cells engineered to express a folate receptor α (FRα)-
targeting CAR in (lymphodepleted) patients affected by recur-
rent ovarian cancer.88 Taken together, the results of these studies 
corroborate the notion that the re-administration of autologous 
T cells genetically engineered for the expression of TAA-specific 
TCRs or CARs to cancer patients is generally safe15 and drives 
robust tumor-specific immune responses that—at least in a frac-
tion of patients—translate into measurable clinical benefits.1,5,91 
Of note, Carl June and collaborators (University of Pennsylvania, 
Philadelphia, PA) have recently reported the results of a decade-
long safety assessment of an ACT protocol involving the admin-
istration of T lymphocytes expressing a gp120-specific CAR to 
HIV-1 patients.92 This study demonstrates that the use of retro-
viral transduction to generate CAR-expressing T cells is associ-
ated with stable engraftment and durable safety, implying that 
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these cells de facto constitute a subpopulation of highly activated 
CD25+FOXP3+ Tregs.108 Moreover, Somanchi et al. have shown 
that trogocytosis, the process whereby T, B and NK lymphocytes 
can acquire transmembrane proteins from APCs,109,110 can be effi-
ciently used to engineer cells for ACT prior to re-infusion. Thus, 
NK cells exposed to CCR7-expressing K562 leukemia cells ex 
vivo have been shown to efficiently take up CCR7 and express it 
at their own membrane, resulting in increased homing to lymph 
nodes upon re-infusion.111

The study of Chinnasamy and colleagues mentioned above 
deserves a special mention as the authors not only showed that 
the local production of IL-12 dictates the efficacy of CAR-
transduced T cells, but also demonstrated that T lymphocytes 
expressing a vascular endothelial growth factor receptor 2 
(VEGFR2)-specific CAR mediate antineoplastic effects both as 
they inhibit angiogenesis and as they target VEGFR2+ MDSCs 
(in situ and systemically).107 Along similar lines, we have found 
of particular interest a recent work from Kloss and colleagues, 
who proposed a combinatorial strategy whereby CAR-expressing 
T cells can be rendered truly specific for a given tumor.112 This is 
particularly relevant when CARs are designed to target so-called 
“shared” TAAs—that is, TAAs that are also expressed (gener-
ally to low levels) by normal cells—as CAR-engineered T cells 
are extremely sensitive to cognate antigens and hence may dam-
age non-neoplastic tissues.113,114 To minimize this possibility, 
Kloss et al. engineered T cells for the co-expression of a CAR 
that provides suboptimal activation upon binding to one antigen 
and a chimeric co-stimulatory receptor (CCR) that recognizes a 
second antigen, resulting in a significant improvement in T-cell 
selectivity.112

Besides these improvements in the protocols whereby autolo-
gous tumor-reactive lymphocytes are isolated, expanded and acti-
vated, several strategies have been proposed as possible means to 
ameliorate the efficacy of ACT immunotherapy at a later stage, 
that is, at or post re-infusion. These approaches encompass, but 
are not limited to: (1) the combination of ACT with agonistic anti-
CD40 and anti-CD137 monoclonal antibodies (in the latter case 
at a specific time point upon infusion), both of which are known 
to mediate potent co-stimulatory signals;115,116 (2) the co-admin-
istration of ACT with 6-gingerol, a capsaicin-like component of 
ginger that seems to promote the proliferation of TIL in vivo 
and their ability to infiltrate neoplastic lesions;117 (3) the admin-
istration of ACT together with monoclonal antibodies specific 
for the immunosuppressive receptor PD-1,7 resulting in increased 
IFNγ production at the tumor site and superior antineoplastic 
activity;118 (4) the combination of ACT with oncogene-targeting 
agents, such as compound that specifically inhibit mutant BRAF, 
which have recently been shown to improve tumor-infiltration 
by adoptively transferred T cells as well as antitumor responses 
in murine models of mutant BRAF-expressing melanoma.119,120

During the past 13 months, important insights have been 
gained into the mechanisms that underpin the efficacy of ACT 
in vivo. For example, it has been demonstrated that (1) the T-cell 
transcription factor NFAT1 plays a prominent role in the tumor-
induced anergy of CD4+ T cells;121 (2) the absence of functional 
ligands for L-, P- and E-selectins (adhesion molecules that are 

involved in leukocyte rolling along high endothelial venules) 
as well as the dysfunction of the NK-cell activating receptor 
NKG2D compromises the antineoplastic activity of adoptively 
transferred CD8+ T cells, in mice;122,123 (3) the survival of mem-
ory CD8+ T cells in the absence of CD4+ T-cell help relies on 
CD27-transduced signals that result in the expression of the IL-7 
receptor;124 (4) memory T cells that can self-renew upon adoptive 
transfer to cancer patients respond to antigenic stimuli by pro-
ducing IL-2- and IFNγ-coding mRNAs in a stoichometrically 
defined ratio;125 (5) IL-15, but not IL-2, relieves the immunosup-
pressive impact of Tregs on adoptively transferred CD8+ T cells, 
hence favoring their survival, proliferation and effector func-
tions;126 and (6) one of the mechanisms whereby melanoma cells 
become refractory to ACT immunotherapy involves a TNFα-
dependent inflammatory response that results in the selective 
loss of melanocytic (but not non-melanocytic) antigens.127 The 
results of these studies are highly relevant for the development of 
novel ACT strategies that exert superior antineoplastic activity. 
Along similar lines, the discovery that γδ T cells also mediate 
potent antitumor effects upon re-infusion (following “conven-
tional” expansion/activation only or in combination with the 
retroviral transduction of CD8 plus a tumor-reactive αβ TCR) 
paves an interesting avenue for the development of innovative 
ACT protocols.128–131

This said, perhaps the most exciting progress for ACT 
achieved during the last 13 months relates to the possibility of 
“rejuvenating” T cells.132 Indeed, the TAA-specific T cells that 
are employed in ACT protocols are often highly differentiated, 
in particular if TILs are used as starting material, as they have 
been exposed to chronic inflammation and prolonged antigenic 
stimulation in vivo. Moreover, expansion procedures generally 
engender (at least some degree of) terminal differentiation, loss 
of proliferative capacity and exhaustion/senescence.133,134 To cir-
cumvent this issue, protocols that allow for the selective expan-
sion of early-differentiated, stem-cell memory T (T

SCM
) cells have 

been developed.133,135 These cells constitute the most undifferen-
tiated human T-cell compartment exhibiting bona fide memory 
functions, virtually generating all memory cell subsets, display 
superior persistence and expansion capabilities in vivo and sur-
vive for extended periods even after the loss of cognate anti-
gens.136,137 In addition, the induced pluripotent stem cell (iPSC) 
technology has been successfully applied to antigen-experienced 
T cells, allowing for the generation of mature, rejuvenated T cells 
that maintain the original rearrangement of TCR-coding genes, 
produce IFNγ in response to antigenic stimulation, exhibit long 
telomeres (which are indicative of a high replicative potential), 
are capable of expanding to considerable extents in vitro, express 
higher levels of cytotoxic molecules than the T-cell clones they 
derive from and lack the expression of the exhaustion marker 
PD-1.138–140 We firmly believe that the use of rejuvenated T cells 
will considerably expand the therapeutic potential of ACT.

Update on Clinical Trials

When our latest Trial Watch dealing with ACT antican-
cer immunotherapy was submitted to OncoImmunology for 
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publication (January 2012), official sources listed no more 
than 35 recent (started after January 1, 2008), ongoing (not 
withdrawn, terminated or completed by the day of submis-
sion) clinical trials that would assess the safety and efficacy of 
ACT in cancer patients.15 The status of 28 of these studies has 
remained unchanged since, whereas 4 trials (NCT00720031; 
NCT00730613; NCT00815321; NCT01118091) have been com-
pleted, 2 have been terminated (NCT00924001; NCT01212887, 
the latter of which due to safety concerns and lack of efficacy) 
and 1 has been suspended (NCT01477021). Of note, only the 
results of NCT00815321, testing the administration of CIK 
expanded/activated ex vivo with standard protocols to patients 
with hematological malignancies relapsing upon HSCT, have 
already been published (see above).85

At present (February 2013), official sources list no less than 
27 clinical trials launched after February 1, 2012, that would 
investigate the safety and efficacy of ACT in oncological indi-
cations (source www.clinicaltrials.gov). This rate is strikingly 
higher than that observed in the previous 4-y period, corroborat-
ing the notion that ACT immunotherapy is nowadays considered 
as one of the most promising strategies against cancer. A majority 
of ongoing clinical studies involve patients bearing hematologi-
cal malignancies encompassing (but not limited to) acute lym-
phocytic leukemia (ALL), myelodysplastic syndrome (MDS) 
and several forms of myeloma (10 trials) or skin cancers, such as 
melanoma and Merkel cell carcinoma (7 trials). Taken together, 
the remaining 10 studies are performed in a relatively hetero-
geneous group of patients, including individuals affected by 
esophageal cancer (2 trials), breast carcinoma (1 trial), mesothe-
lioma (1 trial), cholangiocarcinoma (1 trial) as well as unspecified 
solid tumors (5 trials) (Table 1). Although not always specified 
at www.clinicaltrials.gov, most (if not all) of these trials involve 
patient pre-conditioning, which is often achieved with cyclo-
phosphamide and fludarabine optionally combined with one or 
more cytotoxic chemotherapeutics, as well as the administration 
of IL-2 upon re-infusion (for the reasons discussed above).

In a majority of cases, the infused material consists of geneti-
cally engineered lymphocytes, mostly for the expression of 
TAA-specific CARs (10 studies) or TCRs (5 studies). Thus, 
T cells expressing a CD19-specific CAR are being tested (1) in 
pediatric patients with relapsed B-cell ALL (NCT01683279); 
(2) children and young adults affected by ALL, B-cell leuke-
mia, large cell lymphoma or non-Hodgkin lymphoma who have 
failed conventional therapies (NCT01593696); (3) patients 
with relapsed or refractory chronic lymphocytic leukemia 
(NCT01747486; NCT01653717); and (4) subjects suffering 
from not better defined variants of CD19+ leukemia or lym-
phoma (NCT01626495). Moreover, (1) T cells expressing a 
CD20-directed CAR are being tested in patients affected by a 
large variety of hematological neoplasms (NCT01735604); (2) 
T lymphocytes engineered for the expression of a CAR target-
ing the Lewis Y carbohydrate antigen are being assessed as a 
therapeutic intervention in AML, MDS and multiple myeloma 
patients (NCT01716364); (3) T cells expressing a fibroblast 
activation protein (FAP)-specific CAR are being evaluated in 
patients with malignant pleural mesothelioma (NCT01722149); 

(4) the antineoplastic activity of mesothelin-redirected T cells is 
being assessed in metastatic mesothelioma and pancreatic car-
cinoma patients (NCT01583686); and (5) T lymphocytes redi-
rected against the carcinoembryonic antigen (CEA) by means of 
a specific CAR are investigated as a therapeutic option for sub-
jects affected by metastatic carcinomas (NCT01723306). The 
safety and preliminary efficacy of T lymphocytes engineered to 
express TCRs that recognize NY-ESO-1 (a cancer-testis anti-
gen),141 tyrosinase and various other melanoma-associated anti-
gens (MAGEs) or Wilms tumor 1 (WT1, a TAA overexpressed 
by various hematological and renal tumors)142 are being investi-
gated in cohorts of patients affected by AML or chronic myeloid 
leukemia (NCT01621724), melanoma (NCT01586403), ovar-
ian carcinoma (NCT01567891), as well as advances solid tumors 
(NCT01694472; NCT01697527). Finally, T cells co-expressing 
nerve growth factor receptor (NGFR) or chemokine (C-X-C 
motif) receptor 2 (CXCR2), improving their ability to prolifer-
ate in vivo and to migrate to neoplastic lesions, are being tested 
as a standalone therapeutic intervention in melanoma patients 
(NCT01740557).

The remaining clinical studies involve genetically unmodified 
cells. In particular: (1) TILs isolated and amplified with conven-
tional protocols are being assessed, in combination with either 
the BRAF-specific inhibitor vemurafenib143,144 or the anti-CTL4 
monoclonal antibody ipilimumab,9,10,145 for the treatment of 
metastatic melanoma patients (NCT01659151; NCT01701674); 
(2) young TILs, alone or combined with vemurafenib, are being 
assessed in cohort of patients affected by human papillomavirus 
(HPV)+ tumors (mainly oropharyngeal, cervical, vaginal and 
anal carcinoma) and melanoma, respectively (NCT01585428; 
NCT01585415); (3) autologous polyclonal CD8+ TILs specific 
for a Merkel cell polyomavirus-associated antigen are being 
tested, in combination with local irradiation or intralesional 
IFNβ, in subjects bearing metastatic Merkel cell carcinomas 
(NCT01758458);146 (4) the safety and therapeutic potential 
of EBV-specific cytotoxic T lymphocytes are being evaluated 
in patients with various forms of EBV+ lymphomas and lym-
phoproliferative disorders (NCT01555892); and (5) activated 
T cells armed with a bispecific antibody simultaneously tar-
geting CD3 and ERBB2, a TAA that is often overexpressed in 
breast carcinoma,147 are being tested in combination with con-
ventional chemotherapeutic regimens for the treatment of resect-
able Stage II–III breast cancer (NCT01658969). In addition, 
(1) CIK cells are being investigated as a standalone intervention 
for the therapy of cholangiocarcinoma patients (NCT01573455) 
or combined with conventional chemotherapy and/or radiation 
in subjects bearing esophageal carcinomas (NCT01691625; 
NCT01691664); and (2) the safety and efficacy of umbilical cord 
blood-derived NK cells are being assessed in a cohort of myeloma 
patients concomitantly subjected to chemotherapy and autolo-
gous stem cell transplantation (NCT01729091).

Concluding Remarks

As detailed above, no less than 27 new clinical trials that would 
evaluate the safety and efficacy of ACT immunotherapy in 
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Table 1. recent clinical trials assessing the safety and efficacy of ACT immunotherapy in cancer patients*

Type Indication(s) Phase Status Note(s) Ref.

engineered

T cells

Advanced solid

tumors

I Active, not recruiting MAGe-A4-specific TCr-expressing T cells NCT01694472

II recruiting
T cells expressing an NY-eSO-1-specific

TCr plus NY-eSO-1-pulsed DCs
NCT01697527

II recruiting
CeA-specific CAr-expressing T cells,

as a standalone intervention
NCT01723306

AML

CML
I/II recruiting

T cells expressing a wT1-specific TCr,

as a standalone intervention
NCT01621724

AML

MDS

MM

I Active, not recruiting
T cells expressing a CAr specific for

the Lewis Y carbohydrate antigen
NCT01716364

B-cell ALL I recruiting
CD19-specific CAr-expressing T cells,

in pediatric patients with relapsing disease
NCT01683279

CLL

I Not yet recruiting CD19-specific CAr-expressing T cells NCT01653717

II recruiting
CD19-specific CAr-expressing T cells,

in patients with relapsed/refractory disease
NCT01747486

Leukemia

Lymphoma

I recruiting
CD20-specific CAr-expressing T cells,

in patients with chemorefractory disease
NCT01626495

n.a. Not yet recruiting
CD20-redirected T cells, in patients

with chemorefractory disease
NCT01735604

I recruiting
CD19-redirected T cells, in children and

young adults failing conventional therapies
NCT01593696

Mesothelioma I Not yet recruiting
FAP-specific CAr-expressing T cells,

in patients with FAP+ pleural disease
NCT01722149

Mesothelioma

Pancreatic carcinoma
I/II recruiting

T cells expressing a CAr specific for

mesothelin, as a standalone intervention
NCT01583686

Melanoma

I recruiting
T cells expressing a tyrosinase-specific,

co-receptor-independent TCr
NCT01586403

I/II Not yet recruiting
CXCr2- or NGFr-expressing T cells,

in patients with metastatic disease
NCT01740557

Ovarian carcinoma I/II Active, not recruiting
T cells expressing a TCr specific for

NY-eSO-1 or MAGe-A3/A6/B18
NCT01567891

Unmodified

T cells

Breast carcinoma II recruiting
Activated T cells armed with a bispecific  

antibody targeting CD3 and erBB2
NCT01658969

HPv+ carcinoma II recruiting Young TILs as a standalone intervention NCT01585428

Lymphoproliferative  
disorders

I Not yet recruiting eBv-specific cytotoxic T lymphocytes NCT01555892

Melanoma

n.a. recruiting Conventional TILs plus ipilimumab NCT01701674

I recruiting Young TILs combined with vemurafenib NCT01585415

II recruiting Conventional TILs plus vemurafenib NCT01659151

Merkel cell carcinoma I/II Not yet recruiting
Autologous polyclonal CD8+ TILs plus

local irradiation or intralesional IFNβ
NCT01758458

ACT, adoptive cell transfer; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; CAr, chimeric antigen receptor; CeA, carcinoembryonic an-
tigen; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; CXCr2, chemokine (C-X-C motif) receptor 2; DC, dendritic cell; eBv, epstein-
Barr virus; FAP, fibroblast activation protein; HPv, human papillomavirus; IFN, interferon; MAGe, melanoma-associated antigen; MDS, myelodysplastic 
syndrome; MM, multiple myeloma; n.a., not available; NGFr, nerve growth factor receptor; TCr, T-cell receptor; TIL, tumor-infiltrating lymphocyte; 
wT1, wilms tumor 1. *Started after January 31, 2012.
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cancer are expected to induce (at least some extent of) immu-
nosuppression, though by distinct mechanisms. In this setting, 
approaches in which T cells are engineered for the expression 
of suicide proteins, such as an inducible variant of caspase-9,151 
should provide an additional level of security for the develop-
ment of novel and safe immunotherapeutic protocols based on 
ACT. Future will tell whether the great expectations that are 
being generated by ACT immunotherapy will ever translate into 
a clinical reality.
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cancer patients have been launched during the past 14 months. 
By comparison, only 35 of such studies were launched from 
January 1, 2008, and January 31, 2012, reflecting the interest 
that this immunotherapeutic modality has generated among cli-
nicians. Along similar lines, the molecular and cellular circuitries 
that may influence the clinical efficacy of ACT are being inten-
sively investigated, as demonstrated by the constantly increasing 
amount of high quality scientific publications dealing with topics 
(source www.ncbi.nlm.nih.gov/pubmed/).

As it stands, CAR-based approaches are on the limelight, 
at least in part due to the development of “third-generation” 
molecules that contain multiple intracellular signaling domains, 
including CD3ζ-, CD28- and OX40- or 4–1BB-derived mod-
ules, and hence exert robust antineoplastic effects.148–150 In addi-
tion, Carl June and collaborators have recently reported that 
the administration of CAR-expressing T cells to HIV-1 patients 
is associated with a stable engraftment (CAR+ cells could be 
detected as long as 11 y after infusion), even in the absence of 
lymphodepleting regimens, but (1) no severe side effects and (2) 
no evidence of insertional mutagenesis.92 It will be interesting 
to see whether these observations hold true in cancer patients, 
in particular in view of the fact that both HIV-1 infection and 
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