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The search for efficient antimicrobial therapies that can alleviate suffering caused by
infections from resistant bacteria is more urgent than ever before. Infections caused by
multi-resistant pathogens represent a significant and increasing burden to healthcare and
society and researcher are investigating new classes of bioactive compounds to slow
down this development. Antimicrobial peptides from the innate immune system represent
one promising class that offers a potential solution to the antibiotic resistance problem due
to their mode of action on the microbial membranes. However, challenges associated with
pharmacokinetics, bioavailability and off-target toxicity are slowing down the
advancement and use of innate defensive peptides. Improving the therapeutic
properties of these peptides is a strategy for reducing the clinical limitations and
synthetic mimics of antimicrobial peptides are emerging as a promising class of
molecules for a variety of antimicrobial applications. These compounds can be made
significantly shorter while maintaining, or even improving antimicrobial properties, and
several downsized synthetic mimics are now in clinical development for a range of
infectious diseases. A variety of strategies can be employed to prepare these small
compounds and this review describes the different compounds developed to date by
adhering to a minimum pharmacophore based on an amphiphilic balance between
cationic charge and hydrophobicity. These compounds can be made as small as
dipeptides, circumventing the need for large compounds with elaborate three-
dimensional structures to generate simplified and potent antimicrobial mimics for a
range of medical applications. This review highlight key and recent development in the
field of small antimicrobial peptide mimics as a promising class of antimicrobials,
illustrating just how small you can go.

Keywords: antimicrobial peptides, antibiotic, synthetic mimic, amphiphilic, clinical development, peptidomimetics,
resistant bacteria
INTRODUCTION

Therapeutic peptides have been used by humans for more than a century, since the first use of
insulin in the 1920s and there are now nearly 100 approved peptide drugs on the market used for the
treatment of a range of medical conditions (1). In humans, peptides are often produced and used
endogenously to respond to altered physiological conditions and we have effective means to regulate
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their plasma concentration and half-life via different biochemical
pathways (2, 3). While these biological systems allow the body to
manage homeostasis efficiently, the natural susceptibility of
innate immune peptides to enzymatic degradation represents a
hurdle which combined with poor oral bioavailability hampers
the introduction and developments of new peptide drugs (2, 4).
To combat these challenges, modified peptides may be generated
incorporating unnatural elements and truncated sequences to
tune the ADME-properties (5, 6). However, for some biological
targets, successful treatment depends on native peptides with
elaborate structures. These complex native structures are
essential for optimized target receptor binding and leads to
increased production costs (Figure 1) (1, 14, 15).

Peptide-based drugs are used to target both intra- and
extracellular targets, ion channels, GPCRs, and a variety of
enzymes. Currently, the majority of new peptides entering the
market are developed as treatments for the major therapeutic
challenges including cardiovascular disorders, cancer, and
metabolic diseases (1, 2, 16). Microbially produced peptides
such as gramic id in , co l i s t in , daptomycin and the
lipoglycopeptide vancomycin are further examples of peptides
that can be used to combat infectious diseases (17). Despite the
success of these microbially derived peptide antibiotics, the
advancement of the many endogenously produced defensive
antimicrobial peptides (AMPs) in higher organisms have yet to
deliver an impact on the drug market (17, 18).

AMPs represent a key component of the innate defence system
involved in the initial rapid response to pathogenic intruders
Frontiers in Immunology | www.frontiersin.org 2
(3, 19, 20). AMPs are generally amphiphilic and many rapidly
target microbes at the membrane level causing membrane
disruption via modes of action less likely to cause resistance (18,
19, 21, 22). Faced with the plethora of naturally producing
organisms, the composition and structure of native AMPs differs
across species but falls within three groups based on their secondary
structure. AMPs are generally short, and commonly adopts either
an a-helical or a b-sheet structure with additional examples of
extended and random-coil structured AMPs as well (23, 24).
Driven by an urgent need to develop effective antimicrobials with
novel modes of action due to the emergence of antimicrobial
resistance (25), AMPs have been extensively studied and probed
for their potential as the next generation antibiotics (18). Well-
studied examples include the defensins, LL-37, lactoferricin,
indolicidin and magainin (18, 26, 27). With numerous AMPs in
clinical trials, it is expected that we will see this class of direct killing
and/or immunomodulating compounds available for clinical
infection management in the future (18, 24, 26).

The majority of the innate AMPs display highly defined
secondary structures and the peptidic nature of these
endogenous compounds is hampering the therapeutic
development while the dependence of native sequences also
results in high production costs (17). AMPs are further faced
with obstacles associated with challenging pharmacokinetics, off-
target toxicity, low metabolic stability, short half-life, and poor
oral bioavailability (4, 28). As such, synthetic innate AMPs and
their derivatives have not yet lived up to their heralded potential
as the next generation antibiotics (18, 28–30).
FIGURE 1 | Examples of successful and unsuccessful attempts to minimize natural peptide leads during drug development. Top row: The natural teprotide peptide
from the snake Bothrops jararaca is a potent inhibitor of the angiotensin-1-converting enzyme (ACE-1) (7). The native nonapeptide can be effectively truncated and
modified to yield a range of simplified and optimized analogs with optimal binding to ACE-1[PDB: 1J36 (8)] (9). Bottom row: The highly complex and bioactive MVIIA
peptide [PDB: 1TTK (10)] from the marine snail Conus magus have therapeutic value in the treatment of neuropathic pain by inhibiting N-type (Cav2.2) voltage-gated
calcium channels [PDB: 7VFW (11)] (12). Despite extensive analog development and minimization efforts, no improved leads have been reported and the final
marketed drug Ziconotide is identical to the native venom peptide (13).
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Regardless of origin and structural class, the vast majority of
AMPs carries a net positive charge (+2 to +11), balanced by a
significant number of hydrophobic residues enabling an
amphiphilic bioactive structure (31). Recent studies have
illustrated that isolating these two functional components
allows for the generation of much shorter AMPs and synthetic
mimics thereof not adhering to the well-defined secondary
structures found in nature (6). The observation that the key
requirement for antibacterial activity is sufficient cationic charge
balanced by hydrophobic elements has recently allowed the
design of diverse AMP mimics as small as dipeptides with
maintained and even improved bioactivity over their native
counterparts (32–34). These smaller, and more “drug-like”
AMP mimics come with several advantages, such as proteolytic
resistance (35), potential for oral bioavailability (36, 37) and
significantly lower production costs compared to the larger
native AMPs (27, 28, 38, 39). The current report describes the
state of the art of transferring the AMP pharmacophore onto
alternative molecular scaffolds to yield simpler, yet more efficient
antimicrobial leads (40). In addition, it answers the questions
“How small can you go?” and “Does size matter?” in the search
for leads that may offer alternatives to the native AMPs for
combating resistant infections in the future.
MAKING AMPS SHORTER

One of the main developmental barriers of the numerous natural
AMPs towards their clinical use is the need for long native
sequences and a reliance on a maintained helicity for a high
bioactivity (28, 41). This dependence is costly and it presents
synthetic challenges on large scale as these native sequences also
require folding into their native bioactive secondary structure
after initial synthesis (42). Furthermore, their size represent an
Frontiers in Immunology | www.frontiersin.org 3
obstacle for oral administration, targeted delivery (28) and they
are prone to proteolytic degradation. This is due to their high
content of charged and hydrophobic residues, which dictates the
process of binding to the active site of many proteolytic enzymes
(35, 43).

The most obvious approach to overcome the challenges
associated with size is to attempt to make the peptides smaller
and this can be achieved by identifying key structural features
and trimming away excessive structures (1). In the field of AMPs
however this has only been successfully attempted for a limited
number of peptides and clinical leads. For notable AMP
examples, such as LL-37, human b-defensins, indolicidin
(omiganan) and magainin (pexiganan) only minor variation to
the native sequence, if any, have been incorporated (24). In
contrast, research on the iron binding lactoferrin protein and its
antimicrobial cyclic degradation product lactoferricin, have
highlighted that most of the antimicrobial activity can be
maintained in linear N-terminal fragments (Figure 2) (49).
This discovery has led to several shorter linear lactoferrin-
derived lead peptides in clinical development such as hlf1-11,
PXL01 and PXL150 (24, 26, 50, 51).

The helical N-terminal 15 residue fragment of bovine
lactoferricin FKCRRWQWRMKKLGA was studied in detail by
Svendsen and co-workers (52, 53). In a series of truncation and
alanine scan experiments they showed that this sequence could be
significantly improved by amino acid replacement and
incorporation of unnatural hydrophobic amino acids as
replacement of crucial tryptophan residues (33). By combining
these findings with the early identification of an antibacterial
RRWQWR motif inside lactoferricin by Tomita and co-workers
(48), they embarked upon attempting to further minimize the
hexapeptide to generate more “drug-like” compounds (54). By
focussing on only using arginine and tryptophan and synthetic
amino acids they showed across a series of key papers that a high
FIGURE 2 | Successful truncation of the native lactoferrin protein, 689 residues, [PDB: 1BLF (44)] via LfcinB, 25 residues [PDB: 1LFC (45)], LfcinB4-14, 11 residues
[PDB: 1Y5C (46)], to the antibacterial RRWQWR-NH2 motif (created and minimized in Pymol). Arg – red, Trp – blue, iron – orange ball, and disulfide bond – orange
stick). The N-terminal cyclic lactoferricin peptide is formed upon digestion and linearization and additional truncation of lactoferricin yields shorter sequences with
maintained antimicrobial activity. MIC-values taken from Svenson et al. (47) and Tomita et al. (48).
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antimicrobial activity could be obtained once a “sufficient”
number of cationic residues and hydrophobic elements were
assembled (32, 54, 55). The order of assembly appeared to only
play a minor role (32) and this was recently verified in an elegant
and extensive study by Dodson and co-workers who assembled
and evaluated all (252 out of 254) possible RW peptides up to
seven amino acids in length (56). As visually presented in Figure 3,
weak activity against Gram-positive bacteria is seen for some
tetrapeptides while almost all hexa- and heptapeptides display a
high activity, seemingly independent of sequence, provided
sufficient charge and hydrophobicity is provided (Figure 3).
THE 2 + 2 PHARMACOPHORE

To further try to identify the minimal antimicrobial motif of
these short AMPs, C-terminal modifications were performed
which allowed an additional hydrophobic element to be
incorporated (32). This was highly successful and by using C-
terminal benzyl esters, peptides such as WRW-OBzl and RW-
OBzl (Minimal inhibitory concentrations (MIC) against S.
aureus 5 and 25 mg/mL, respectively) were generated with the
C-terminal group acting as a second hydrophobic residue (32).
Through these studies it became clear that the minimum
antibacterial motif was at least two positive charges balanced
by two units of hydrophobicity (32). Subsequently incorporated
bulky unnatural amino acids could be used to increase the
bioactivity further towards low micromolar bioactivity against
a range of pathogenic bacteria and fungi (57). Despite the
tripeptidic nature of these compounds, they strongly associate
with plasma proteins (58–60) and ex-vivo metabolism studies
Frontiers in Immunology | www.frontiersin.org 4
using organ extracts highlighted significant enzymatic
susceptibility (47). This rapid degradation was ascribed high
affinity interactions with the fringing S1 and S1’ binding pockets
due to the combination of cationic and hydrophobic residues and
illustrated how the natural functionalities needed for bioactivity
also generated good substrates for serine proteases and pepsin
(35, 61). Reducing the snug fit to enzymatic binding pockets by
incorporating “superbulky” hydrophobic residues or cationic
analogs that are either longer or shorter than arginine
effectively evades enzymatic degradation (36). Following this
development, several highly active and stable tripeptides have
been generated with LTX-109 (now AMC-109) being the most
advanced in clinical development (Figure 4) (6, 63, 64). AMC-
109 represent a fast-acting, broad-spectrum, antimicrobial AMP
drug candidate and is currently undergoing development by
Amicoat (62).

Attempts to further refine the 2 + 2 pharmacophore have
shown that it is more complex than initially thought and both the
basicity of the cationic residues (34) as well as the shape and
volume of the hydrophobic moieties are critical for the
bioactivity of the final peptides (65). Several studies illustrated
that guanidine groups can promote increased hydrogen bonding
interactions with the phospholipids of the target microbial
membrane, in comparison with amines and quaternary
ammonium groups (6, 66). Dissection of the hydrophobic
contribution into a minimal hydrophobic volume (65) and its
placement (39) instead of a number of hydrophobic residues also
generates a more accurate understanding of the essential
structural requirements for high antimicrobial activity (65).
While the initial “2+2” pharmacophore remains quite accurate
for linear peptides, parallel and independent developments have
FIGURE 3 | Concentric ring chart representation (Harris-Clark diagram) of the antimicrobial activity of all possible peptides comprised of W and R up to 7 residues
long recently developed by Dobson and co-workers (56). The diagram highlights how the antimicrobial activity of the peptides increases with peptide length and that
how most peptides are active as heptapeptides if sufficient R and W residues are combined in a non-sequence dependent manner. The data also shows how the
compounds display a higher activity (shorter peptides required) against Gram-positive bacteria compared to Gram-negative ones and fungi due to differences in cell
wall and membrane composition. Figure reproduced from Clark et al. (56) Commun. Biol. 2021 Vol. 4 Issue 1 Pages 1-14 with permission.
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made it apparent that other potent small AMPs and mimics
thereof can be prepared using alternative scaffolds to generate
potent leads (40). These tailormade synthetic mimics may offer
advantages over natural sequences and they have been praised
as important classes of compounds for eliminating both
multidrug-resistant and pandrug-resistant bacterial isolates
(18). The following section will summarize the development
of the classes of small (<1000 Da) amphiphilic AMP mimics
(Table 1) inspired by the natural cationic AMP pharmacophore
which has yielded several leads in late stage clinical development
(40). The focus lies on small antimicrobial mimics and our
review will not cover immunomodulation (40), larger
oligomeric assemblies or polymers which have been reviewed
elegantly elsewhere (28, 30, 80–82).
b-PEPTIDOMIMETICS AND b2,2-AMINO
ACID DERIVATIVES

Recent developmental work by the Strøm lab, initially involved
in the key fundamental 2 + 2 pharmacophore discovery, focussed
on generating simpler AMPs mimics. By transferring the crucial
substituents onto an achiral lipophilic 3-amino-2,2-disubstituted
propionic acid scaffold they produced a library of b-
peptidomimetics (67). Two identical hydrophobic residues
were introduced and a substantial antibacterial effect was
Frontiers in Immunology | www.frontiersin.org 5
observed for the bulkier residues, in particular for substituents
incorporating one or two t-butyl substituents in analogy to the
AMC-109 drug lead (63). A strong link between overall
hydrophobicity and antibacterial effect was observed and the
compounds were shown to display both low haemolytic activity
and resilience towards chymotryptic degradation over 48 h (67).
The cationic requirement was initially provided by an arginine
residue at the N-terminus but studies on only the b2,2-amino acid
scaffold established that two essential cationic group could be
included as N and C-terminal substituents, generating smaller
compounds (68). These b2,2-amino acid derivatives could be
made with significant design freedom with active compounds
fulfilling both the 2 + 2 pharmacophore and the Lipinski rules for
orally bioavailable drugs (68, 83). The theoretical oral uptake was
calculated and also studied experimentally for selected
compounds using a phospholipid vesicle-based barrier
designed to mimic the intestinal epithelia (68, 84). The
permeability studies suggest a moderate oral absorption in
humans, which is in alignment with similar experimental
studies on modified tripeptides and also highlights how the
theoretical uptake models are not necessarily the optimal
method for assessing permeation for this class of compounds
(37). The effect of a range of both hydrophobic and cationic
elements and halogenation have been evaluated in this scaffold
and the reported structural observations are similar to those
observed for the linear tripeptides (6) with guanidine groups
A

B C

FIGURE 4 | (A) Metabolic susceptibility of a short, modified, and highly active antimicrobial tripeptide in selected key metabolic compartments despite incorporation
of bulky unnatural amino acids (47). (B) Incorporation of optimized unnatural cationic and hydrophobic amino acids can be used to steer the metabolic stability
together with different C-capping strategies. (C) Optimized lead AMC-109 (previously LTX-109) currently developed by Amicoat AS (Norway) for the eradication of
microbial biofilms (62).
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performing better as cationic groups and an overall pattern of
dependency on “sufficient hydrophobic bulk” for optimal activity
(Figure 5) (86). The compounds have been extensively evaluated
as antimicrobials and demonstrated to be highly active against
many multi-resistant clinical isolates and also intracellular
pathogens such as Chlamydia pneumoniae (86, 87).

The natural marine antimicrobial eusynstyelamides have
been isolated from both the marine Arctic bryozoan Tegella cf.
spitzbergensis (88) and the Australian ascidian Eusynstyela
latericius (89). The eusynstyelamides are composed of a central
five-membered dihydroxybutyrolactam ring naturally
substituted with two 6-bromo-indoles and two cationic
sidechains, containing both guanidine and amine groups (88).
As such they are naturally adhering to the AMP pharmacophore
and a recent study by Strøm and co-workers describes how the
dihydroxybutyrolactam core can be replaced with a simpler
achiral barbiturate ring which allows for rapid generation of
synthetic analogs (Figure 5) (85). These tetrasubstituted
barbiturates were shown to be highly antimicrobial with good
cellular selectivity over human erythrocytes and active towards
resistant clinical isolates. Introduction of “superbulky”
hydrophobic sidechains generated more active analogs
Frontiers in Immunology | www.frontiersin.org 6
compared to the natural compounds. A lead compound was
evaluated in vivo in a murine peritonitis model and a single
intraperitoneal injection (1.4 mg/kg) resulted in a 98% reduction
of the bacterial load of Klebsiella pneumoniae (85).
2,5-DIKETOPIPERAZINES

2,5 diketopiperazines (DKPs) are cyclic dipeptides and are
regarded as privileged structures with the ability to bind to a
range of natural receptors (90). 2,5-DKPs present a near ideal
scaffold for the development of novel antimicrobial compounds,
as they are chemically accessible, highly stable, and amenable to
extensive synthetic derivatisation at up to six positions to develop
versatile bioactive compounds (69, 91, 92). In addition to freedom
in terms of amino acid stereochemistry and choice of sidechains,
up to four additional substituents can be further incorporated via
different alkylation strategies (90, 91). Taking advantage of the
readily available scaffold Labrière et al. recently reported the
preparation of a series of 2,5-DKPs adhering to the design
principles of the aforementioned linear tripeptides developed by
Strøm and co-workers (65). Focussing mainly on diastereomeric
TABLE 1 | Major scaffold types used to generate small bioactive AMP mimics adhering to the 2 + 2 pharmacophore.

Scaffold General structure1 Key references

a-peptides (6, 32, 56, 57)

b-Peptidomimetics (67, 68)

2,5-diketopiperazines
(65, 69)

Lipopeptides (70–72)

Peptoids (73)

Bile acid
(74–76)

SMAMPs (39, 40, 77–79)
May 2022 | Volume 13
1Blue denotes cationic group (R) or residues (X) and red denotes bulky hydrophobic residue. The SMAMP structure is an example rather than a general scaffold as numerous different
hydrophobic cores have been used for these compounds.
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mixtures, contribution from both charge and bulk were probed
and the results showed that the evaluated DKPs exhibited similar
or superior antimicrobial activity in comparison to structurally
related linear peptides incorporating unnatural amino acids (65).
An enantiopure analog was prepared and shown to display
improved activity against all tested bacteria compared to the
diastereomeric mixture. Additional work and improvement of the
synthetic methodology (69) allowed Grant et al. to generate an
enantiopure library of 2,5- DKPs to further investigate the role of
stereochemistry on the effect of these compounds (93). The
stereoisomers of cyclo(N-Bip-Arg-N-Bip-Arg) were prepared
and a clear dependence on the ability to form stable
amphiphilic structure for a high activity was verified through
spectroscopic and modelling experiments (Figure 6) (93).
ULTRASHORT LIPOPEPTIDES

Incorporation of larger hydrophobic residues and unnatural
sidechains has been shown to be highly beneficial for
antimicrobial activity (6, 57). An alternative way to incorporate
this hydrophobic element is though N-terminal modification
with fatty acids to generate so called lipopeptides (LiPs) (70).
Natural antimicrobial LiPs exist and are nonribosomally
produced by some bacteria and fungi (70, 94). This class of
antibiotics has demonstrated high activity against multidrug-
resistant microorganisms with daptomycin and caspofungin
serving as examples of approved antimicrobial LiPs in clinical
use (95–97). Natural LiPs are generally smaller than AMPs with
short peptide chains composed of either six or seven amino acids
coupled to an N-terminal C8-C18 fatty acid chain (70). As such
they do not adhere to the antimicrobial pharmacophore but
Frontiers in Immunology | www.frontiersin.org 7
simplified de novo designed ultrashort lipopeptides (USLiPs)
have been prepared (71, 98, 99). Shai and co-workers
pioneered this area (72) by developing a series of highly potent
USLiPs composed of four L and D amino acids with the general
KXXK motif (71). The potency and cellular selectivity could be
controlled via the alkyl chain length and peptide sequence (71,
100). Since their initial development shorter sequences and both
di- and trimeric versions have been prepared (101–103) and they
performed successfully in vivo in a mouse model of Candida
albicans infection (102) (Figure 7). Effective USLiPs can be
prepared with two cationic residues and they act synergistically
together with beta-lactams and vancomycin in vitro (104).
Beneficial potentiation effects have also been reported for
dilipidic tetrabasic lipopeptides in a series of recent report by
the Schweizer group (105, 106). These compounds can effectively
potentiate the effect of Novobiocin and Rifampicin against
Gram-negative bacteria and the effect can be modified by N-
methylation of the cationic residues (107). Employing alternative
scaffold backbones such as a-AApeptides and a/g-AA hybrid
peptides have also been shown to yield efficient lipidated analogs
(108, 109). The history and development of natural and synthetic
lipopetides have been reviewed (70, 110) and their industrial
potential and application has been recently described (111, 112).
PEPTOIDS

The natural a-peptides can be efficiently mimicked by using
oligo-N-substituted glycines with the sidechains attached to the
backbone nitrogens instead of to the a-carbon (73). These
peptoids are relatively easy to prepare synthetically and they
offer an achiral backbone that is stable to proteolytic degradation.
FIGURE 5 | Examples of highly active antimicrobial b-peptidomimetics, b2,2-amino acid derivatives and amphiphilic tetrasubstituted barbiturates develop by Strøm
and co-workers (67, 68, 85). The peptidomimetics illustrate how the AMP pharmacophore effectively can be transferred to smaller scaffolds.
May 2022 | Volume 13 | Article 915368
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FIGURE 7 | General structure of a USLiP and bioactive examples with a cationic di- to tripeptide providing the cationic charge to sufficiently balance the N-terminal
fatty acid tail to generate potent antimicrobial amphiphiles (100, 102).
FIGURE 6 | Design of the antimicrobial 2,5-DKP scaffold where the functionalities required for potent bioactivity can readily incorporated. Recent studies report a
similar pharmacophore as that described for linear peptides for the shorter cyclic dipeptides (65). Bottom row illustrate stereoisomers of cyclo(N-Bip-Arg-N-Bip-Arg)
which display difference in bioactivity due to their ranging ability to form stable amphiphilic solution structures (93).
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 9153688
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Despite a lack of amide hydrogens for internal hydrogen bonding
formation, peptoids can be designed in an amphiphilic manner
to adhere to the structural requirements reported for short linear
antimicrobial peptides with the same chemical toolbox available
to optimize their properties (113–115). Short peptoids have been
shown to adopt various self-assembled structures (116, 117) and
several potent larger antimicrobial helical peptoids and peptide/
peptoid hybrids have been reported with efficacy towards drug-
resistant bacteria (73, 114, 118, 119). In analogy to the a-
peptides, peptoids can also be used as analogues to linear
peptides to generate potent lipopeptoids by attachment of
linear alkyl chains (116, 120–122) as shown in Figure 8.
Furthermore, the incorporation of halogen atoms into peptoid
structures have yielded active leads (115) against a range of
ESKAPE pathogens (116). The development of anti-infective
peptoids was recently reviewed in detail by Bicker and Cobb (73).

Longer a-AApeptides (123) and g-AApeptides (124) have
been used to prepare mimics of AMPs and it is expected that
these scaffold can be used also for generating these shorter
mimics in analogy to the peptoids (73).
BILE ACID DERIVATIVES (CERAGENINS)

The naturally amphiphilic cholic acid is produced endogenously
to solubilize lipids as part of the digestion process and several
studies have described ways to utilize the scaffold to generate
compounds designed for membrane interactions (74, 75). By
Frontiers in Immunology | www.frontiersin.org 9
further fine-tuning the amphiphilic nature of the cholic acid
scaffold, Savage and co-workers developed potent nonpeptidic
mimics of cationic AMPs, initially known as cationic steroid
antibiotics (76), but later renamed “ceragenins” (74). The
ceragenins are designed to mimic the facial cationic
morphology of natural AMPs and the three free hydroxyls and
the carboxy group offer means to develop a range of different
ceragenins with optimal activity and cellular selectivity by
incorporation of both basic and bulky substituents (75)
(Figure 9). The ceragenins CSA-13 and CSA-131 were
equipped with an alkyl chain to increases their ability to
interact with lipid A and they were particularly active against
both bacteria and fungi (74, 125, 126). The CSA-13 ceragenin
was initially developed towards clinical use by Ceragenix
Pharmaceuticals and there is currently a significant focus on
developing surface coatings and nanoparticles incorporating
leaching and immobilized ceragenins (127) for prevention of
biofilm formation using the second generation CSA-131 lead
(128). The Cerashield™ Endotracheal Tube (the CeraShield
ETT) is currently being developed by N8 Medical for
complications experienced by mechanically-ventilated patients
and it has been evaluated in human clinical trials
(NCT03716713). This development is parallel with the
development of AMC-109 for surface protection by Amicoat
AS (62). A plethora of different substituents has been
investigated on the bile acid scaffold, such as amino acids
(129) and bile-based antimicrobials were recently reviewed by
Lin et al. (75).
FIGURE 8 | Structure and examples of antimicrobial peptoids. The difference between the backbone of a-peptides and a-peptoids allows for differences in
structure and stability of the final compounds. The peptoid scaffold can be used to generate highly active antimicrobial compounds with the linear H-(Nhe-Nspe-
NLys)2-NH2 and the lipopeptoid C134mer being active against Mycobacterium tuberculosis and ESKAPE pathogens (73, 116, 120).
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SYNTHETIC MIMICS OF ANTIMICROBIAL
PEPTIDES (SMAMPS/SMHDPS)

The realisation that it is possible to move away from the
oligomeric “amino acid scaffold” of a, b-peptides and peptoids
for the generation of potent antimicrobial compounds has spurred
considerable research into abiotic scaffolds fulfilling the same
structural requirements. The development of these diverse
compounds was initially led by Tew and Scott and their work
has yielded several different effective synthetic mimics of
antimicrobial peptides (SMAMPs) and larger polymeric
assemblies (40, 130). The diverse SMAMP scaffolds have been
designed not to duplicate the natural peptide structures but in an
attempt to generate smaller compounds with better
pharmacokinetic and tissue distribution properties that can be
prepared more cheaply on large scale (40). Whilst producing small
compounds displaying both cationic and hydrophobic
functionalities can be seen as chemically straightforward, the
challenge lies in maintaining both cellular selectivity and
therapeutic index. The tools at hand are often a choice between
amines, guanidine groups and quaternary ammonium groups
balanced with appropriate hydrophobic elements. Much of the
research has been focussed on antibiotic-like substances but efforts
to include them into different functional polymers have also been
made by Lienkamp and co-workers (131, 132). Selected successful
SMAMP scaffolds include aryl SMAMPs (133) meta-phenylene
ethynylene (77), arylamides (134, 135), diphenyl dibenzopyrole
(136), biguanidyl biarylurea (137), and porphyrin (138)
(Figure 10). A particular promising arylamide SMAMP based
on a central pyrimidine (PMX207) was shown to be promising
leads against chloroquine resistant Plasmodium falciparum (137)
and further work on the same scaffold (139) produced PMX30063
Frontiers in Immunology | www.frontiersin.org 10
which is now under clinical development as Brilacidin by
Innovation Pharmaceuticals Inc. (formerly Cellceutix) (40).
Brilacidin has demonstrated potent bactericidal activity against
drug-resistant and drug-susceptible strains of multiple Gram-
negative and Gram-positive pathogens with a membrane
depolarization mode of action similar to daptomycin (140) and
via immunomodulation (140, 141). Several initial clinical trials on
brilacidin for the treatment of acute bacterial skin and skin
structure infections (ABSSSI) have been conducted and the lead
displayed low toxicity and was well tolerated (40). Briliacidin has
also been recently reported to be highly active against SARS-CoV-
2 in cell culture (141, 142) which illustrates the potential for
expanded work on this class of AMP mimics, which has been
reviewed by Scott & Tew in 2017 (40).

The group of Cai has also recently prepared an extensive
series of different SMAMPs (or mimics of host-defence peptides,
HDPs) with a focus on synthetic simplicity (78). A series of
disubstituted hydantoins were prepared by combining the
structure of the hydantoin based antibiotic nitrofurantoin with
the structural element needed for bacterial membrane activity
(143). The lead compound of the series displayed low
micromolar MIC-values against resistant bacteria and exhibited
potent in vivo efficacy for the treatment of lungs infected with
MRSA in a rat model (143). Further work included small dimeric
cyclic guanidine derivatives active against both multidrug-
resistant Gram-negative and Gram-positive bacteria. The
activity in vitro was subsequently verified in vivo using a
MRSA-infected thigh burden mouse model (144). Additional
rationally designed SAMP scaffolds evaluated include lysine
N-alkylamides (145) reduced amide-based compounds (146) and
a range of others based on aromatic linkers (147–149) which have
produced effective antimicrobial compounds (Figure 11).
FIGURE 9 | Structures of natural cholic acid and examples of the ceragenins CSA-13, and CSA-131 incorporating amine and alkyl modification. The perspective
drawing of CSA-8 illustrates the facial amphiphilicity of the final compounds which is key for bioactivity (74).
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Additional SMAMP-type compounds include the recently
reported substituted a-hydrazido amino acids developed by
Amabili and co-workers (150). The mono-charged a-
hydrazido amino acids can be regarded as mimics of b-amino
Frontiers in Immunology | www.frontiersin.org 11
acids and they were designed with a range of both N- and C-
terminal lipophilic groups to yield potent amphiphilic
compounds (150). The versatile bicyclic norbornane scaffold
has also been used for the generation of SMAMPs (151).
FIGURE 11 | Examples of potent SAMP scaffolds and lead compounds developed by Cai and co-workers (78). Several of these compounds, such as the hydatoin
and the cyclic guanidine derivative, display good antimicrobial activity both in vitro and in vivo (143, 144).
FIGURE 10 | Representative early SMAMPs illustrating the chemical diversity available to generate cationic synthetic amphiphilic compounds adhering to the AMP
pharmacophore (40, 133). Briliacidin is currently being developed by Innovation Pharmaceuticals for a range of conditions such as ulcerative proctitis, oral mucositis,
ABSSSI and as inhibitors for SARS-CoV-2.
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Pfeffer and co-workers developed norbornane bisether
diguanidines that were shown to display submicromolar
inhibitory activity against both MRSA and vancomycin-
intermediate S. aureus strains (152, 153). The cellular
selectivity of the norbornane compounds could be controlled
by choice of hydrophobic substituent (153). Building on their
work on antibacterial biphenyl compounds (154), Kumar and
co-workers also reported biofilm disrupting guanidine
functionalized anthranilamides (155) with good selectivity for
bacterial cells over mammalian MRC-5 cells in vitro (155). Both
Yang et al. (156) and Chen et al. (157) have developed
synthetically simple indole based antimicrobials. By using
different lipophilic n-acyl side chains at position 1 and a
positively charged unusual azepanyl moiety at position 3 a
large number of analogs were prepared and shown to display
activity against Mycobacterium bovis and M. tuberculosis with
both metabolic stability and cellular selectivity (156). Taking a
similar approach and starting with ethyl 3-indoleacetate as a
cheap starting material, Chen and co-workers recently designed
and synthesized membrane-targeting indole-based antimicrobial
peptidomimetics. The hydrophobic groups included isoprenyl,
geranyl, heptenyl groups and the indole scaffold, while the
cationic groups were composed of a range of amino acids or
aliphatic amines and guanidines (157). Several active compounds
were prepared, and a lead compound displayed high potency
against Gram-positive bacteria in a murine model of bacterial
keratitis. It was also shown to be more efficient than vancomycin.
In addition, the lead compound was shown to not be affected by
physiological concentrations of monovalent, divalent, or
trivalent cations (Figure 12) (157).

The phenolic chalcones is a diverse family of bioactive natural
products with ranging bioactivities that has been used as
scaffolds to yield improved synthetic analogs (158, 159). The
scaffolds are readily available for semisynthetic modifications
and Lin et al. recently used the isoprenyl chalcone derivative
sofalcone as a scaffold to generate potent SMAMPs (160).
Sofalcone, prepared from soforadine isolated from the root of
the plant Sophora subprostrata, was functionalized with a range
of cationic residues and the strongest activity was observed for
Frontiers in Immunology | www.frontiersin.org 12
sofalcone coupled to an RR-dipeptide (160). Previous related
work on natural polyphenolic compounds from the group also
include the generation of symmetrically substituted xanthone-
based amphiphiles (79, 161). The substituted a-mangostin
xanthone was used as a hydrophobic core to yield several
potent symmetrical SMAMPs which were also effective in vivo
in a mouse model of corneal infection by either Staphylococcus
aureus or MRSA (79). Additional work by Lin et al. also include
the design and semisynthesis of antimicrobial amphiphilic
flavones (162) and coumarin derivatives (163). These examples
illustrate how natural product scaffolds represent versatile cores
for the design of efficient SMAMPs (Figure 13). De novo design
of flavonoid-based AMP mimics was recently reviewed (164).
STRUCTURE-ACTIVITY RELATIONSHIP

The mimics included in this review were selected based on their
adherence to the 2 + 2 pharmacophore and an optimized balance
between the number of cationic charges and the hydrophobic
elements. With careful design, the compounds can be tuned to
display similar activity against both Gram-positive and Gram-
negative bacteria (6, 85). Several compounds have likely been
designed without specifically taking this pharmacophore into
account but have nevertheless provided compounds adhering to
the proposed design principle of Strøm and co-workers (6, 32).

The design of these mimics generally falls into one of three
different approaches: 1. the oligomeric approach using amino
acids or analogous monomers to assemble a small chain, 2. the
scaffold approach in which a natural scaffold is substituted to
yield highly active compounds (e.g. ceragenins) or 3. de novo
design of purely synthetic compounds (SMAMPs). Our current
report illustrates that each approach can be successfully
employed to yield very effective antimicrobial compounds
suited for clinical development and it is clear that the
researcher is not limited to the native AMPs to generate new
promising antibiotic leads.

The bioactivity of the majority of native AMPs hinges on a
stable amphiphilic structure to allow for optimized membrane
FIGURE 12 | Examples of small and synthetically simple SAMPs illustrating that it is possible to also achieve good antibacterial activity with as single positive charge
in some scaffolds.
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interaction (31, 82, 165). AMPs in general comprise up to 50
amino acids and these polypeptides are thus of sufficient size to
allow folding into different bioactive motifs (19, 24, 31). The
amphiphilicity of an AMP is a reflection of the relative
abundance of hydrophilic and hydrophobic residues or
domains within the AMP. It is therefore a good descriptor of
the balance between the cationic and hydrophobic residues, not
just within primary sequence level, but also in terms of the 3-
dimensional structure of the AMPs (165). The exact mode of
action is expected to depend on the sequence/structure and
target species and are often not reported in detail beyond
illustrating membrane insertion or disruption (93, 166).
Selected mimics have been shown to be active also against
marine microorganisms which further suggest multiple modes
of action given the spread in cell surface and membrane
composition (6, 69, 167).

While our review has illustrated that several synthetic and
natural scaffold can be employed to generate improved
minimized mimics of AMPs, the majority of the scaffolds are
too small to adopt the secondary structures of the native
counterparts. Despite the limitations in the ability to form
intramolecular bonds and structures stable in solution,
increasing evidence suggest that significant gains in activity can
be obtained by careful molecular design permitting, or locking,
the compounds in facial amphiphilic structures also on this scale
(39). Such structures can be obtained by careful sequence
optimization or by tuning the stereochemistry. This has been
exemplified for numerous of the scaffolds previously described
including the tripeptides (166), SMAMPs (133), DKPs and a-
hydrazido acids (150). Most studies on these types of small AMP
Frontiers in Immunology | www.frontiersin.org 13
mimics claim that the lead compounds are “amphiphilic” but only
a few provide any structural or quantifiable physicochemical data
in support, which is also likely dependent, to some extent, on the
challenges associated with obtaining crystals.

Tew and co-workers studied the role of amphiphilicity for a
series of SMAMPs by incorporating a polar amide bond between
the hydrophobic residues. The integy moment (IW) was used to
quantify the amphiphilicity of the SMAMPs and confirmed its
necessity for the design of optimal SMAMPs (133). This
disruption of the amphiphilicity was also reflected in the
hydrophobicity of the SMAMPs (133). Only a few other
selected published studies have probed the amphiphilicity
experimentally. For oligomeric compounds, stereochemistry is
a property that is readily tuneable to observe differences in 3D-
structures. For this purpose, Isaksson and co-workers prepared
all the stereoisomers of LTX-109 and studied the effect on
antimicrobial effect (166). It was shown that all L- and all D-
isomers retained a high antimicrobial activity while mixed
isomers performed poorer in the microbial assays. To develop
an understanding of the underlying mechanism the isomers were
assessed using nuclear magnetic resonance (NMR) spectroscopy
and molecular dynamics (MD) simulations in aqueous solution
and in phospholipid bilayers. It was shown that the bioactive
compounds were able to adopt a stable amphiphilic structure
which was disrupted upon changes in the stereochemistry. This
was not only apparent from the differences in antimicrobial
activity but also in the solubility and retention time of the
compounds. The bioactive amphiphilic compounds were
significantly more hydrophobic, and this provided additional
support for stable bioactive solution conformations (166).
FIGURE 13 | Examples of ways to functionalize natural scaffolds from plants into potent SMAPs. Both chalcones and xanthones offer ample opportunity for
synthetic modification to introduce both cationic and hydrophobic residues to achieve the essential balance for high antimicrobial activity and low mammalian
cytotoxicity (160, 161).
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A similar study was recently reported by Grant and co-workers,
and they observed similar phenomena for the tetrasubstituted
2,5-DKP scaffold (93). In their study the difference in elution
time for the mixed isomers was also strongly reflected in the
antimicrobial activity and NMR and MD experiments supported
the formation of an optimized amphiphilic bioactive structure
(Figure 14) (93).

A plethora of natural and unnatural cationic and
hydrophobic building blocks have been employed to generate
bioactive compounds and a move from the traditional amino
acid-like scaffold provides the chemist with additional freedom
to toggle these substituents further. It is clear that several
compounds with good efficiency can be obtained slightly
outside the 2 + 2 pharmacophore with examples such as the
hydantoins and a-hydrazido amino acids that are active despite
only displaying a single cationic residue (143, 150). In general, a
higher number of charges appear to be needed e.g. a single lysine
attached to palmitic acid (16 carbon atoms) does not show any
activity (70). The nature of the cationic group is important (168),
and many studies generally report increased activity for AMPs
displaying guanidine groups over primary amine, histidine and
ammonium groups (6, 34, 169, 170). The choice of cationic
groups can also have effects of the toxicity of the compounds
with several short compounds reporting higher toxicity for
compounds incorporating amine substituents (79, 155, 171). It
has been established that the exact number of hydrophobic
residues is not as crucial and it is rather dependent on the total
Frontiers in Immunology | www.frontiersin.org 14
hydrophobic volume and its optimized molecular distribution (6,
65). Adding more hydrophobic residues usually increases the
antimicrobial activity but also at a cost of lowered cellular
selectivity (63, 64, 82). Adding too much hydrophobicity
renders the compounds inactive, either due to aggregation or
poor solubility and has been seen in several studies (69, 149, 172).
The optimal balance between charge and hydrophobicity differs
depending on scaffold studied and it has not been quantified
much further than the 2 + 2 pharmacophore for the compounds
covered in this review.
TOXICITY AND CHALLENGES

From a design perspective, an optimized combination between
charge and hydrophobicity is needed. This allows the
compounds to obtain the desired amphiphilicity in order to be
antimicrobial and membrane active but also display sufficient
selectivity and membrane distinction as several AMPs and their
shorter mimics are toxic (82). Many of these described
compounds have been designed to offer cheap and simple
alternatives to AMPs to circumvent some of the limitations
faced by natural peptide sequences for combating multidrug-
resistant and pandrug-resistant bacterial isolates. Being mimics
of cationic AMPs also potentially mean challenges associated
with inactivation by high salt concentrations and divalent cations
(173), even though studies describing a high salt tolerance and
FIGURE 14 | Graphical illustration of the role of stereochemistry on structure and antimicrobial activity of short, modified tripeptidic AMPs and tetrasubstituted 2,5-
DKP. Making mixed analogs disrupted the amphiphilicity and creates more hydrophilic and less activity compounds (93, 166). Bottom left structures of LTX-109 are
reprinted with permission from Isaksson et al (166). J Med Chem 2011 Vol. 54 Issue 16 Pages 5786-95. Copyright 2011 American Chemical Society.
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maintained function exist (157, 174). While impressive in vitro
and in vivo activity profiles have been reported over the recent
years, and several AMP mimics being in clinical development,
their clinical safety is less understood. Numerous peptides are
approved as drugs (1) and the peptide drug pipeline has been
established for many areas. For AMPs, and these synthetic
analogs in particular, there are several gaps in the clinical
understanding particularly in the area of systemic toxicity (18).
CONCLUSION

AMPs represent a broad class of diverse natural compounds with
great promise for development of novel antibiotics with a lower
likelihood of inducing microbial resistance. The clinical
progression of AMP leads towards actual real-life use is
nevertheless currently hampered (17) with only a small
number of compounds on the market targeting a limited
number of conditions, due to poor uptake and toxicity (17,
175). The AMPs in use are often small, constrained and contain
modifications and noncanonical residues providing them with
improved pharmacokinetics properties (30). This observation
illustrates key natural methods to produce leads with a higher
likelihood of clinical success by synthetic modifications,
cyclisation and truncation (176, 177). In the current review we
highlight how several of these means have been employed to
address the challenges associated with clinical use of native
AMPs by developing simplified synthetic mimics of AMPs. It
becomes clear, when going through the literature, that ample
room for making active and selective low molecular weight AMP
mimics room exists, as illustrated by the many highly active
mimics reported here. A careful design is nevertheless needed to
generate compounds with a sufficient safety profile. These
compounds can be cheaply produced in large amounts and
Frontiers in Immunology | www.frontiersin.org 15
with three diverse leads in clinical trials it is expected that
these types of small synthetic mimics will play an important
role in the future management of microbial infections. Recent
studies on synergistic effects in combination with traditional
antibiotics, further highlight the imminent role these compounds
may have (103, 106, 178, 179). Collectively, it is shown that a
high antimicrobial activity can be obtained using diverse low
molecular weight compounds and it is clear that shape matters
more than size for optimal activity.
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