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Noncoding RNAs are emerging as potent and multifunctional regulators in

all biological processes. In parallel, a rapidly growing number of studies has

unravelled associations between aberrant noncoding RNA expression and

human diseases. These associations have been extensively reviewed, often with

the focus on a particular microRNA (miRNA) (family) or a selected disease/

pathology. In this Mini-Review, we highlight a selection of studies in order to

demonstrate the wide-scale involvement of miRNAs and long noncoding

RNAs in the pathophysiology of three types of diseases: cancer, cardiovascu-

lar and neurological disorders. This research is opening new avenues to novel

therapeutic approaches.
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Completion of the Human Genome Project has

revealed that protein-coding genes comprise only

about 1.5% of the human genome. In fact, two large-

scale consortia, the Encyclopedia of DNA elements

(ENCODE) and the Functional Annotation of the

Mammalian Genome (FANTOM) have shown that

the majority of genome is transcribed and produces a

wide spectrum of noncoding RNA species (ncRNAs)

[1–4]. Consequently, it is now believed that the degree

of complexity of a species correlates better with the

number of ncRNAs than with the number of protein-

coding genes [5]. Furthermore, the availability of this

data has shown that mutations within the noncoding

genome are major determinants of human diseases, for

example cancer [6].

Noncoding RNAs can be classified, according to

their size: short RNAs are < 200 nucleotides (nts) in

length and include small interfering RNAs (siRNAs),

piwi-interacting RNAs (piRNAs) and microRNAs

(miRNAs) [7,8]; Long noncoding RNAs (lncRNAs)

are longer than 200 nts and may comprise thousands

of nucleotides [9]. Thanks to their major contributions

in so many cellular processes, the study of ncRNAs

has evolved into a rather inspiring scientific field.

The discovery of miRNAs dates back to 1993, when

two laboratories independently reported that a small

noncoding RNA transcript lin-4 from Caenorhabditis

elegans regulates lin-14 through its 30 untranslated

region (30UTR) [10,11]. At the time of their discovery,

it was unclear whether miRNAs were an odd RNA

species or ‘emissaries from an unexplored RNA world’

[12]. The intense research which followed showed that

miRNAs are key regulatory elements of gene expres-

sion and essential mediators in a wide range of cellular

processes in both health and disease.

The biogenesis of miRNAs (Fig. 1) has been

reviewed in detail elsewhere [7]. Briefly, miRNAs are

expressed as mono-cistronic primary transcripts or as

clusters from polycistronic primary transcripts.

MiRNA genes are located in defined transcriptional
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units or in intergenic regions. Intragenic miRNAs can

be found in introns or exons of coding genes (host

genes) in the sense orientation. Intragenic miRNAs

and their host genes are frequently co-ordinately

expressed, since they share the same promoter [13].

Their transcription is driven by RNA Polymerase II

(Pol II) producing primary transcripts – called pri-

miRNAs – which are 50-capped, spliced and

polyadenylated [14]. The pri-miRNA is cleaved at the

stem of the hairpin structure by the RNaseII endonu-

clease III Drosha, together with DGCR8/Pasha pro-

teins resulting in the release of a 60–70 nt hairpin

structure, known as the precursor-miRNA (pre-

miRNA). Pre-miRNAs are then transported to the

cytoplasm by the RanGTP-dependent nuclear trans-

porter exportin-5 (XPO5), where they are subsequently

processed by an endonuclease cytoplasmic RNase III

enzyme Dicer to yield the mature miRNA of 18–25 nt

length embedded in an imperfect duplex which is

incorporated into the RNA-Induced Silencing Com-

plex (RISC), together with an Argonaute (Ago) core

protein component. One strand of the miRNA duplex

(the ‘passenger’ strand) is removed, whereas the other

remains bound to Ago as the mature miRNA ‘guide’

strand responsible for guiding RISC to the target

mRNAs [8].

MiRNAs attenuate the expression of their target

genes by hybridizing, either completely or partially, to

complementary binding sites located in the 3ʹUTR of

target mRNAs. This leads to mRNA degradation and/

or translational inhibition [15]. In mammals, miRNAs

promote mRNA destabilization, by recruiting the

CCR4-NOT deadenylase complex onto target mRNAs

leading to deadenylation. Additionally, miRNAs can

mediate translational repression, through various

mechanisms, including the recruitment of downstream

translational repressors [16].

Bioinformatic predictions suggest that human miR-

NAs regulate over 60% of transcripts. Given that a

single miRNA can regulate the expression of over one

hundred mRNAs [8], and each mRNA can be targeted

by several miRNAs, miRNAs are highly versatile play-

ers in regulatory networks. Furthermore, RNAs con-

taining binding sites for a certain miRNA can

attenuate their activity by acting as ‘decoys’ or

‘sponges’, thereby influencing the expression of its

other target RNAs [17]. The roles of miRNAs also

extend beyond suppression of gene expression, as they

have also been reported to induce translation of tar-

geted mRNAs [18].

Long noncoding RNAs are a large and diverse class

of transcribed RNAs that lack functional open reading

frames, though exceptions have been described [19].

They are transcribed by RNA Pol II, and are 50-
capped, spliced and polyadenylated [20]. LncRNAs

can fold into a variety of secondary structures which

facilitate their interactions with DNA, RNA and pro-

teins [21]. LncRNAs can be divided into different

classes based upon their genomic location: long inter-

genic noncoding RNAs (lincRNAs) genes are located

between coding or noncoding genes. Some lncRNAs

are located in the introns of protein-coding genes. Nat-

ural antisense transcripts (NATs) are transcribed from

the opposite strand of a coding gene but their tran-

scription start site resides downstream relative to that

of the host gene, and these transcripts often overlap

with the sequence of the corresponding mRNA.

Long noncoding RNAs function through heteroge-

neous mechanisms (Fig. 2), conferring additional layers

of regulation upon gene expression during for example

cell proliferation, cell cycle, metabolism, apoptosis, dif-

ferentiation and maintenance of pluripotency [22].

They also participate in chromatin modification and

structure by acting as molecular scaffolds, interacting

with components of the epigenetic machinery, such as

histone-modifying enzymes and DNA methyltrans-

ferases, and thus mediating their recruitment to DNA

loci [23]. Additionally, lncRNAs can impact the tran-

scription of other genes, by promoting or preventing

the binding of transcription factors and transcriptional

mediators to promoters [24,25]. LncRNAs are involved

in the regulation of RNA processing, such as RNA

splicing [26], or mRNA decay [27].

Certain lncRNAs have enhancer-like properties.

Orom et al. [28] demonstrated that depletion of a

lncRNA at multiple sites of the human genome leads

to a specific decrease in the expression of neighbouring

protein-coding genes. Enhancer-derived lncRNAs

(eRNAs) are described to control contacts between

enhancers and the cognate promoter through chromo-

some looping. Activating ncRNAs (ncRNA-a) mediate

DNA looping and chromatin remodelling via the

Mediator complex to establish a stable transcription

initiation process [29]. LncRNAs can additionally

function as decoy RNAs, by binding and titrating

away miRNAs [17]. These lncRNAs may harbour sites

complementary to miRNA sequences thereby seques-

tering them and preventing them from binding to their

targets.

A special class of lncRNAs are the antisense

lncRNAs (NATs) that are transcribed from the oppo-

site strand of a protein-coding gene locus [30]. NATs

have either positive [31] or negative effects on the

levels of its corresponding sense transcript [32]. For

example BACE1-AS is transcribed from the b-secre-
tase-1 (BACE1) gene in antisense direction: it binds to
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BACE1 mRNA and protects it from miRNA-mediated

degradation [31]. Brain-derived neurotrophic factor

(BDNF), on the other hand, is normally repressed by

a conserved noncoding antisense RNA transcript,

BDNF-AS, by recruiting the enhancer of zeste homo-

log 2 (EZH2) and polycomb repressive complex 2

(PRC2) to the BDNF promoter region [32]. Finally,

lncRNAs can interact with proteins to modulate pro-

tein function, regulate protein – protein/DNA/RNA

interactions, or direct their localization within cellular

compartments [33].

MiRNAs and long noncoding RNAs in
disease

In the sections below, we highlight a nonexhaustive

selection of examples that demonstrate the wide-scale

involvement of miRNAs and lncRNAs in the patho-

physiology of cancer, cardiovascular and neurological

disorders.

MiRNAs and long noncoding RNAs in cancer

MiRNAs play various roles in processes underlying

human malignancies, including sustaining prolifera-

tion, resistance to apoptosis, angiogenesis, invasion

and metastasis. Altered miRNA expression patterns

found in cancer have been attributed to genomic

abnormalities (deletions, amplifications or mutations)

[34], epigenetic modifications [35], dysregulated tran-

scription factors [36] and dysregulation of RNA-bind-

ing proteins (RBPs) which participate in miRNA

biogenesis [37]. However, categorizing miRNAs inhibi-

tors or drivers of tumorigenesis is sometimes not clear-

cut, since their activity depends upon the expression of

their targets in the tissue/cell type in which they are

expressed. The expression of certain miRNAs can be

of prognostic value in human cancers [38]. Further-

more, it was recently shown that miRNAs can be

released through exosomes from cancer cells into body

fluids including blood, urine, milk, sputum and saliva
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Fig. 1. The individual steps of miRNA

biogenesis.
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[39]. Pharmaceutical approaches to the modulation of

miRNA activities represent an exciting and promising

field in cancer therapeutics [40,41]. In the following

paragraphs we highlight some of the most prominent

examples of ncRNAs with important roles in cancer.

Calin and associates were the first to describe a role

of miRNAs in cancer, when they reported that miR-15

and miR-16 are dramatically downregulated in the

majority (68%) of patients with B-cell chronic lympho-

cytic leukaemia (CLL) due to deletions or mutations

on the 13q13.4 chromosome [42]. Both miR-15 and

miR-16 induce apoptosis by repressing Bcl-2, an anti-

apoptotic protein overexpressed in malignant nondi-

viding B cells and many solid tumours [43]. The New

Zealand Black (NZB) mouse model of CLL exhibits

genetic alterations in the mir-15a/16-1 locus, which

results in decreased levels of miR-15a and miR-16 in

lymphoid tissues [44], whereas the restoration of miR-

16 levels in a New Zealand Black–derived malignant

B-1 cell line mitigates the proliferation of malignant

B1 cells [45].

More than 50% of human tumours carry loss of

function mutations in the tumour suppressor protein

TP53 (p53) [46]. P53 drives transcription of the miR-

34 family, which activates apoptotic pathways [47]. At

the same time, miR-34a promotes p53 expression by

targeting the antiageing factor Sirtuin-1 (SIRT1), a

negative regulator of p53 [48]. Reduced expression of

miR-34 has been observed in many cancer types [49],

including human gliomas, with concomitant increased

expression of the target oncogenes c-Met, Notch-1/2

and cyclin-dependent kinase 6 (CDK6). MiR-34a was

used in a ‘miRNA replacement therapy’ approach,

where a chemically synthesized miRNA ‘mimic’ of

miR-34a and a lipid-based delivery vehicle were used

to block tumour growth in mouse models of nonsmall

cell lung cancer (NSCLC) [50]. Subsequently, a liposo-

mal formulation of a miR-34a mimic became the first

miRNA to enter a phase I clinical study (http://clinica

ltrials.gov/ct2/show/NCT01829971). It was given intra-

venously in patients with primary liver cancer or other

selected solid tumors or hematologic malignancies.

However, the trial was halted after immune-related

severe adverse events were reported in some of the

patients. MiR-26a is an example of a miRNA whose

expression is lost in hepatocellular carcinoma (HCC).

It regulates the cyclins D1 and D2, which control cell

cycle arrest, as well as ULK1, a critical initiator of

autophagy that promotes apoptosis [51]. The adminis-

tration of chemically synthesized miR-26a in a mouse

model of HCC results in inhibition of cancer cell pro-

liferation, induction of tumour-specific apoptosis, and

a dramatic slow-down in disease progression [52].

The let-7 miRNAs represent a large family of miR-

NAs that plays an important role in stem cell division

and cell differentiation [53]. Let-7 family members are

downregulated in many types of cancer, including lung

cancer, gastric tumours, colon cancer, melanoma,

ovarian cancer and Burkitt’s lymphoma [54]. Let-7

miRNAs target several oncogenes including K-RAS, c-

Myc and HMGA2, and therefore are considered as

tumour suppressors [53]. The oncofoetal RBP Lin28

and its paralogue Lin28b bind to the terminal loops of

most let-7 precursors and block their processing into
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Fig. 2. LncRNAs show a wide variety of

functions.
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mature miRNAs [55,56]. Lin28 is a stem cell pluripo-

tency factor and both paralogues are upregulated in

many human cancers including glioblastoma, ovarian,

gastric, prostate and breast cancer [37]. The Lin28/let-

7 axis is not only prominent in cancer: it also regulates

glucose metabolism through the let-7-mediated

repression of multiple components of the insulin-

PI3K-mTOR pathway [57]. Aberrant glucose metabo-

lism is tightly linked to cancer since a switch towards

glycolytic metabolism increases the cancer cell’s ability

to increase biomass (‘Warburg Effect’). A subsequent

study has shown that overexpression of either Lin28

or Lin28b in liver cancer cells elevates glucose uptake,

lactate production and oxygen consumption, all of

which are reversed upon addition of let-7 mimics [58].

The importance of the Lin28/let-7 axis has spurred

efforts to generate inhibitors of this biology with a

new class of future anticancer agents [41]. The onco-

genic potential of Lin28 was also shown when King

and associates constitutively expressed LIN28B in

colon cancer cells and implanted them into immuno-

compromised mice. Tumours with constitutive LIN28B

expression exhibited increased expression of colonic

stem cell markers LGR5 and PROM1, mucinous dif-

ferentiation and metastasis [59]. Transgenic mouse

models overexpressing Lin28B from the mouse Vil1

promoter specifically in the intestine, showed let-7-

dependent intestine hypertrophy. Restoring mature

let-7a levels in the intestine reversed the observed

hyperplasia, reducing the cellular transformation in the

intestinal epithelium [60]. Importantly, inhibition of

either LIN28A or LIN28B via siRNAs suppressed estab-

lished human xenograft tumours in mice [61]. A similar

effect was observed when the xenograft models were

treated with chemically synthesized let-7a miRNA.

Many miRNAs are found expressed at higher levels

in tumours and can be seen as oncogenes. They pro-

mote tumour development by inhibiting tumour sup-

pressor genes and/or genes that control cell cycle, cell

differentiation and apoptosis. c-Myc is an important

oncogene that transactivates several miRNAs including

the miR-17~92 and miR-106a~363 clusters [36]. miR-

17~92 is a notable oncogenic miRNA cluster compris-

ing six miRNAs that are located at chromosome

13q31, a genomic locus amplified in several types of

lymphoma and solid tumours [62]. This cluster is

highly expressed in embryonic cells [63] and its miR-

NAs target the E2F transcription factor which controls

the transition from G1 to S phase [64]. The cluster is

also overexpressed in many types of cancer, including

B-cell lymphoma, colon cancer, pancreatic cancer,

breast cancer, ovarian cancer and neuroblastoma [65].

MiRNAs from miR-17~92 target Bim, repressing its

proapoptotic activity [63] and the cell cycle inhibitors

p21CIP1 and p57KIP2 thereby enhancing cancer cell

growth [66], whereas miR-19a and miR-19b-1 regu-

late the tumour suppressor PTEN [63]. Xiao and asso-

ciates generated mice with elevated miR-17~92
expression in lymphocytes; these developed lympho-

proliferative disease and autoimmunity and died pre-

maturely [67].

MiR-221 and miR-222 (miR-221/222) are two highly

homologous miRNAs, which are significantly overex-

pressed in several types of human malignancies [68].

For example, elevated expression of miR-222 has been

reported to contribute to pancreatic cancer invasion

by targeting the tissue inhibitor of MMP-2 (TIMP-2)

[69]. In human glioma cells, miR-221/222 inhibits cell

apoptosis by targeting the proapoptotic gene PUMA

[70]. In breast cancer, overexpression of miR-221/222

promotes epithelial-to-mesenchymal transition by neg-

atively regulating the adiponectin receptor 1 [71], as

well as trichorhinophalangeal 1 (TRPS1) [72], leading

to increased cell migration and invasion. PTEN, a

prominent tumour suppressor gene, is a confirmed tar-

get of miR-221/222 in the breast cancer cell line MCF-

7 [73]. MiR-222 promotes tumour progression in HCC

[74] and lentivirus-mediated silencing of miR-221 sup-

presses proliferation of liver cancer cells and growth of

hepatoma xenografts in vivo [75].

There is considerable evidence that miR-21 has

oncogenic properties, being involved in regulatory

pathways of proliferation, apoptosis and metastatic

potential [76]. Its targets include PTEN, as well as

PDCD4, and BTG2, which play important roles in

oncogenic processes [77]. Furthermore, it is strongly

upregulated in glioblastoma, head and neck carci-

noma, ovarian cancer, B-cell lymphoma and hepatocel-

lular and cervical carcinoma [78]. In a study of 540

clinical cancer samples by Volinia et al. [79], miR-21

was the most consistently upregulated miRNA. Fur-

thermore, mice conditionally expressing miR-21 via

Tet-Off and Cre-recombinase technologies developed

clinical signs of haematological malignancies. MiR-21-

overexpressing tumour cells were found to invade the

peripheral blood, and other organs. Once miR-21

expression was switched off, the tumours regressed,

partly due to the activation of apoptosis [80].

On the list of prominent tumour-promoting miR-

NAs is miR-155, which originates from the B-cell inte-

gration cluster, also known as MIR155HG (miR-155

host gene). Aberrant expression of miR-155 has onco-

genic potential in several types of haematological

malignancies [81]. It was recently found that miR-155

induces resistance to chemotherapeutic agents, which

can be reversed by treatment with miR-155 inhibitors,
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and that this chemoresistance is dependent on a p53/

miR-155 feedback loop [82]. El-mmu-miR155 trans-

genic mice express murine miR-155 under the control

of a VH promoter-Ig heavy chain El enhancer, which

becomes activated at the pro-B-cell stage of B-cell

development. These mouse models develop a lympho-

proliferative disease, which phenocopies the human

form. This study was the first to demonstrate that

transgenic overexpression of a single miRNA is suffi-

cient to cause cancer [83].

Long noncoding RNAs have been shown to influ-

ence many of the pathways which drive malignant

transformation. For instance the lncRNA MALAT1

(also known as NEAT2) is found to be highly

expressed in many tumours [84], for example during

metastasis in patients with early-stage NSCLC [85].

The elevated expression of MALAT1 is linked to traits

such as increased migration, metastasis and clonogenic

growth in NSCLC [85], pancreatic [86] and prostate

cancer cells [87]. Consistent with this, the deletion of

MALAT1 in osteosarcoma cell lines inhibited cell pro-

liferation and invasion [84]. This lncRNA also pro-

motes the growth and migration of ovarian cancer

cells [88]. It can bind to active chromatin sites [89] and

it co-localizes with nuclear speckles, where it influences

pre-mRNA splicing [26]. MALAT1 is required for G1/

S and mitotic progression by modulating the expres-

sion and/or pre-mRNA processing of cell cycle–regu-
lating transcription factors [90].

The Hox transcript antisense intergenic RNA known

as HOTAIR is a lncRNA which is transcribed from

the HOXC locus. It is considered a biomarker for the

prognosis of certain cancers: higher levels of the RNA

have been found in colorectal, liver, pancreatic, breast

and gastric cancers [91]. It forms double stem-loop

structures that bind to lysine-specific demethylase 1

and PRC2 histone-modification complexes, which

leads to histone H3 tri-methylation at lysine 27

(H3K27me3) and histone H3 dimethyl Lys4

(H3K4me2) and consequently results in gene silencing.

HOTAIR is upregulated in breast cancer and increases

cancer invasiveness and metastasis [92].

The lncRNA neuroblastoma associated transcript-1

(NBAT-1) was identified as an independent prognostic

biomarker, predicting clinical outcome of neuroblas-

toma patients [93]. Loss of NBAT-1 increases cellular

proliferation and invasion. It mediates epigenetic

silencing of target genes, through its interaction with

the PRC2 repressive chromatin complex.

The lncRNA ANRIL shows increased expression in

NSCLC tissues, and this correlates with stages of

tumour–node–metastasis and the size of tumours [94].

ANRIL is expressed highly in gastric cancers, and

higher levels of ANRIL promote proliferation of gastric

cancer cells, where it inhibits apoptosis by epigenetic

silencing of miR-99a and miR-449a transcription [95].

The oncofoetal lncRNA H19 is an important factor

in both embryonic development and tumorigenesis. It

is upregulated in a series of cancer types, where it

reportedly accelerates cellular proliferation rates and

increases the resistance of tumour cells to stress [96].

Interestingly, H19 transcript has been reported to

sequester and inhibit two cancer-related miRNAs –
let-7 and miR-106a [97,98]. H19 also serves as a pri-

mary miRNA precursor of miR-675 [99], which is con-

sidered as oncogenic due to its targeting of the tumour

suppressor retinoblastoma protein. The H19 locus

belongs to a cluster of imprinted genes that control

embryonic and postnatal growth. The H19 gene is

located 90 kb distant from the Igf2 gene on chromo-

some 11p15 in humans and chromosome 7 in mice.

The Igf2 locus encodes insulin-like growth factor-2

(IGF2), which is a growth-promoting peptide hormone

highly expressed during embryogenesis. H19 and Igf2

genes are reciprocally imprinted from the maternal

and paternal alleles respectively. The changes in

imprinting of the Igf2-H19 locus are likely to be

involved in tumour formation. In humans, loss of

imprinting at this locus are associated with the Beck-

with–Wiedemann syndrome (BWS), which is character-

ized by overgrowth phenotypes in affected children, as

well as a predisposition to develop embryonal tumours

such as Wilms’ tumour or rhabdomyosarcomas [100].

There are inconsistencies between various murine mod-

els which aim to define the role of H19 locus in cancer.

In some cases, the H19 locus has been suggested to act

as a tumour suppressor, and mice bearing a mutation in

the Apc gene are murine models for colorectal cancer.

When double mutants were generated, lacking both H19

and Apc, they showed an enhanced cancer phenotype

compared with their Apc littermates [101]. In other cases,

H19 has been shown to promote tumour growth in mice.

Matouk and associates demonstated that ectopic H19

expression enhances the tumorigenic potential of bladder

carcinoma cells in vivo [102].

MiRNAs and long noncoding RNAs in

cardiovascular disease

Cardiovascular disease and complications thereof are a

leading cause of morbidity and mortality worldwide.

The myocardium can undergo remodelling in response

to external stressors. However, chronic activation of

remodelling processes, such as hypertrophy and fibro-

sis, can result in multiple cardiovascular diseases,

including myocardial infarction, cardiomyopathies and
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heart failure. Ikeda et al. [103] identified significantly

altered miRNA expression profiles in heart disease and

showed that patterns of miRNA expression are distinct

in different forms of heart disease. A myriad of studies

has shown that miRNAs regulate the expression of

genes in signalling pathways associated with heart fail-

ure, hypertrophy, and ischaemia reperfusion injury.

For example, miRNAs have been found to promote or

inhibit cardiomyocyte apoptosis, regulate postis-

chaemic neovascularization and control cardiac fibrosis

[104]. Remarkably when miRNA biogenesis is inhib-

ited through Dicer deletion, dilated cardiomyopathy

associated with heart failure is observed in neonates

[105], whereas the postnatal myocardium-specific Dicer

deletion drives maladaptive cardiac remodelling [106].

Additionally, endothelial knockout of Dicer leads to

endothelial dysfunction, revealing a key role for miR-

NAs in endothelial physiology [107].

Several miRNAs play key roles in vascular develop-

ment and angiogenesis. For example miR-24 has a role

in cardiac vascularization [108]. It is highly expressed in

cardiac endothelial cells (ECs) and is significantly upreg-

ulated after cardiac ischaemia. Blockage of miR-24 lim-

its myocardial infarct size of mice, preventing

endothelial apoptosis and enhancing vascularity. This

miRNA exerts its functions through targeting the

endothelium-enriched transcription factor GATA2 and

the p21-activated kinase PAK4. MiR-126-3p is a proan-

giogenic factor, which is implicated in endothelial gene

expression and mediates EC dysfunction as well as

atherosclerosis triggered by blood flow changes [109].

Overexpression of miR-126-3p reduces atherosclerosis

[110], whereas its knock-out causes systemic oedema,

multifocal haemorrhages and ruptured blood vessels

[111]. It is enriched in the apoptotic bodies of dying ECs

in a mouse model of atherosclerosis and has an angio-

protective role via the CXCL12-CXCR4 pathway [110].

MiR-208 is selectively expressed in cardiomyocytes,

and is highly expressed in autopsy samples of infarcted

heart tissue from patients with myocardial ischaemia

[112]. In addition, compared to other miRNAs, levels

of miR-208 are high in cardiac tissue of dilated car-

diomyopathy patients and it is a strong predictor of

clinical outcome [113]. In response to cardiac stress

such as pressure overload, knockdown of miR-208 in

mice produces no cardiomyocyte hypertrophy and

fibrosis [114]. The miRNA also plays an important

role in cardiac conduction, by regulating the expres-

sion of cardiac transcription factors and the gap junc-

tion protein connexin 40 (Cx43) [115]. The miR-15

family includes six closely-related miRNAs that are

also increased in myocardial ischaemia [116]. Inhibi-

tion of miR-15 family members by antimiR-

oligonucleotides reduces infarct size after ischaemia–
reperfusion injury in cardiac tissue of both mice and

pigs by de-repressing the antiapoptotic protein Bcl-2

and the mitochondrial protecting factor ADP-ribosyla-

tion factor-like protein 2 [116].

Zidar and associates have reported that downregula-

tion of miR-150 is involved in the pathology of ven-

tricular rupture after myocardial ischaemia [117]. Of

note, it was recently shown that the cardio-related

lncRNA ZFAS1 can interact directly with miR-150,

acting as a miRNA sponge that induces cardiomyocyte

apoptosis in acute myocardial ischaemia via C-reactive

protein (CRP) [118]. It regulates adenoreceptor beta 1

and CRP genes, which are associated with heart

remodelling [119].

The neurologic-enriched miRNA miR-212/132 family

becomes activated during heart failure [120]. These miR-

NAs affect cardiac hypertrophy by targeting the anti-

hypertrophic and proautophagic transcription factor

forkhead box O3 (FoxO3), leading to induction of the

prohypertrophic calcineurin/NFAT signalling pathway

[121]. Altered levels of miR-21 are associated with multi-

ple cardiovascular diseases, including proliferative vas-

cular disease, cardiac hypertrophy, heart failure, and

ischaemic heart diseases [122]. MiR-21 promotes cardiac

fibrosis by regulating genes, such as transforming

growth factor b1 receptor III (TbRIII) [123] and matrix

metalloprotease-2 (MMP2) [124,125]. Bang and associ-

ates have demonstrated that miR-21 is transferred

through fibroblast derived exosomes, acting as a para-

crine mediator of cardiomyocyte hypertrophy [125].

MiR-1 is most abundantly expressed in heart and

plays essential roles in cardiogenesis and in physiologi-

cal cardiac function. Jayawardena et al. [126] showed

that miR-1 alone is sufficient to induce the fibroblast

to cardiomyocyte reprogramming. MiR-1 targets genes

that cluster into several categories, including regulators

of cell cycle, cardiac differentiation and the conductive

system [127,128]. Cardiac Serca2a, which regulates cal-

cium uptake into the sarcoplasmic reticulum (SR), has

also been shown to increase after miR-1 gene transfer

in mice [129]. This miRNA attenuates cardiomyocyte

hypertrophy in cultured cardiomyocytes and in the

intact adult heart by regulation of cardiomyocyte

growth responses through modulation of calcium sig-

nalling components such as calmodulin [127]. Consis-

tent with this, miR-1 has been found decreased in

early-stage cardiac hypertrophy [130]. The miRNA

and its primary target Errb act together to regulate the

transition from prenatal to neonatal stages by repress-

ing the cardiac foetal gene program, which is reacti-

vated under pathological conditions [131]. Expression

of miR-1 is lost in the myocardium of myotonic
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dystrophy patients, concomitant with up regulation of

its targets Connexin 43 (Cx43) and calcium voltage-

gated channel subunit alpha1C (CAV1.2) may at least

partly account for the arrhythmia, which is observed

in these patients [128]. MiR-1 is clustered together

with miR-133 on mouse chromosome 2, where they

are separated by 9.3 kb, and on mouse chromosome

18, where they are separated by 2.5 kb [132]. Although

miR-1 and miR-133 derive from the same miRNA

polycistron and are transcribed together, they have

antagonistic effects on muscle development: miR-1

enhances myogenic differentiation, whereas miR-133

induces myoblast proliferation [133]. MiRNA-133 is

decreased in mouse and human models of cardiac

hypertrophy [134] through its regulation of the Ras

homolog family member A (RhoA) and cell division

control protein 42 homolog (Cdc42). It also plays a

role in cardiac fibrosis by controlling the expression of

the connective tissue growth factor [135]. MiR-133

affects inotropism by regulating the expression of mul-

tiple components of the b1-adrenergic cascade, includ-

ing the receptor itself [136].

Next to miRNAs, lncRNAs also play important roles

in cardiovascular disease. In fact, data from deep

sequencing demonstrated that compared to mRNA and

miRNA expression profiles, lncRNA expression profiles

are more sensitive to different heart failure aetiologies

and that altered lncRNAs reflect increased susceptibility

to coronary artery disease, myocardial infarction and

heart failure [137]. For example, Viereck et al. have

recently discovered a new lncRNA – Chast (for ‘cardiac

hypertrophy–associated transcript’) – that promotes car-

diac remodelling and hypertrophy in mice. Antisense-

mediated degradation of Chast attenuated pathological

cardiac remodelling, as it was shown by in vivo gain- and

loss-of-function experiments in mice [138].

Besides its role in cancer, the lncRNA MALAT1 is

also linked to cardiovascular disease: silencing of

MALAT1 reduces capillary growth in a mouse model

of hind limb ischaemia [139] as well as in a rat model

of diabetic retinopathy [140]. Furthermore, MALAT1-

derived mascRNA (MALAT1-associated small cyto-

plasmic RNA) is involved in cardiovascular innate

immunity and viral myocarditis [141].

The lncRNA GAS5 (growth arrest–specific 5) is

another regulator of hypertension-related vascular

remodelling [142]. It is mainly expressed in ECs and

vascular smooth muscle cells (VSMCs), and its expres-

sion is significantly downregulated in hypertension.

GAS5 regulates EC and vascular smooth muscle cell

function through b-catenin signalling. The cardiac

apoptosis-related lncRNA (CARL) has been found to

regulate mitochondrial homeostasis and cell death in

cardiomyocytes [143]. CARL intervenes during the

mitochondrial fission process by sequestering miR-539

and inhibiting the miR-539-mediated repression of

Prohibitin [143].

Ounzain et al. [144] identified several lncRNAs with

potential roles in both cardiac development and patho-

logical cardiac remodelling. One particular novel

lncRNA, Novlnc6, is significantly decreased in dilated

cardiomyopathy. Knockdown of Novlnc6 in cardiomy-

ocytes results in a concomitant downregulation of

BMP10 and NKX2.5, two important mediators of car-

diac growth and function.

The lncRNA cardiac hypertrophy related factor, is

substantially elevated in response to hypertrophic stimu-

lation by angiotensin II in cardiomyocytes [145]. In addi-

tion, it is also significantly upregulated in a mouse model

of transverse aortic constriction and in human heart fail-

ure samples [145]. This lncRNA acts as a sponge for

miR-489, de-repressing Myd88, a direct target of miR-

489 so as to regulate cardiomyocyte hypertrophy.

Finally, the lncRNA myocardial infarction–associ-
ated transcript (MIAT) is highly expressed in heart

and foetal brain tissue. Polymorphisms in MIAT that

were identified by genome-wide association studies are

a risk factor for myocardial infarction [146]. MIAT is

found at low levels in platelets from patients with

myocardial infarction [147], whereas elevated levels of

this lncRNA are found in myocardial samples from

patients with dilated cardiomyopathy suffering from

Chagas disease [148].

MiRNAs and long noncoding RNAs in

neurodegenerative disease

Neurodegenerative diseases are hereditary and spo-

radic conditions which are characterized by progressive

dysfunction and the death of neurons. According to

the neuronal populations afflicted, these disorders can

lead to disturbances in motor, cognitive and/or beha-

vioural performance of affected individuals. They

include diseases such as Alzheimer’s disease (AD) and

other dementias, Parkinson’s disease (PD), amy-

otrophic lateral sclerosis (ALS), spinal muscular atro-

phy (SMA), Huntington’s disease (HD) and others.

MiRNAs in Parkinson’s disease

MiRNAs display specific temporal and spatial patterns

of expression during embryonic neural development

and in adult brain [149]. In the central nervous system,

they have been shown to participate in a wide range of

processes, such as neurodevelopment, brain architec-

ture, neuroplasticity establishment, neurotransmission,
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etc. Not surprisingly, misregulated miRNAs have been

linked to many neurodegenerative and psychiatric dis-

orders. MiRNAs miR-34b and miR-34c are decreased

in the affected areas of PD patients at an early stage of

the disease [150]. This miRNA family regulates alpha-

synuclein, a key protein in PD pathogenesis [150].

Reduced expression of these miRNAs is associated

with mitochondrial abnormalities and increased oxida-

tive stress. MiR-155 has been shown to mediate

immune activation by aggregated a-synuclein. In a PD

mouse model overexpressing a-SYN (via an adeno-

associated-virus; AAV2-SYN), levels of miR-155 are

significantly increased. However, miR-155 knockout

mice models transduced with AAV2-SYN, exhibit a

remarkably decreased proinflammatory response, with-

out a loss of dopaminergic neurons [151]. It was

recently shown that miR-30e improves neuronal dam-

age, neuroinflammation and dyskinesia via targeting

Nlrp3 expression and inhibiting NLRP3 inflammasome

activation in a MPTP-induced PD mice model [152].

MiR-30e levels were downregulated after MPTP injec-

tion, suggesting miR-30 might also have a role in the

pathogenesis of PD. MiR-124 expression was downreg-

ulated in substantia nigra dopaminergic neurons fol-

lowing MPTP administration in mice. A MiR-124

mimic delivered to the right lateral ventricle in the

MPTP mouse model increases the density of tyrosine

hydroxylase positive (TH+) neurons and reduced the

upregulation of Bim mRNA level and protein level

induced by MPTP, leading to reduced apoptosis [153].

MiRNAs in Alzheimer’s disease

Expression of the miR-29a/b-1 cluster is significantly

decreased in the brains of patients suffering from spo-

radic AD, displaying abnormally high levels of BACE1

protein [154]. This miRNA family targets BACE-1 sec-

retase, which cleaves amyloid precursor protein (APP)

and generates toxic Ab species, thereby contributing to

synaptic loss and cognitive decline in AD. MiR-29 has

been also suggested to protect cells from apoptosis by

targeting proapoptotic proteins, including BIM, BMF,

HRK and PUMA [155]. It was recently demonstrated

that pre-miR-29b encapsulated in polyplexes decreases

levels of hBACE1 and Ab45.[156] Levels of miR-29a

are increased by more than two-fold in cerebrospinal

fluid of AD patients, indicating that miR-29a may be

a candidate biomarker for AD [157]. MiR-106b from

the miR-106b~25 cluster is a regulator of Ab produc-

tion and clearance through the suppression of ABCA1

expression [158]. Suppression of ABCA1 expression by

miR-106b impairs cellular cholesterol efflux and

increases the levels of secreted Ab. MiR-106b is also

aberrantly expressed in a double transgenic mouse

model for AD [159]. Simvastatin was recently shown

to ameliorate the memory decline in AD mouse mod-

els via decreased miR-106b levels [160]. Finally, miR-

34a is found over expressed in affected brain regions

of AD patients as well as in transgenic AD mice [161].

The increased expression of miR-34a in specific brain

regions induces synaptic dysfunction. Its accumulation,

along with the interneuronal transfer of miR-34a-

loaded exosomes, may affect neural networks

dedicated to memory. MiR-34c is also connected to

hippocampal memory function. Inhibition of this

miRNA rescues memory impairment in AD transgenic

mice, with concomitant de-repression of SIRT1, a

confirmed target of miR-34 [162].

MiR-196 in Huntington’s disease

Huntington’s disease is an autosomal-dominant dis-

ease that is caused by an expansion of CAG trinu-

cleotide repeats located in the exon 1 region of the

huntingtin gene. MiR-196a has emerged as a protec-

tive miRNA in the context of HD. Overexpression

of miR-196a leads to a reduction of mutant hunt-

ingtin (HTT) and the formation of pathological

aggregates in HD models of human embryonic kid-

ney cells and mouse neuroblastoma cells. In HD

transgenic mice overexpressing miR-196a, suppression

of mutant HTT in the brain shows attenuated neu-

ropathological progression, manifested by reduced

nuclear, intranuclear and neuropil aggregates as well

as late-stage behavioural phenotypes [163]. The

effects of miR-196a might be via its involvement in

the ubiquitin–proteasome systems, gliosis, and the

CREB pathway.

MiR-183 in spinal muscular atrophy

MiR-183 has been shown to contribute to the pathol-

ogy of SMA via its target mTor. The local axonal

translation of mTor is reduced in SMN-deficient neu-

rons, and this can be restored by inhibition of miR-

183. Importantly, inhibition of miR-183 expression in

the spinal cord of an SMA mouse model prolongs sur-

vival and ameliorates motor performance of SMN-

mutant mice [164].

BACE1-AS in Alzheimer’ s disease

Aberrant lncRNA expression is linked to the onset

and progression of several neurodegenerative diseases.

For instance BACE1-AS is a NAT that is transcribed

from an intron of the b-secretase-1 (BACE1) gene in
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antisense direction. Its expression is elevated in sub-

jects suffering from AD and in APP transgenic mice

[165]. Several cell stressors increase BACE1-AS RNA,

which enhances BACE1 mRNA stability, generating

additional Abeta 1-42. It has been postulated that

BACE1-AS prevents translational repression of

BACE1 mRNA by miR-485, by masking the miRNA

binding site [31].

MALAT1 and NEAT1_2 in FTLD and ALS and

Huntington’s disease

TDP-43 is a nuclear RNA-binding protein that forms

inclusion bodies in frontotemporal lobar degeneration

(FTLD) and ALS. The binding of TDP-43 to

MALAT1 and NEAT1_2 lncRNAs is increased in

human FTLD brains compared with healthy controls

[166]. Analyses of human spinal motor neurons in

ALS cases shows that NEAT1_2 lncRNA is upregu-

lated during the early stage of ALS pathogenesis. This

lncRNA acts as a scaffold for RNAs and RBPs in the

nuclei of ALS motor neurons, thereby modulating the

functions of ALS-associated RNA-binding proteins,

such as TDP-43 and FUS/TLS, during the early phase

of ALS [167]. NEAT1 levels are also increased in the

postmortem brain from patients of HD [168]. Gain-of-

function studies showed that NEAT1 upregulation in

HD contributes to the neuroprotective mechanism

against neuronal injury.

UCHL1-AS, MALAT-1 and HOTAIR in Parkinson’s

disease

The ubiquitin carboxy-terminal hydrolase L1 gene

(UCHL1) is closely related to brain function and neu-

rodegenerative diseases. An antisense transcript of

UCHL1, UCHL1-AS promotes translation of UCHL1

[169], which is strongly attenuated in neurochemical

models of PD in vitro and in vivo [169]. MALAT1 is

highly expressed in neurons [170]. It was recently

demonstrated that MALAT1 overexpression increases,

whereas inhibition decreases alpha-synuclein expres-

sion [171]. b-Asarone, a constituent of Acorus tatari-

nowii Schott, suppresses the levels of MALAT1 and

alpha-synuclein in the midbrain tissue of PD mice,

suggesting that b-asarone may be a potential therapeu-

tic agent for PD[171]. HOTAIR is upregulated in a

mouse model of PD that is produced by intraperi-

toneal injection of MPTP, a prodrug to the neurotoxin

MPP+. The lncRNA increases the stability of LRRK2

mRNA [172], and thus may interfere with the

LRRK2-associated mitochondrial impairment in PD.

Conclusion

The constellations of physiological processes which

orchestrate life are subject to intricate control. MiRNAs

and lncRNAs have emerged as ubiquitous RNA mole-

cules capable of modulating all cellular processes. In

particular, ncRNAs have drawn great attention partly

for their putative roles in the pathology of many dis-

eases. In many of the cases highlighted in this Review,

in which we have limited the discussion to three types of

diseases, the links between ncRNAs and disease

pathologies came to light through their aberrant expres-

sion in disease cells or tissues. It is noteworthy that

some ncRNAs (e.g. miR-15, miR-29, miR-34, ANRIL

and MALAT-1) appear to contribute to more than one

pathological mechanisms. In some of these cases, the

miRNA-disease association is sufficiently strong (i.e.

possibly causative) that the miRNA represents a poten-

tial drug target or a therapeutic entity (e.g. miR-106

and let-7 respectively). The availability of potent phar-

macological tools for use in animal models of these dis-

eases and/or in clinical trials will ultimately clarify their

value in distinct therapeutic applications [173].
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