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Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a
defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of
autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-
knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the
strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in
autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed.
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Introduction

Autoimmune polyendocrinopathy candidiasis ecto-

dermal dystrophy (APECED), also known as auto-

immune polyglandular syndrome Type I (APS I), is a

rare autosomal recessive disorder that is characterized

by autoimmunity against organ-specific autoantigens

(Ahonen 1985, Straub and Manns 1998, Aaltonen

and Bjorses 1999). The disease affects primarily

endocrine organs causing a number of conditions that

include adrenocortical and ovarian failure, insulin-

dependent diabetes, hypoparathyroidism and hepatitis

(Ahonen 1985, Clemente et al. 1997, Straub and

Manns 1998, Aaltonen and Bjorses 1999). This

syndrome is also characterized by immunodeficiency

as exemplified by enhanced susceptibility of patients

to infection and development of chronic mucocuta-

neous candidiasis (Ahonen 1985, Straub and Manns

1998, Aaltonen and Bjorses 1999). The disorder is

prevalent among Finns, Sardinians, and Iranian Jews

and usually manifests during childhood with

additional pathological conditions emerging later in

life (Shapiro et al. 1987, Straub and Manns 1998,

Bjorses et al. 1996, Rosatelli et al. 1998). APECED is

treated by tackling the specific problems of the

disease, such as replacing hormones that are in short

supply, providing immunosuppressive therapy and

treating the Candida albicans infection (Ahonen et al.

1986, Faulds et al. 1993, Seidman et al. 1990). There

is no known cure at present for APECED.

Usually autoimmune diseases involve defects in

several genes, such as those that encode T-cell receptors,

immunoglobulins and cytokines. APECED is unique in

that it is caused by a mutation in a single gene. A

positional cloning approach aided the identification of

the autoimmune regulator gene AIRE (Nagamine et al.

1997). This gene, which is localized to chromosome

21 in humans, is split into 14 exons over ,13 kb

(Aaltonen et al. 1994, The Finnish-German APECED

Consortium 1997, Nagamine et al. 1997). A number of

APECED mutations have been identified so far and

these mutations typically include either single nucleo-

tide substitutions or small insertions/deletions in AIRE

(Pearce et al. 1998, Wang et al. 1998, Heino et al. 2001,

Podkrajsek et al. 2005). The mutations usually

introduce a premature termination codon, resulting in

a truncated protein, or disrupt one or more of the

functional domains of AIRE (Heino et al. 2001,
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Halonen et al. 2004, Meloni et al. 2005). The most

common mutation is a C to T change at nucleotide 889

in exon 6, which results in a premature stop codon

(Wang et al. 1998). A 13 bp deletion in exon 8 (bases

1094–1106) appears to be the second most common

mutation (Pearce et al. 1998, Wang et al. 1998).

The characterization of AIRE

Several genetic and molecular approaches have shed

light on the biochemical nature of AIRE, providing

some insight into the function of this protein. AIRE

encodes a ,57 kDa protein composed of ,552 amino

acids (Aaltonen et al. 1994, Nagamine et al. 1997,

Aaltonen and Bjorses 1999). The protein possesses a

nuclear localization domain, an HSR (homogeneously

staining region) homomultimerization domain, a

SAND (Sp100, A IRE-1, NucP41/75, and DEAF-

1/suppressin) domain, 2 plant-homeodomain (PHD)-

type cysteine-rich zinc-finger domains and four

LXXLL motifs, suggesting a role for this protein as

a transcriptional regulator (Aaltonen and Bjorses

1999, Gibson et al. 1998, The Finnish-German

APECED Consortium 1997). Indeed, experiments

have demonstrated that upon phosphorylation and

dimerization, AIRE binds to DNA sequences that are

known to be recognized by other proteins that, like

AIRE, possess zinc-finger and leucine-zipper motifs

(Kumar et al. 2001, Purohit et al. 2005). In vitro

experiments including gel-shift assays revealed that

AIRE has a high binding affinity for two sequences—a

TATA-like box (TTATTA) and a tandem repeat of a

G-box (ATTGGTTA) (Kumar et al. 2001, Purohit

et al. 2005). The activation of reporter genes, such as

luciferase and chloramphenicol transacetylase, by

AIRE fused to the GAL4 DNA-binding domain

suggests a transcriptional activation function for AIRE

(Bjorses et al. 2000, Pitkänen et al. 2000). A study has

shown that AIRE also possesses E3 ligase activity,

which facilitates the polyubiquitination of substrates

(Uchida et al. 2004). It has been suggested that the E3

ligase activity is required for the modification of

AIRE-interacting proteins so that AIRE can localize

correctly to the site of transcriptional activation

(Uchida et al. 2004). Studies have shown that the

systematic deletion or modification of one or more of

the functional domains of AIRE interferes with the

stability, transcriptional activation properties or

nuclear targeting of the protein, highlighting the

importance of each domain (Rinderle et al. 1999,

Bjorses et al. 2000, Ramsey et al. 2002a, Halonen et al.

2004, Meloni et al. 2005).

The mouse APECED model: Elucidating the

role of Aire

A mouse homolog (Aire) of the human AIRE gene was

identified and a comparison between the two has

revealed a ,77% nucleotide homology in coding

regions and ,71% protein homology (Antonarakis

et al. 1998, Halonen et al. 1998, Yaspo et al. 1998,

Wang et al. 1999, Blechschmidt et al. 1999). This

prompted the successful development of a mouse

model for APECED to facilitate in-depth studies of

this disease. Aire-deficient mice exhibit characteristics

similar to APECED patients, which include auto-

reacting antibodies against certain organ-specific

antigens and multi-organ lymphocyte infiltration

(Aaltonen and Bjorses 1999, Ramsey et al. 2002b,

Kuroda et al. 2005). As with humans, the endocrine

organs are the main targets of the autoimmune

response in mice resulting in similar phenotypes

(Ramsey et al. 2002b). The mouse model has

therefore enabled further study of the role of Aire in

autoimmunity and studies thus far suggest that the

autoimmune response is likely a result of the

dysregulation in thymocyte clonal deletion of T-cells

within the thymus (negative selection), which is

regulated by Aire.

This view was formally established by the use of

double transgenic mice which were bred to include a

TCR transgene and an Aire null mutation. A failure to

delete the TCR transgene-expressing T-cells demon-

strated the link between Aire and the elimination of

autoreactive T-cells (Zuklys et al. 2000, Anderson et al.

2002, Liston et al. 2003, Park et al. 2003). One such

study traced the fate of hen egg lyzozyme (HEL)-

specific T-cells, expressed in mice, in the presence or

absence of Aire (Liston et al. 2003). An almost

complete failure to delete autoreactive HEL-specific

T-cells was observed in knockout mice thymi,

suggesting that Aire regulates the negative selection

of self-reactive T-cells in the thymus (Liston et al.

2003). It has been proposed that such negative

selection is facilitated by promoting the transcription

of a number of self-antigens in thymic medullary

epithileal cells (MECs). These antigens are presented

to developing T-cells and those that are self-reactive

are deleted. The transcriptional control of these

peripheral self-antigens by Aire was hypothesized

because both Aire and the self-antigens are expressed

in MECs (Heino et al. 1999, Zuklys et al. 2000,

Derbinski et al. 2001, Halonen et al. 2001, Anderson

et al. 2002, Adamson et al. 2004). Indeed, a

comparison of gene profiles from Aire-knockout

mice with wild-type littermates revealed a lowered

gene expression coding for several peripheral antigens

in MECs from the knockouts, suggesting the require-

ment of Aire for the expression of the self-antigen

(Anderson et al. 2002). However, autoimmunity

against the ubiquitous protein a-fodrin was shown to

occur in Aire-negative mice but the expression of this

protein was retained in the thymi of these knockouts

(Kuroda et al. 2005). This suggests that the role of

Aire in clonal deletion is not limited to the

transcriptional control of self-antigens in the thymus.
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Aire may also regulate the modification and/or

presentation of self-antigens so that they are efficiently

recognized by autoreactive T-cells.

Quantification of CD4þCD25þhi regulatory T-cells

(Tregs) in the TCR-transgenic systems described

above revealed no significant difference in cell number

in the Aire-deficient and wild-type backgrounds

(Liston et al. 2003). In vitro and in vivo approaches

also demonstrated that the normal suppressive

function of these cells was retained (Liston et al.

2003). Thus, a deficiency in regulatory T-cells or a

defect in their suppressive function does not appear to

be the cause of the central tolerance defect in Aire-

knockout mice.

Aire also appears to exert a quantitative genetic

effect on thymic clonal deletion (Liston et al. 2004).

Levels of HEL mRNA were measured in different Aire

transgenic mice. Thymic HEL mRNA was absent in

Aire2/2 mice and levels of this transcript were also

reduced to an intermediate level in Aireþ/2 hetero-

zygotes when compared to wild-type mice. In

agreement with this data, heterozygosity also had an

impact on the efficiency of thymic clonal deletion.

HEL-specific T-cells were tracked in the thymi of these

transgenic mice and a significant defect in clonal

deletion was observed in Aire2/2 mice while an

intermediate defect was seen in Aireþ/2 mice.

Circulating reactive HEL T-cells were higher in

number in Aire heterozygotes and still higher in Aire

null knockouts when compared to wild-type mice.

This study is in agreement with the observation made

by Sediva and colleagues, whose research showed an

occurrence of a subclinical immune deficit in humans

heterozygous for the AIRE mutation (Sediva et al.

2002). Carriers exhibited higher levels of certain

immunoglobulins (IgA) and activated T-cells when

compared to non-carriers.

In addition to resolving the role of Aire in

autoimmunity, a study by Chin et al focused on

factors that influence the induction and regulation of

Aire itself. Experimental data suggests that the

expression of Aire is controlled by lymphotoxin

which also mediates lymph node organogenesis and

inflammatory responses (Chin et al. 2003). As with

Aire, lymphotoxin is also expressed in the thymi.

Lymphotoxin a and lymphotoxin b-receptor knock-

out mice possess thymi that produce lower levels of

Aire mRNA. However, it is unclear if these results are

a direct effect of lymphotoxin on Aire transcription or

due to a defect in thymi development in these

knockouts.

Conclusions and future directions

Although significant advances have been made in our

understanding of the role of Aire in organ-specific

tolerance, little is known about other functions of this

protein. For instance, the immunodeficiency in

APECED cannot be explained simply by the failure

of clonal deletion. The reason for Aire production in

other organs and cells, such as the pancreas and

macrophages respectively, is also unclear but clearly

suggests additional roles of Aire. It would be

interesting to explore the effect of external factors,

such as infection, on the pathogenesis of this disease.

These conditions would more aptly reflect scenarios

experienced by APECED patients.

There is some experimental data that addresses

the role of Aire in other areas of immune regulation.

A study by Sato and colleagues showed that Aire

downregulates IL-1 receptor antagonist (IL-1Ra) and

this decrease is due to the competition of Aire for the

transcriptional co-activator CREB-binding protein

(CBP) (Sato et al. 2004). The sequestration of CBP

by Aire results in decreased expression of IL-1Ra

which usually inhibits the biological activity of IL1

that is involved in the defense against Candida albicans.

Thus, in the absence of Aire, IL-1Ra is upregulated,

inhibiting the function of IL-1 and this is likely to

contribute to the immunodeficiency observed in

APECED patients. The same study showed that

Aire-expressing cells exhibit a downregulation of

major histocompatibility complex II molecules,

which is important for acquired immunity. This

study highlights that the function of Aire is not limited

to transcriptional activation alone but also involves

repression. Indeed, a recent study using a microarray

approach showed that a number of genes are repressed

by Aire and a subset of these genes encode molecules

other than self-antigens, such as those involved in

antigen presentation (Johnnidis et al. 2005). It would

be interesting to explore further if Aire influences the

levels and/or functions of additional immune response

cell lineages such as those involved in innate

immunity. Other studies could also pursue the

influence of Aire on the polarity of the immune

system—this would involve investigating how an Aire

mutation affects the balance between cytokine profile-

based type 1 and type 2 immune responses which

eventually determine if the immune system elicits a

cell-mediated or humoral response. Another avenue of

research that would be of interest to pursue is the role,

if any, of Aire in other autoimmune diseases that are

for instance, based on molecular mimicry—is the

expression or function of Aire affected in such diseases

and if so, how does this contribute to the autoimmune

response.

Although current Aire-knockout systems have

greatly facilitated the study of APECED and the role

of Aire, our understanding is still limited in that the

detailed molecular basis for the changes that occur in

the immune system following an Aire mutation are

unclear. As of now, we have a great deal of insight on

the effect of Aire-deficiency on the immune system

since knockouts are born with the defect. If it were

possible to temporally control an Aire mutation during
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the life cycle of a model organism such as mice, this

would open the door to several avenues of research.

Creating a conditional Aire knockout would permit

such studies. The Cre/lox system has been widely used

to alter target genes in mice (Lakso et al. 1992, Sauer

1998, Dragatsis and Zeitlin 2001). Typically, the

target gene is flanked by LoxP (specific locus of

crossing over) sites which are recognized by the Cre

recombinase. This enzyme, which is originally from

bacteriophage P1, cleaves DNA at the LoxP site and

catalyzes a recombination reaction effectively deleting

the gene flanked by the two LoxP sites. The strategy to

create a conditional Aire knockout involves generating

two independent transgenic mouse lines: one would

have an inducible promoter that drives the expression

of Cre-recombinase in a specific cell lineage (for

example, thymus epithelial cells) that produce Aire,

and the other would be homozygous for the target Aire

gene with LoxP sequences introduced at specific sites

within, or flanking Aire (Figure 1). The progeny of

these two murine lines would allow for Cre-mediated

deletion of Aire, effectively creating an Aire knockout

but only when induced by a specific agent. By

controlling the age at which the gene can be deleted,

one can monitor what changes occur in the immune

system once the defect is introduced. Other questions

that could be addressed include how abrupt is the

change, how soon do symptoms manifest, and how

age influences the manifestation of the disease in mice.

In conclusion, APECED is the only known

autoimmune disease in humans that is caused by a

mutation in a single gene. Aire knockout mice exhibit

many symptoms similar to APECED patients and this

has facilitated the study of this disorder in great detail,

leading to an improved understanding of the workings

of the immune system and the autoimmune response.

Elucidating the role of Aire in both autoimmunity and

immunodeficiency using murine models is reasoned to

further our understanding of the immune system and

will facilitate the development of future therapeutics.
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