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In Brief
Normalization of proteomic data
is necessary for quantitative
comparison and to improve
statistical power. Share, extent,
and direction of differential
expression are usually unknown.
Normalizing with unbalanced or
high shares of differential
expression can distort the data.
Normics computes a ranking list
for the selection of a likely
invariant protein subset for
normalization. It increases
sensitivity, specificity, and
quantitative accuracy compared
to standard normalization alone.
Its reversed ranking list provides
a filter for highly variant proteins
for downstream bioinformatic
analyses.
Highlights
• Normics is a tool for the normalization of proteomic data based on existing algorithms.• Specifically addresses data with high shares of differential expression.• Combines variance and data-inherent correlation structure.• Provides a ranking of differential expression likelihood.• Enables normalization based on the most stable proteins.
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RESEARCH
Normics: Proteomic Normalization by Variance
and Data-Inherent Correlation Structure
Franz F. Dressler1,2,* , Johannes Brägelmann3,4,5 , Markus Reischl6 , and
Sven Perner2,7
Several algorithms for the normalization of proteomic data
are currently available, each based on a priori assump-
tions. Among these is the extent to which differential
expression (DE) can be present in the dataset. This factor
is usually unknown in explorative biomarker screens.
Simultaneously, the increasing depth of proteomic ana-
lyses often requires the selection of subsets with a high
probability of being DE to obtain meaningful results in
downstream bioinformatical analyses. Based on the rela-
tionship of technical variation and (true) biological DE of
an unknown share of proteins, we propose the “Normics”
algorithm: Proteins are ranked based on their expression
level–corrected variance and the mean correlation with all
other proteins. The latter serves as a novel indicator of the
non-DE likelihood of a protein in a given dataset. Subse-
quent normalization is based on a subset of non-DE pro-
teins only. No a priori information such as batch, clinical,
or replicate group is necessary. Simulation data demon-
strated robust and superior performance across a wide
range of stochastically chosen parameters. Five publicly
available spike-in and biologically variant datasets were
reliably and quantitively accurately normalized by Normics
with improved performance compared to standard vari-
ance stabilization as well as median, quantile, and LOESS
normalizations. In complex biological datasets Normics
correctly determined proteins as being DE that had been
cross-validated by an independent transcriptome analysis
of the same samples. In both complex datasets Normics
identified the most DE proteins. We demonstrate that
combining variance analysis and data-inherent correlation
structure to identify non-DE proteins improves data
normalization. Standard normalization algorithms can be
consolidated against high shares of (one-sided) biological
regulation. The statistical power of downstream analyses
can be increased by focusing on Normics-selected sub-
sets of high DE likelihood.
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Accurate quantitation at omics scale is essential in many
areas of biomedical research. With the advent of modern
high-throughput quantitation methods such as microarray and
RNA sequencing various normalization algorithms have been
developed to correct for the variation in sample loading and
quantitation. Most work so far has centered on RNA tran-
scripts (1), for which packages like limma (2), NormalyzerDE (3)
or BestKeeper (4) or specific algorithms such as variance
normalization stabilization (VSN) (5, 6), median, LOESS, and
quantile normalization (7) have been developed.
As most actionable targets as well as effector molecules are

proteins, and with clinical key questions unanswered by RNA
and DNA analysis, the human proteome becomes increasingly
relevant. While most normalization algorithms have linearly
been expanded from nucleic acid to protein quantitation (8, 9),
some algorithms such as DEqMS (10) or MAP (11) have been
proposed to tackle proteome-specific problems. Still, a basic
assumption remains at the heart of the most widely used
algorithms: The majority of proteins or transcripts is not
differentially expressed (nDE) (12).
The implications of this assumption have been discussed

for RNA-Seq data in detail (13, 14) and specific subset
normalization methods have been proposed (15). These
methods, however, are based on either spike-in controls or
the a priori definition of sample conditions. The latter is
intrinsically problematic for scenarios in which stratification
and clustering are sought based on unknown patterns of both
proteins and samples, vital to expand prognostic and pre-
dictive information beyond the currently known pathological
classifications and clinical stages.
While the assumption of the majority of proteins being nDE

is a limitation in transcriptome normalization already (13, 16), a
relevant difference exists between the amplifying quantitation
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Normalization by Variance and Inherent Correlation Structure
of RNA transcripts and the abundance-sensitive protein
identification and quantitation by standard bottom-up liquid
chromatography–coupled mass spectrometry. Practically, this
leads to a difference in quantitation depths, mirrored by the
considerable differences in the typical number of identified
transcripts or proteins compared with the theoretical
spectrum. For proteomic analyses, this implies a bias toward
high-abundance proteins (17, 18) and, in the setting of bio-
logical variation, toward (positively) DE proteins. Second, the
actual function of proteins leads to considerable variation with
little overlap in tissues of different biological states, most
notably in cancer versus healthy parenchymatous tissue.
Normalization to detect tumor-specific alterations, which are
highly relevant for diagnostics and targeted therapies, thus
needs to consider these prerequisites.
On the other hand, the increasing proteome coverage in

proteomic analyses causes issues of multiple testing (19), and
the increased size of the data input can impede clustering
analyses (20). To address these challenges, filtering of the
data before downstream analyses has been proposed, but this
again includes further assumptions and orthogonality
requirements (20–22).
The use of internal nDE “housekeeping” controls offers

conservative and relatively unbiased normalization with fewer
and less general assumptions about the underlying data
structure. nDE controls have widely been used in quantitative
real-time PCR as well as microarray analyses (4, 23–25), but
the a priori selection of these proteins or genes remains
difficult (4).
In this work we propose a conservative approach to esti-

mate the likelihood of a protein being DE or nDE, using the
latter to normalize proteomic datasets without a priori defini-
tion of neither experimental conditions nor internal spike-in or
external nDE controls.
EXPERIMENTAL PROCEDURES

Normics Algorithm

We propose the data-inherent correlation structure (ICS) as a
feature of the input data and use it together with the variance structure
to order proteins by their likelihood of being nDE. We then perform
normalization with established algorithms on these subsets only. The
resulting parameters are extended to the entire dataset. The complete
theoretical approach is described in the online supplemental S1.
Briefly, the overall variance or scatter of each protein results from a
combination of different sources of variation. Among these, variation
due to unintentional loading or technical measurement differences
affects all proteins of every sample. In contrast, the “true” biological
variation affects only DE proteins. The combined effect of these two
main sources can be measured by the variance and corrected for
intensity-dependent distortions by the coefficient of variation (CV). It is
expected to be larger for DE proteins and has been used by Cze-
chowski et al. to select nDE controls (25), conversely by Bourgon et al.
to filter for DE transcripts (22) and in a more complex model-based
approach by Calza et al. (26, 27). The latter and also the CV itself
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implies different assumptions about variation measures and quanti-
tative relationships.

We therefore include another separation factor for the identification
of nDE controls. Owing to the causality between sample loading
variation and increased variation of all proteins, the correlation be-
tween all, nDE and DE, proteins can be expected to be positive (as
more loading generally means more signal; please see also
supplemental material S1). In contrast, biological variation can
reasonably be expected to be both positive and negative, leading to
both positive and negative correlations between DE proteins of
different biological sets. As a result, the mean correlation (ρ) of nDE
proteins with all other proteins will tend to be higher compared with DE
proteins, which correlate positively with nDE proteins but negatively
with other DE proteins that are coregulated but in opposite direction.
Also, the size of the nDE set can be expected to be larger than any of
the coregulated DE sets, further solidifying the approach.

We order all proteins by these features (ascending for CV and
descending for ρ) and calculate the rank sum R, which we interpret as
the likelihood of each protein to be DE. An nDE subset is chosen for
downstream normalization of the entire database based either on
discernable cluster formation (Fig. 1B) or by a priori expectation of the
share of DE proteins (similar to setting the VSN quantile but with a
higher maximum share of DE proteins). Either standard median
normalization (3) (Normicsmedian) or VSN (6) (Normics) is applied to the
normalization subset. Median normalization was chosen as it does not
alter the data structure (as opposed to quantile and LOESS). VSN in turn
provided superior performance in a previous comparative study (8).

Protein candidates for subset normalization must be present in all
samples (as with all normalization housekeepers/channels) or, in our
case, with multiple proteins in the normalization subset, at least in the
vast majority of samples (without systematic, i.e., sample
group-related missingness). To assess the latter, a visualization of the
missing values in the normalization subset is shown (Fig. 1D) and the
respective thresholds are set in the Normics graphical user interface
(GUI). Independent of missingness, all proteins of a dataset are
normalized with the Normics subset.

The algorithm was implemented in Python 2.7.17 using the pack-
ages numpy 1.16.1, scipy 1.2.2, matplotlib 2.2.4, seaborn 0.9.1, and
pandas 0.24.2 and includes a GUI using Tkinter from package Tk
0.1.0.

Ratio-Reported Data

Tandem mass tag (TMT)-labeled data are frequently reported as
ratios after division by a standard sample. As the intensity levels of
both standard and samples are linked, this preprocessing step is
similar to the division by the mean when calculating the CV from the
variance. Therefore, the variances of ratio-reported data are compared
directly without further division by the mean.

Other Algorithms and Implementations

VSN was performed as implemented in the vsn2 function of the vsn
package (vsn 3.58.0 usingBiobase 2.50.0 andBiocGenerics 0.36.0with
lts.quantile = 0.5 to allow formaximum robustness against DEproteins).
Implementations for median, quantile, and cyclic LOESS normalization
were from the NormalyzerDE package (version 1.5.4) (3). In addition,
MaxLFQ had been included in some of the datasets (see below).

Generation of Simulation Data

To test the postulated relationships we simulated complex prote-
omic datasets as, to our knowledge, real test datasets with complex
patterns of up- and downregulation in multiple groups and known true
positive DE proteins do not exist. It is this scenario with unknown



FIG. 1. Structure of data separation. A, exemplary simulation dataset with the known differentially expressed (DE) and non-DE (nDE)
populations; B, in analogy to subplot A with a spike-in dataset (dS2); C, data structure for a complex sample (dC2) without known DE proteins,
the top 200 proteins selected by the algorithm to be likely nDE are marked in blue; D, visual display of missing data points in the chosen
normalization subset of C; E, relationship between protein signal intensity and variance to assess sufficient coverage of the data range by the
nDE subset from subplot C (blue), relevant if VSN is chosen as the downstream normalization method.

Normalization by Variance and Inherent Correlation Structure
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Normalization by Variance and Inherent Correlation Structure
groups that is highly relevant in screening approaches in oncological
and pathological research.

Using the random module in Python we generated 250 datasets of
2000 proteins and 40 samples each. Intensities g of proteins i and
samples j were created by

gij = rj Li 2 Dij{Sk(pset)} Ci(QDE ) N (1, ε)
with intensity level Li from N (10, 3), relative sample ratio rj from
[0, 10], and correlation direction Ci(QDE) being -1 with probability QDE

and 1 otherwise. The differential expression matrix D was created by
attributing proteins to nDE (Dij = 0) and DE groups by probability pDE .
If proteins were DE, a set Sk of coregulated proteins was randomly
created with minimum 10% and maximum 90% of all samples being
involved in this set (as otherwise the logical discernability from nDE
proteins vanishes). The set size was iteratively determined by proba-
bility pset. The differential expression factor for each sample across the
proteins of a set was drawn from N (μDE , σDE) with μDE from N (0, 1)
and σDE from [0.1, 3.5]. The level of ε was chosen for an entire
simulation dataset from [0.00, 0.25].

Evaluation of Simulation Data

The normalized datasets were compared with the true dataset, i.e.,
the input data corrected by the known relative sample ratios and log2
transformed. To compare the data structure, both the true expression
of a protein as well as the normalized data were z-score transformed
and the squared differences (errors) summed up (SSE).

Spike-in Datasets

To investigate the performance in real datasets with known true
positives, we used publicly available spike-in datasets (Table 1): a
two-step Escherichia coli spike-in with label-free quantitation (dS1) by
Cox et al. (PXD000279; proteomecentral.proteomexchange.org) (28)
similarly used for comparisons by Zhu et al. (10), a three-step E. coli
spike-in with TMT quantification (dS2) by Zhu et al. (supplemental
Table S1; PXD013277) (10) and a protein standard (UPS1) spike-in
with label-free quantitation (dS3) by Pursiheimo et al. (PXD002099;
ebi.ac.uk/pride) (29), similarly used by Valikangas et al. (8).

Complex datasets

To include more realistic data in our comparative analyses, we used
published data that intrinsically provided a high probability of a high
share of DE proteins (Table 1): a mouse study by Vehmas et al.
investigating the proteomic effects in the liver with knockdown of a
central metabolic enzyme (dC1; PXD002025; ebi.ac.uk/pride) (30) and
TABLE

Datas

Dataset Type Source (ID)

dS1 E. coli spike-in (two levels) (28)
(PXD000279)

dS2 E. coli spike-in (three levels) (10)
(PXD013277)

dS3 UPS1 spike-in (four levels) (29)
(PXD002099)

dC1 Mouse tissue fresh-frozen (30)
(PXD002025)

dC2 Human tissue FFPE (31)
(PXD014511)

ID = ProteomeXchange.org identifier, FFPE = formalin-fixed, paraffin-e
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a study in human tissue by Sohier et al., in which distinct pathological
types of colorectal adenoma were compared on proteome level (dC2;
PXD014511; proteomecentral.proteomexchange.org) (31).

Evaluation of Datasets

Protein identification and intensity tables from the different datasets
were used as input for the normalization algorithms. When label-free
quantification had been performed (dS1, dC2) with the MaxQuant
software (MaxLFQ) both datasets were used as input for further
normalization as MaxLFQ combines peptides and fractions more
accurately into protein abundances (at the cost of normalization by
assuming minimal differential expression across the dataset) (28). For
all comparative analyses, only proteins with fewer than 20% missing
values across all samples (50% in dC2) were included. For the
calculation of differential expression, log2 or generalized-log (glog)
transformed values were transformed back to avoid altering the
original data structure. Statistical significance was tested for by two-
sided Student’s t tests or Wilcoxon–Mann-Whitney U for dC2 (in
which the number of available replicates per group was sufficiently
high to avoid quasi-discrete p-values), with missing values being
excluded. p-Values were FDR corrected by the Benjamini–Hochberg
method as implemented in the Python statsmodels package (0.8.0)
(32). Figures were created in Python 2.7.17 using the packages numpy
1.16.1, scipy 1.2.2, matplotlib 2.2.4, seaborn 0.9.1, and pandas 0.24.2.
The Venn diagrams were created using the online tool InteractiVenn
(33).

RESULTS

Patterns of ICS and CV-Based Data Separation

Figure 1 demonstrates the distribution of proteins by the
measures defined above: simulation data exhibit clustering of
nDE proteins around values of minimal CV and maximum ρ as
predicted (Fig. 1A). The same relationship can be found in
spike-in data (Fig. 1B) with easily identifiable clusters of DE
and nDE proteins, which can be expected due to the dichot-
omous character of the underlying artificial population. Similar
to the simulated data, proteins in complex datasets form a
cloud with a negative slope, yet a more scattered, blurred
arrangement of data points (Fig. 1C). Missingness of the
subset data is exemplarily displayed in Figure 1D, which is
also shown to the user to ensure unbiased distributions of the
normalization subset proteins across samples. Figure 1E
1
ets

Fractionation Quantification Share of DE proteins

Yes Label-free 29%

Yes TMT 22%

No Label-free 3%

No Label-free N/A

Yes Label-free N/A

mbedded, TMT = Tandem mass tags.

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://ProteomeXchange.org
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demonstrates the distribution in terms of variance and mean
(sufficient coverage is relevant for choosing VSN as algorithm
of downstream normalization).

Performance With Simulated data

To cover a wide range of parameter combinations, key
parameters were stochastically chosen across relevant ranges
of technical and residual variance, unbalanced up- and
downregulation, different sizes of coregulated sets, and
varying quantitative differences between DE and nDE proteins.
Most importantly, the effect of high shares of DE proteins was
modeled by parameter pDE . 250 datasets of 1000 proteins and
40 samples each were created and normalized with the
different algorithms (for Normics with the top 10% used for
normalization). Figure 2, A and B visualizes the resulting dis-
tributions and shows considerably reduced errors in the data
structure with Normics compared to the other normalization
algorithms. While median normalization also performed well, it
produced a considerable number of outliers. To take a closer
look at the effects of subset-based normalization with Nor-
mics, Figure 2, C–H compares the results for Normics and
VSN across the parameter ranges (please see supplemental
Fig. S3 for a comparison of Normicsmedian and median
normalization in analogy). Subplot D demonstrates the
robustness of Normics against a high share of DE proteins up
until pDE = 0.93, well in line with a theoretical value of >0.92
(dashed line; lts.quantile for VSN = 0.8, top 100 of 1000 pro-
teins leads to 0.08). Subplot G shows an increase in error with
higher DE variation for VSN. Similarly, VSN errors get higher
with the extent of unbalanced up- and downregulation
(Fig. 2H). In both scenarios Normics performs robustly.

Performance With Spike-in Datasets

Simulation data build upon assumptions implicitly made by
the definition and structure of data creation, while datasets
with known true positives offer realistic data and variance
structure. We tested the performance of our algorithm with
three different datasets comprising varying levels of spike-in
DE proteins and different quantitation modes (label-free and
TMT). To compare the performance of the different algorithms,
we refrained from evaluating descriptive parameters such as
minimization of selected variances and took the position of an
actual user applying either algorithm to normalize their data.
Setting the significance level for FDR-corrected p-values to
standard 0.05 we focused on the number of correctly identi-
fied DE and falsely selected nDE proteins as well as the
quantitative structure of the normalized data. Similar to
LFQbench (34), we also investigated the quantitative structure
of the normalized data.
For dS1 (Fig. 3) we used the MaxLFQ-quantified data as

input with similar results for the raw data (not shown). Both
Normics approaches outperformed the other algorithms in
terms of true positives and showed very few false positives
(Fig. 3, A, B,and G) using 30% of the downscaled input data
(n = 150). The correct quantitative difference was retrieved for
the DE subset while the false-positive nDE proteins were
accurately centered on a log2 fold change of 0 (Fig. 3H). VSN
alone showed comparable performance (yet with more false
positives; Fig. 3C) but all other normalization algorithms
including MaxLFQ demonstrated high numbers of false posi-
tives (in part exceeding the number of true positives) with
considerable log2 fold changes centered on 0.5 (Fig. 3, D–H).
The quantitative differences of the DE proteins were less
accurately retrieved (Fig. 3H).
We further investigated the quantitative behavior of our al-

gorithm in datasets dS2 and dS3. In dS2 Normics and espe-
cially Normicsmedian correctly identified most DE proteins with
a sensitivity between 80 and 97% while only few false posi-
tives were selected (specificity 89–98%; Fig. 4, A and B). n =
250 (22%) of a randomly downscaled protein subset were
used. The quantitative differences were correctly retrieved
(Fig. 4, C and D). Only median normalization showed com-
parable performance but with reduced specificity (82–97%).
In dS3 (Fig. 5) five different levels of the protein standard

UPS1 had been spiked into a yeast lysate. In the resulting
comparisons Normics and especially Normicsmedian again
proved to identify DE proteins with high sensitivity and
specificity, comparable with VSN (n = 250; 18% of all proteins
were used). The quantitative range was similarly retrieved by
all algorithms.

Performance With Complex Datasets

One of the main use cases for omics normalization is a
screening approach with a dataset of multiple groups with
complex (co-)regulation patterns. dC1 was chosen as the
overexpression of a central metabolic and endocrine enzyme
leads to a high probability of numerous DE proteins. In addi-
tion, in this dataset cross-validation of DE pathways had been
performed with transcriptome analysis. With the true positives
unknown in dC2, we focused on comparing the p-value dis-
tribution as well as the number of identified DE proteins, as
relevant pathological differences were expected.
In dC1, the higher Normics ranks (with high likelihood of

being DE according to our approach) were enriched with the
cross-validated DE pathways (and further DE proteins), while
cytoskeleton-associated proteins (unlikely to be DE under the
premises of the study) were primarily found with lower ranks
(Fig. 6, A–I). CYP4A12, a main DE finding of the original study,
was placed in the 99th rank percentile by Normics, whereas
GAPDH, a known housekeeping protein, was within the fifth
rank percentile. The overall cumulative distribution of the fold
changes of DE proteins was skewed to higher Normics ranks
(Fig. 6J). Normics and Normicsmedian identified the most and
third most DE proteins, respectively (Fig. 6K), even though
normalization was based on a conservative 7% (n = 100) of all
proteins only. Using Normics, unique DE proteins could be
Mol Cell Proteomics (2022) 21(9) 100269 5



FIG. 2. Results from simulation data. A, boxplots of the sum of squared errors (SSE) distributions for the different algorithms; B, in analogy to
subplot A but with the SSE of each simulation run normed to the Normics result; narrow boxplots show distribution for nondifferentially
expressed (blue, left) and differentially expressed (red, right) proteins; (C–H): SSEs (y-axis) of Normics and VSN across the stochastically varied
range of the respective parameters (x-axis); each dot represents a different simulation (N = 250); the dashed line in subplot D denotes the
theoretical threshold (as explained in the text).

Normalization by Variance and Inherent Correlation Structure
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FIG. 3. Results from spike-in dataset dS1. A–F, volcano plots of the data normalized with the respective algorithms; red are DE, blue are nDE
proteins; dashed horizontal line is q = 0.05; G, number of proteins correctly (red) and falsely (blue) identified as DE by the respective algorithms;
H, log2 fold changes of the true and false positives, dashed lines indicate correct value; I, distribution of the q-values of true and false positives.

Normalization by Variance and Inherent Correlation Structure
discovered, while the majority of identifications was shared
with other algorithms (Fig. 6L). Identification of proteins from
the cross-validated pathways was comparable across all al-
gorithms (Fig. 6M). Of note, cross-validation in this dataset
had been performed by transcriptomic data. As commonly
known mRNA levels generally do not correlate well with
protein abundances (35) but regulation status (i.e., nDE or DE)
can sufficiently be determined on transcriptome level too (36).
In this latter sense, we regarded the transcriptomic cross
validation as a qualitative confirmation of DE pathways.
dC2 offered more comparisons due to the variety of path-

ological subtypes covered by the dataset. N = 250 (16%)
Mol Cell Proteomics (2022) 21(9) 100269 7



FIG. 4. Results from tandem mass-tagged spike-in dataset dS2. A and B, heatmaps showing sensitivity and specificity of the DE proteins
identified by the specific algorithm (color ranges from 0 to 100% [subplot A] and 80 to 100% [subplot B]); C–H, quantitative range of the
normalized data; the dashed line is the linear regression of the data pooled across replicates; boxplots show data distribution per replicate,
grouped around their true x-axis value; I–K, receiver operating characteristic of the overall performances.

Normalization by Variance and Inherent Correlation Structure
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FIG. 5. Results from spike-in dataset dS3. A and B, heatmaps showing sensitivity and specificity of the DE proteins identified by
the specific algorithm (color ranges from 0 to 100%); C–H, quantitative range of the normalized data; the dashed line is the linear
regression of the data pooled across replicates; boxplots show data distribution per replicate, grouped around their true x-axis
value.

Normalization by Variance and Inherent Correlation Structure

Mol Cell Proteomics (2022) 21(9) 100269 9



FIG. 6. Results from complex biological dataset dC1. A–H, cumulative distribution of the cross-validated proteins associated with the
respective pathways; x-axis is the protein order calculated by Normics’ rank sum R, higher index correlates with higher DE likelihood according
to our approach; small subplots underneath the x-axis show the distribution of the individual proteins when ranked by Normics; I, cumulative
distribution of the significant DE proteins identified by Normicsmedian; J, cumulative absolute fold changes (absolute log2 values summed up) of
the significant DE proteins identified by Normicsmedian; K, number of significant DE proteins detected after normalization with the different al-
gorithms; L, Venn diagram of the significant DE proteins by five of the six algorithms (for better visualization); M, accordingly for the DE proteins
belonging to either subset from subplots B-H.

Normalization by Variance and Inherent Correlation Structure
proteins were used for Normics normalization, more than in
dC1 due to increased missingness in this dataset. In the raw-
intensities dataset, the distribution of p-values (without FDR
10 Mol Cell Proteomics (2022) 21(9) 100269
correction) was most markedly deviant from a uniform distri-
bution for Normicsmedian in four of six comparisons (Fig. 7, A–
F). Both Normics variants increased identification of DE



FIG. 7. Results from complex pathological dataset dC2. A–F, quantile plot of the p-value distributions of the raw intensities normalized
without fraction normalization (as included in MaxLFQ); G, heatmap summary of the number of proteins identified as DE (color range per
comparison, excluding the nonnormalized input data); H, in analogy to subplot G with MaxLFQ-normalized intensities as input; Normal, Normal
mucosa; CAD, conventional adenoma; SSA, sessile-serrated adenoma; TSA, traditional serrated adenoma.

Normalization by Variance and Inherent Correlation Structure
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proteins markedly (Fig. 7G), even when the raw data were
normalized with MaxLFQ first (Fig. 7H). The 200 proteins with
the highest Normics ranks showed a broadened spectrum of
biological functions compared with the subset with the lowest
ranks (Fig. S1).

DISCUSSION

Proteomic analyses in biomedical research are often used
to evaluate complex cohorts with unknown structures. New
patterns and biomarker candidates are sought and require
high sensitivity and low numbers of false positives.

ICS and CV-Based Identification of Housekeeping Proteins

We tested our theoretical considerations to identify nDE
housekeeping proteins based on their CV and mean correla-
tion coefficient ρ, our parameter for ICS. Simulated and
spike-in data confirmed the stipulated relationship with cir-
cumscribed clusters of nDE and DE proteins. In complex
datasets, with a lack of known true DE proteins, we found a
similar data structure with an inverse correlation of CV and ρ.
We used a cross-validated proteomic dataset from an animal
study, for which our algorithm attributed high likelihood of
being DE to those proteins that in fact belonged to the regu-
lated pathways.
Our algorithm does not depend on the a priori definition of

sample groups, replicates, batches, or other parameters (i.e.,
the experimental design matrix). This makes our approach
more versatile and easier to use than, e.g., mixed-effects
models (37) and normalization extends beyond predefined
sources of variation.

Relative Performance

The similarity of protein expression patterns across samples
was investigated in simulated proteomic data. Both Normics
variants performed robustly and showed the lowest number of
outliers compared with median, quantile, cyclic LOESS, or
VSN normalization. Normics with sequential VSN consistently
outperformed VSN alone across the stochastically varied
parameter space of the simulation (Fig. 2).
In spike-in datasets (Figs. 3–5) both Normics variants per-

formed better than median, quantile, cyclic LOESS, or VSN in
the majority of cases. The stable performance with high
sensitivity, low numbers of false-positive DE proteins, and
neither over- nor underestimation of quantitative differences
was unique to Normics and Normicsmedian. While the quanti-
tative range in dS3 (UPS1 spike-in; (29)) was similarly retrieved
by all algorithms, the share of DE proteins was very low in this
dataset (3%, Table 1), which limits its usability to discern al-
gorithm performance.
Median normalization is widely used as an intuitive

normalization method. In contrast to VSN and Normics,
however, it relies solely on the inertness of the median against
varying and skewed distributions and does not provide a
12 Mol Cell Proteomics (2022) 21(9) 100269
parameter for adjustment to scenarios with high or unbal-
anced shares of DE proteins. In the latter, it will fail deter-
ministically, exemplarily portrayed for dS1 in Figure 3D, and
mirrored by the higher number of outliers with considerably
increased errors in the simulated data. Also, specificity in
differential expression analysis is generally decreased in all
datasets (dS1-3, where this information was available) and the
number of significant DE proteins was relevantly lower than
with both Normics variants.
LOESS normalization is similarly based on the majority of

proteins being nDE, with its least squares estimator adding
susceptibility to distortion by outliers (38). It exhibited reduced
and uneven performance including considerable quantitative
distortion in dataset dS2 (Fig. 5H) and low specificity (Fig. 3F).
Quantile normalization, which aligns sample distributions,
demonstrated similarly reduced performance. It has been
shown to reduce statistical power (39).
Of note, VSN performed considerably worse in dS2

compared with all other datasets. Most likely this is due to a
special feature of this dataset: the protein intensities of each
sample were reported as ratios relative to a control sample.
While this is necessary for the combination of TMT data from
multiple sample sets via a common standard or of different
fractions into a single quantitative readout, differences in
average intensities are leveled out, blurring the variance-to-
intensity relationship underlying VSN normalization.
Although the share of DE proteins in this dataset was
considerably lower than the chosen VSN quantile (0.2 versus
0.5) sensitivity, specificity and quantitative data structure
were markedly reduced. Normics, using VSN on the
normalization subset only, did not suffer from such a
distortion. Nonetheless, Normicsmedian should be used with
data reported as ratios.
In complex datasets with relevant biological and patho-

logical alterations (Figs. 6–7) both Normics variants were
able to normalize the data based on only few proteins with
higher numbers of DE proteins. Most of these identifications
were shared with at least one other algorithm, indicating
improved but not distorted normalization compared with the
other algorithms. In six of seven comparisons of biological
or pathological groups considerably more proteins were
significantly identified as DE by the Normics approach.
Cytoskeleton-related proteins and GAPDH, which are likely
to be nDE (at least in the tissue of the same type) and are
used as housekeeping controls (40, 41), were enriched in
Normics normalization subsets in dC1. Members of cross-
validated regulated pathways in dC1 were correctly
excluded from the normalization subset by Normics. p-Value
distribution was most relevantly shifted to higher signifi-
cance with Normicsmedian in the complex pathological
cohort dC2.
Figure 8 summarizes our recommendations concerning the

application of different normalization algorithms for different
scenarios.



Normalization by Variance and Inherent Correlation Structure
Application for Filtering of Relevant DE Proteins for
Downstream Analysis

Variance-based filtering of omics datasets has been pro-
posed as a means to reduce the number of statistical tests,
which can be helpful for reducing type II errors (22). Normics
creates a ranking list of all candidate proteins in the dataset
that correlates with their likelihood of being DE. This list, which
is provided separately by the algorithm, can be used to filter
the data much in the same way. Normics’ independence from
a priori knowledge of experimental conditions ensures statis-
tical independence for type I error control as outlined by
Bourgon et al. (22). In terms of the main use case of this work,
explorative biomedical biomarker screens, this is particularly
useful for unsupervised cluster analysis. Several of the most
commonly used algorithms, such as nonnegative matrix
factorization (42), are iterative stochastic optimization prob-
lems. These can be prone to local minima and benefit from
prefiltered input data (43).

Combination With Peptide-Level Normalization

Proteomic data can be normalized on both peptide and
protein levels. The combination of extracted ion currents from
multiple fractions and samples into final peptide and protein
quantities has been addressed by MaxLFQ (28). This algorithm
roots in minimizing the overall peptide variation and implies
the assumption that a high share (undefined more than the
majority) of proteins and peptides is nDE. As fractionation is
usually not just a parallel replication of measurements but the
application of an orthogonal method of peptide separation
(resulting in bell-shaped peptide distributions across frac-
tions), it is not clear whether this assumption always holds
true. While MaxLFQ demonstrates robust performance in our
comparison, downstream normalization with Normics reduces
the number of false positives (dS1, Fig. 3G), corrects quanti-
tative distortion (Fig. 3H) and increases the number of identi-
fied DE proteins (dC2, Fig. 7H). This hints at some variance
being reduced by MaxLFQ (presumably on peptide/fraction
level) while residuals remain. Care must be taken when
unfractionated samples have been normalized with MaxLFQ:
the main assumption of a majority of nDE proteins is then likely
to introduce distortions that prevent normalization with Nor-
mics. Of note, Normics can be applied on peptide level too if
there is reasonable evidence of “constitutively” prevalent
peptides across fractions.

Previous Comparisons and Proteome-Specific Approaches

Several algorithms have been proposed specifically for
proteomic data: DEqMS was developed by Zhu et al. (10) to
reduce variance based on the number of peptides used for
quantitation, building upon limma methods. MAP (11) was
proposed as algorithm for the normalization of isobaric-
labeled data with a priori defined experimental conditions,
similar to an approach proposed by Zhang et al. (44). These
latter two were not investigated as we specifically set out to
address the need for normalization methods independent of
known biological groups. DEqMS focuses on the number
peptide spectrum matches as a prior to statistical DE testing
and is, as such, not a normalization algorithm per se. It was
therefore not included in the present comparison but can be
combined with the additional information of peptide spectrum
match counts in downstream DE analysis.
In a systematic comparison Valinkangas et al. (8) investi-

gated different normalization algorithms and found VSN to
perform systematically well. In our analysis VSN demonstrated
good normalization results but suffered from quantitative
distortion in some cases (Fig. 4E), especially in relation to
ratio-reported data (as explained above). In almost all cases
including simulation data Normics could improve robustness
and accuracy and identified more DE proteins. Apart from
offering added value in providing a ranking list for downstream
data filtering, Normics was the only algorithm that performed
well in all scenarios. This underlines its usability in settings
with unknown premises such as biomarker discovery screens
across multiple conditions and stages.

CONCLUSIONS

Avoiding general assumptions about the share, extent, and
structure of true biological variance, we demonstrate for the
first time the usability of the ICS for the normalization of omics
data. We provide a theoretical link between mean correlation
and nDE likelihood and embed our approach in both CV-
based nDE subset selection and established normalization
algorithms. The resulting Normics approach yields consistent
results and outperforms standard algorithms in sensitivity,
specificity, and quantitative accuracy. The computation is
straightforward and can be expanded to further types of omics
data. A priori definition of an experiment design matrix is not
necessary, and normalization is not limited to known factors of
sample variation.

Limitations

Like the other algorithms tested in this study, our approach
is data-driven and does not depend on a priori definition of
experimental conditions and other sample factors. While this
ensures easy and unbiased application, further downstream
normalization steps with inclusion of additional information
can further reduce nontarget variance (sample heterogeneity
in the sense of the experimental design) and can improve
statistical power. Normics-normalized data can be combined
with such algorithms such as linear mixed models (37).
A frequently arising issue in clinical bulk tissue proteomics is

the contamination by nontarget tissue and cells to an un-
known degree. Normalization in the sense of this study is
generally unable to unravel this contamination, with Normics
being no exception to this rule. Thorough preanalytical sample
Mol Cell Proteomics (2022) 21(9) 100269 13



FIG. 8. Proposed application scheme of different normalization algorithms including both Normics variants.
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preparation and dissection therefore remains of pivotal
importance.
The measures for both variance and correlation structure

can be varied to be based, for instance, on different correla-
tion coefficients or different strategies of variance correction/
estimation. For the former, we chose Spearman’s coefficient
due to its relative robustness against heterogeneous data
distributions (in which Pearson’s coefficient would be sus-
ceptible to outliers). Further parameters and patterns such as
the variances of the correlation coefficient could also be
investigated and might contain additional information. Iterative
variants minimizing the mean correlation of the nDE subset are
also possible.
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