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The quinolone class of antimicrobial agents is one of most widely used classes of antimicrobial agents in outpatient and inpa-
tient treatment. However, quinolone resistance in gram-positive and gram-negative bacteria has emerged and increased globally. 
This resistance limits the usefulness of quinolones in clinical practice. The review summarizes mechanisms of quinolone resistance 
and its epidemiology and implications in the most common clinical settings, urinary tract infections, respiratory tract infections, 
intraabdominal infections, skin and skin structure infections, and sexually transmitted diseases.
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Introduction

Quinolones to varying degrees inhibit the bacterial enzymes 

DNA gyrase and topoisomerase IV, which are responsible for in-

troducing negative supercoils into DNA in the case of gyrase 

and for relieving topological stress arising from the transloca-

tion of transcription and replication complexes along DNA [1, 2]. 

Formation of drug-enzyme-DNA complexes blocks DNA rep-

lication [3]. Quinolones have been prescribed widely to treat 

respiratory tract infections, including tuberculosis, urinary 

tract infections (UTIs), intraabdominal infections, skin and 

skin structure infections, sexually transmitted diseases, and 

bone and joint infections. They have also been used for pro-

phylaxis in neutropenic patients with cancers, in cirrhotic pa-

tients at risk for spontaneous bacterial peritonitis, and in uro-

logic surgery [4, 5]. The national use of quinolones steadily 

increased from 1994 to 2000 in US intensive care units (ICUs), 

and this use was significantly associated with decreased over-

all susceptibility to ciprofloxacin in the same period [6]. The 

consumption of quinolones doubled during 2001-2012 in a 

Korean hospital with the increased ciprofloxacin resistance in 

clinical isolates of Escherichia coli in ICUs [7]. While newer 

class quinolones that expand the spectrum of activity to in-

clude gram-positive bacteria and even anaerobes have been 

developed, quinolone resistance has nonetheless increased in 

many bacterial species, and no new quinolones with activity 

against gram-negative bacteria greater than that of ciprofloxa-

cin have yet become available. The increase in quinolone re-
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sistance is now threatening the clinical utility for treatment of 

diverse infections [2, 8]. This paper summarizes mechanisms 

of quinolone resistance and its epidemiology and clinical im-

portance in major infectious diseases. 

Mechanisms of quinolone resistance

Mechanisms of quinolone resistance are generally classified 

as three types: 1) chromosomal mutations altering the drug tar-

get enzymes to reduce drug binding, 2) chromosomal mutations 

that increase expression of native efflux pumps that can trans-

port quinolones to the outside of the bacterial cell, and 3) plas-

mid-acquired resistance genes producing either protection of 

target enzymes, drug modification, or drug efflux [9]. 

Quinolone resistance mutations in the target enzymes gen-

erally occur first in the GyrA subunit of DNA gyrase in gram- 

negative bacteria or in the ParC subunit of topoisomerase IV in 

gram-positive bacteria [2]. These resistance mutations occur 

most often in a region referred to as the “quinolone-resis-

tance-determining region (QRDR)”, which encompasses ami-

no acids 51 to 106 in GyrA and 23 to 176 in ParC, with positions 

83 and 87 most common in GyrA and positions 80 and 84 most 

common in ParC [9-11]. These substitutions are thought to re-

sult in a reduced affinity of gyrase or topoisomerase IV for 

quinolones [12, 13]. In Staphylococcus aureus or Streptococcus 

pneumoniae, the primary target mutations occur most fre-

quently in ParC [14, 15]. In both gram-negative and gram-posi-

tive bacteria, combinations of mutations in both GyrA and 

ParC generally result in progressively higher levels of resis-

tance. Less often mutations in GyrB and ParE have also con-

tributed to resistance in clinical isolates.

Bacteria have a number of energy-dependent efflux systems 

in the cell membrane and envelope that can facilitate extru-

sion of potentially toxic agents, and many of these efflux 

pumps have broad substrate profiles that can include quinolo-

nes [16]. AcrAB-TolC is the major pump contributing to quino-

lone resistance in E. coli [2]. Mutations in acrR, which re-

presses acrAB, can increase pump expression [17]. In addition, 

mutations in marR, a repressor of marA, which activates acr-

AB and tolC, also causes an increase of efflux [18]. marA also 

decreases the expression of OmpF, outer membrane porin 

protein [19]. Consequently, marR mutations have the dual ef-

fect of decreasing influx and increasing efflux of quinolones. 

acrAB expression is also induced by exposure to salicylates 

and bile salts, and AcrAB confers relative resistance to bile 

salts, thereby facilitating the ability of E. coli to live the intesti-

nal tract [20]. Efflux pumps that include quinolones among 

their substrates have also been associated with resistance in a 

number of other gram-negative bacteria, being most exten-

sively studied in Pseudomonas aeruginosa. There are at least 

five known efflux pumps (MexAB-OprM, MexCDOpr-J, Mex-

EF-OprN, MexXY-OprM, and MexVW-OprM) that have been 

shown to efflux quinolones in P. aeruginosa [21]. In S. aureus, 

quinolone resistance has been associated with increased ex-

pression of NorA, NorB, and NorC pumps with both norA and 

norB overexpression regularly found in resistant clinical iso-

lates [2, 22, 23]. Efflux also contributes to quinolone resistance 

in S. pneumoniae and mycobacteria.  

Plasmid-mediated quinolone resistance (PMQR) was discov-

ered in 1998 in a clinical isolate of Klebsiella pneumoniae that 

could transfer low-level quinolone resistance to gram-negative 

bacteria [24]. The responsible gene for PMQR was named qnr 

(later designated qnrA), and Qnr protein was shown to bind 

and protect DNA gyrase and topoisomerase IV from inhibition 

by ciprofloxacin [2]. Qnr itself provides only low-level resis-

tance to quinolones, but its presence can facilitate the selection 

of additional resistance mutations [2]. It was soon discovered in 

a growing number of organisms and is broadly distributed geo-

graphically, including other K. pneumoniae strains in the Unit-

ed States [25, 26], E. coli isolates in Shanghai [27], and Salmo-

nella enterica strains in Hong Kong [28]. qnrA was subsequently 

followed by discovery of plasmid-mediated qnrS [29], qnrB [30], 

qnrC [31], and qnrD [32]. The qnrVC gene from Vibrio cholerae 

can also be located on a plasmid [33-35] or in transmissible 

form as part of an integrating conjugative element [36]. Recent-

ly, other PMQR mechanisms were identified. One is aac 

(6’)-Ib-cr, which is a variant of aac (6’)-Ib, which encodes an 

aminoglycoside acetyltransferase [37]. AAC (6’)-Ib-cr confers 

low-level ciprofloxacin resistance by acetylation of ciprofloxa-

cin at the amino nitrogen on its piperazinyl substituent. aac 

(6’)-Ib-cr has also been associated with other PMQR genes in-

cluding diverse qnr genes and beta-lactamase genes [38]. The 

other PMQR mechanism is plasmid-mediated quinolone ef-

flux. Two plasmid-mediated quinolone transporters have now 

been found: OqxAB [39] and QepA [40].

Urinary tract infections

E. coli, other Enterobacteriaceae, and Enterococcus spp. are 

the primary etiology of uncomplicated UTIs, with E. coli ac-

counting more than 75% of isolates [41]. Quinolones have been 

widely used for the treatment of UTI because of their in vitro 
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activity and high efficacy, especially in acute pyelonephritis 

and in catheter-associated UTIs [42, 43]. However, the in-

creased use of quinolones has been associated with increased 

rates of quinolone-resistance in clinical uropathogens. 

The overall resistant rate of ciprofloxacin for outpatient E. 

coli urinary isolates in the US and Canada during 2003-2004 

(North American Urinary Tract Infection Collaborative Alli-

ance, NAUTICA) was 5.4% [44]. However, the ciprofloxacin re-

sistance rate exceeded 20% in some areas. The ARESC (Anti-

microbial Resistance Epidemiological Survey on Cystitis) 

study, which was performed in nine European countries in-

cluding Russia and in Brazil during 2003-2006, showed that the 

ciprofloxacin resistance for E. coli isolates in the healthy wom-

en having uncomplicated lower UTIs was 8.3% [41]. Higher re-

sistance rates, however, were found in several countries, in-

cluding Brazil (10.8%), Spain (10.7%), Italy (12.5%), and Russia 

(13.6%). A recent surveillance study for gram-negative patho-

gens causing UTIs in Asia-Pacific regions, the SMART (the 

Study for Monitoring Antimicrobial Resistance Trends) study, 

showed 48.6% resistance to ciprofloxacin with wide range 

among different countries, from 10.0% in New Zealand to as 

high as 76.2% in Vietnam and 72.0% in China [45]. A nation-

wide study performed in 2006-2007 in Korea also showed 

28.4% ciprofloxacin resistance for E. coli isolates causing com-

munity-onset UTIs with dissemination of epidemic and viru-

lent ciprofloxacin-resistant E. coli clones such as sequence 

type 131 (ST131) and ST393 [46]. In a recent prospective Kore-

an nationwide surveillance during 2010-2012, the ciprofloxa-

cin resistance in E. coli isolates from women having commu-

nity-acquired acute pyelonephritis was 20.0% [47]. Another 

multicenter study in 2012 also showed similar (22.5%) cipro-

floxacin resistance in E. coli isolates from Korean women hav-

ing community-associated acute pyelonephritis [48]. 

The known risk factors for quinolone resistance in uropatho-

genic E. coli isolated from community-onset acute pyelone-

phritis are prior exposure to quinolones, previous hospitaliza-

tion, recurrent UTIs, previous invasive procedures, the 

presence of complicated UTIs, chronic diseases including 

neurologic diseases, age over 50 years, and presence of a uri-

nary catheter in the past 6 months [48-55]. It is not surprising 

that most of these studies showed that prior exposure to 

quinolones was a significant risk factor for quinolone resis-

tance in uropathogenic E. coli, because quinolone use was 

known to correlate with resistance of E. coli  isolates to 

quinolones [56-60]. Another concern caused by quinolone re-

sistance is its high association with extended spectrum be-

ta-lactamase (ESBL) production in Enterobacteriaceae [61]. 

The mechanism of this association is not fully known. The in-

terplay between prior heavy antibiotic use and conditions fa-

voring patient-to-patient transfer of multidrug-resistant or-

ganisms or the occurrence of transferable plasmids carrying 

genes conferring resistance to quinolones and other antimi-

crobials could be contributing factors [2, 61]. The choice of ap-

propriate antibiotics can be very limited in quinolone-resis-

tant, ESBL-producing uropathogens because of their 

mutlidrug-resistant nature. 

The clinical impact of increasing quinolone resistance in 

UTIs has contributed in part to the recent guideline in 2010 by 

the Infectious Diseases Society of America (IDSA) and the Eu-

ropean Society for Microbiology and Infectious Diseases (ES-

CMID) recommending non-quinolone antibiotics such as cef-

triaxone or aminoglycoside for initial treatment of acute 

pyelonephritis in locations where the resistance rate of com-

munity uropathogens exceeds 10% [42]. Quinolones are not 

recommended as a first-line option for empiric treatment of 

serious complicated UTIs in some countries in the Asia-Pacif-

ic region with high rates of quinolone resistance (>20%) [62]. 

However, data are insufficient to make a recommendation 

about what quinolone resistance level requires an alternative 

agent in conjunction with or to replace a fluoroquinolone for 

treatment of pyelonephritis [42]. Whether the quinolone resis-

tance of uropathogens affects clinical outcomes of patients 

with UTIs is controversial, since high drug concentrations in 

urine can be achieved in patients with normal renal function. 

There are few studies dealing with these issues. Discordant 

treatment for patients with community-acquired bacteremic 

acute pyelonephritis, most of which were caused by ciproflox-

acin-resistant E. coli, was associated with poorer clinical out-

comes in one Korean study [63]. In another study in Korea 

where the prevalence of ciprofloxacin resistance exceeds 10%, 

use of ciprofloxacin for initial empirical therapy of communi-

ty-onset uncomplicated acute pyelonephritis caused by E. coli 

had no serious adverse outcomes, if its use was modified ap-

propriately on the basis of susceptibility data, even for women 

infected with ciprofloxacin-resistant E. coli [64]. However, this 

study had an insufficient statistical power to detect a 10% dif-

ference due to a limited number of enrolled cases. Clinicians 

usually follow the breakpoints set for blood stream infections 

for the susceptibilities of urinary isolates of Enterobacteriace-

ae for commonly used quinolones such as ciprofloxacin and 

levofloxacin because there are no UTI-specific breakpoints in 

the recommendations of Clinical Laboratory Standard Insti-

tute (CLSI) [65]. It is noteworthy that correlations of resistance 

and outcome appeared better for UTIs complicated by bacte-
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remia. Further studies are warranted to determine if UTI-spe-

cific breakpoints may provide more accurate predictions of 

clinical outcomes in UTI without bacteremia.

Respiratory tract infections

S. pneumoniae is a major cause of community-acquired 

pneumonia, and guidelines for empiric antibiotic choices al-

ways list anti-pneumococcal antibiotics, including respiratory 

quinolones [66, 67]. The emergence of pneumococcal resis-

tance to the beta-lactam and macrolide antimicrobials has 

raised concerns regarding the use of these agents for the treat-

ment of pneumococcal infections. Therefore, respiratory 

quinolones such as levofloxacin, moxifloxacin, and gemifloxa-

cin are selectively recommended for the treatment of patients 

having community-acquired pneumonia. As the use of quino-

lones increased, fluoroquinolone-resistant S. pneumoniae has 

emerged in many countries and increased in some hot spots 

such as Canada, Spain, and Hong Kong [68]. 

The resistance rates of S. pneumoniae for respiratory quino-

lones in North America remain low (<2%) [69, 70]. In Europe-

an countries, pneumococcal resistance to quinolones was re-

ported to be 5.2% in 2012 [71]. However, it was very low 

(<0.7%) in two German multicenter studies (MOXIAKTIV 

Study and German CAPNETZ surveillance study) [72, 73]. The 

resistance rates to quinolones in the Asian Network for Sur-

veillance of Resistant Pathogens (ANSORP) showed resistance 

rates of 1.7% and 0.4% for levofloxacin and moxifloxacin, re-

spectively, with highest rates of levofloxacin resistance in iso-

lates from Taiwan (6.5%) and Korea (4.6%) [74]. 

The known risk factors for infection or colonization by levo-

floxacin-resistant S. pneumoniae are previous exposure to 

quinolones, healthcare-associated infection, residence in a 

nursing home, presence of chronic obstructive pulmonary 

disease, and presence of cerebrovascular disease [75-77]. Flu-

oroquinolone resistance was not observed in a German study 

in spite of high usage of fluoroquinolones for the treatment of 

patients having community-acquired pneumonia [73]. The 

authors speculated that the low resistance may be related to 

the greater usage of levofloxacin or moxifloxacin relative to 

other quinolones with lower potency for the treatment of 

community-acquired pneumonia. 

The clinical implications of quinolone resistance in S. pneu-

moniae have been little studied. The influence of the resis-

tance on the overall 30-day mortality was conflicting [77, 78], 

but the numbers of the cases of levofloxacin-resistant S. pneu-

moniae have been relatively small, limiting the power of these 

studies to correlate resistance and clinical outcome. Further 

investigations that include more cases with resistant S. pneu-

moniae will be needed to assess the clinical implications in 

community-acquired pneumonia. A fatal levofloxacin failure 

case has been reported in treatment of a bacteremic patient 

infected with levofloxacin-resistant S. pneumoniae [79]. It is 

likely that in the presence of bacteremia complicating pneu-

mococcal pneumonia outcomes for resistant S. pneumoniae 

may be poor.

Haemophilus influenzae and Moraxella catarrhalis, which 

are also important respiratory pathogens in community-ac-

quired pneumonia, have largely remained highly susceptible 

to quinolones [72, 80]. For respiratory pathogens isolated from 

healthcare-associated pneumonia, such as Enterobacteriace-

ae, P. aeruginosa, and Acinetobacter baumannii, the quino-

lone resistance rates have been higher, but with regional dif-

ferences [81-85]. A prospective surveillance study conducted 

by the ANSORP from 2008-2009 also showed a high ciproflox-

acin resistance profile of K. pneumoniae (31.2%), P. aerugino-

sa (30.1%), and Acinetobacter spp. (80.7%) in Asian countries, 

including Korea [81]. Quinolone-resistant isolates were fre-

quently multidrug-resistant. Local resistance patterns should 

be considered when quinolones are prescribed for the treat-

ment of healthcare-associated pneumonia.

Intraabdominal infections

Intraabdominal infections are usually caused by mixed aer-

obic and anaerobic microorganisms, and the major pathogens 

in community-acquired intraabdominal infections are coli-

forms (Enterobacteriaceae, especially E. coli) and Bacteroides 

fragilis [86]. Among quinolones, moxifloxacin as a single 

agent therapy or a combination of metronidazole with cipro-

floxacin or levofloxacin has been recommended for the treat-

ment of mild to moderate community-acquired intraabdomi-

nal infections. Combination therapy with metronidazole and 

quinolones is an option for the patients with high-severity 

community-acquired intraabdominal infections [86]. 

In the study for monitoring antimicrobial resistance trends, 

ciprofloxacin susceptibility of E. coli isolates from the patients 

having intraabdominal infections at 37 hospital centers in 

North America has decreased from 84.4% to 72.2% between 

2005 and 2010 [87]. For other major pathogens such as K. 

pneumoniae, P. aeruginosa, Enterobacter cloacae, Klebsiella 

oxytoca, and Proteus mirabilis, the susceptibilities for quino-



Kim ES, et al • Importance of quinolone resistance www.icjournal.org230

lones remained stable. In Europe, ciprofloxacin resistance of 

E. coli isolates from community-associated or hospital-associ-

ated intraabdominal infections in 2008 was 17.8% and 29.5%, 

respectively [88]. The quinolone resistance of E. coli isolates 

from intraabdominal infections in Asia has been more serious 

with >60% ciprofloxacin resistance in E. coli in China [89-91]. 

In a recent study, quinolone resistance of gram-negative bacil-

li, most of which were E. coli and K. pneumoniae, in bacte-

remic intraabdominal infections was 22.9% in Korea [92]. The 

quinolone resistance in E. coli strains in fecal flora was related 

to the recent quinolone use [93]. In a Spanish study, a strong 

linkage between quinolone resistance in E. coli in human fecal 

flora and quinolone use in food animals, especially poultry, 

was also suggested [94]. The prevalence of quinolone-resistant 

E. coli in the feces of healthy persons in the community, in-

cluding children who had never received quinolones, was 

high (24% in adults and 26% in children). Therefore, the in-

crease of quinolone resistance in E. coli in intraabdominal in-

fections is likely the result of increasing quinolone use. 

A surveillance study on antimicrobial susceptibility in clini-

cal isolates of Bacteroides spp. from 13 European countries in 

2008-2009 showed that the overall resistance rate to moxiflox-

acin also increased from 9% to 13.6% [95]. While the current 

guideline recommends a quinolone as one choice for treat-

ment of community-acquired intraabdominal infections, 

quinolones should not be used unless hospital surveys indi-

cate >90% susceptibility of E. coli to quinolones [86]. 

Salmonella spp., including serovar Typhi and Paratyphi, with 

reduced susceptibility to the fluoroquinolones have increased 

in humans and animals, especially in Europe, Southeast Asia, 

and the Indian subcontinent [96]. While the ciprofloxacin 

non-susceptible S. Typhi or S. Paratyphi which show a mini-

mal inhibitory concentration (MIC) >1 μg/mL were not com-

mon, strains with reduced susceptibility to ciprofloxacin or 

resistance to nalidixic acid represented > 90% of strains in In-

dia and Vietnam, and included a high prevalence of multidrug 

resistance [97]. The response to fluoroquinolones is known to 

be impaired in infections with S. typhi isolates that have re-

duced susceptibility to ciprofloxacin, with longer fever clear-

ance times and more frequent treatment failures. 

Quinolone resistance in Shigella has also become serious 

globally, especially in Asia and Africa. In a systematic review, 

resistance rates to nalidixic acid and ciprofloxacin in the 

Asia-Africa region were 33.6% and 5.0%, respectively, values 

10.5 and 16.7 times those of the Europe-America region [98]. 

Moreover, resistance to nalidixic acid and ciprofloxacin in 

Asia–Africa progressively increased each year, reaching 64.5% 

and 29.1%, respectively, in 2007–2009, while isolates in Eu-

rope-America remained at low levels of resistance (<5.0% and 

<1.0%, respectively). There are few reports of clinical failures 

in association with reduced susceptibility to quinolones or re-

sistance to nalidixic acid [99, 100], but those strains may be 

associated with a worse clinical outcome and failure of bacte-

rial eradication when treated with ciprofloxacin [101]. 

Resistance to ciprofloxacin or nalidixic acid in Campylo-

bacter spp. is common in the US and in Europe, with a higher 

prevalence in Campylobacter coli than Campylobacter jejuni 

[102]. These high levels of resistance have been related to vet-

erinary use of quinolones with increasing quinolone resistance 

in both animals and humans [96]. The rate of ciprofloxacin-re-

sistant Campylobacter isolates from humans with gastro-

enteritis was 24% in a nationwide surveillance in Korea in 

2007-2009 [103]. Most cases of Campylobacter enteritis do not 

require antimicrobial treatment, because it is usually a mild 

and self-limiting illness. However, Campylobacter isolates that 

are resistant to ciprofloxacin have also been associated with 

bacteriologic or clinical treatment failure [104, 105]. 

Skin and skin structure infections 

The most common pathogens in skin and skin structure in-

fections are S. aureus and Streptococcus pyogenes. They are 

also major pathogens in complicated skin and skin structure 

infections with polymicrobial etiology that also include 

gram-negative organisms and anaerobes. The quinolones 

have antibacterial activity for many of these pathogens, excel-

lent oral bioavailability, and favorable penetration into soft tis-

sues [106]. 

S. pyogenes has been universally susceptible to beta-lact-

ams, which are the drugs of choice for treatment, and quino-

lones are generally not indicated for treating S. pyogenes 

in-fections. While the incidence of quinolone resistance in S. 

pyogenes is still low globally [107], some surveillance studies 

have revealed an increase of the prevalence of S. pyogenes 

with reduced susceptibility to quinolones [108, 109]. 

For staphylococci, the early investigations with the new flu-

oroquinolones, particularly ciprofloxacin, demonstrated in vi-

tro activity against both methicillin-susceptible and methicil-

lin-resistant staphylococci [110, 111]. However, quinolone 

resistance developed rapidly in the early days of quinolone 

therapy for methicillin-resistant S. aureus (MRSA) usually in-

the healthcare setting. While quinolone resistance in methicil-

lin-susceptible S. aureus (MSSA) is substantially less com-
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mon, resistance in MRSA is common worldwide, including 

Korea [112, 113]. A recent international study showed a simi-

lar difference in levofloxacin resistance profiles between 

MSSA and MRSA isolates from complicated skin and skin 

structure infections: 11.1% versus 70.3%, respectively [114]. 

Community-associated MRSA (CA-MRSA) has emerged in 

many countries and showed susceptibility to a wide variety of 

non-beta-lactam antimicrobials, including quinolones [115]. 

CA-MRSA was the most common identifiable cause of skin 

and soft tissue infections among patients treated in US emer-

gency rooms, and most clones were of the USA300 pulsed-

field type containing Panton-Valentine leukocidin [116]. In a 

recent study, however, only 57.4% of USA300 isolates from 

complicated skin and skin structure infections in Europe and 

America were susceptible to gatifloxacin, indicating a marked 

change quinolone susceptibility of CA-MRSA [117]. 

Quinolones alone or in combination with other antibiotics 

can be one of option for treatment of mild to moderate diabet-

ic foot infections, which are frequently mixed infections [118]. 

They can be especially useful to treat combined osteomyelitis 

due to their ability to penetrate bone tissue [119]. Quinolones 

with other antibiotics such as anti-MRSA and/or anti-anaer-

oblic agents also can be used for empiric treatment of compli-

cated polymicrobial skin and skin structure infection, such as 

polymicrobial necrotizing fasciitis [120]. However, increasing 

resistance, especially in MRSA, frequently limits the wide use 

of quinolones in skin and skin structure infections. Thus, 

quinolones should be used with caution in skin and skin struc-

ture infections. 

Sexually transmitted diseases 

Fluoroquinolones were once highly effective antimicrobials 

in treating gonococcal infections, and ciprofloxacin was rec-

ommended by the US Centers for Disease Control and Preven-

tion (CDC) treatment guideline in 1993 [121]. However, cipro-

floxacin resistance emerged in Neisseria gonorrheae in Hawaii 

and the West Coast in the late 1990s and by 2004 had also 

emerged in men who have sex with men. By 2006, 13.8% of N. 

gonorrheae isolates exhibited resistance to ciprofloxacin with 

its presence in all US regions and the heterosexual population. 

The prevalence of ciprofloxacin-resistant N. gonorrheae iso-

lates from male patients also increased from 26% in 2000 to 

83% in 2006 in Korea [122]. Treatment failure was very fre-

quent in treating with ciprofloxacin for quinolone-resistant N. 

gonorrheae infection [123]. The dissemination of the quino-

lone resistance in N. gonorrheae was facilitated by the failure 

of treatment to eradicate the organism, resulting in an in-

creased likelihood for person-to-person transmission, locally, 

nationally, and internationally [96]. CDC stopped recom-

mending fluoroquinolones as empiric treatment for gonococ-

cal infections in 2007 [124].

Conclusion

The quinolones are an important and widely used class of 

antimicrobial agents in clinical medicine. Resistance has, how-

ever, become widespread in a number of human pathogens 

driven in part by use of quinolones in humans. Physicians 

should be aware of risk factors associated with quinolone re-

sistance, the most important of which is prior quinolone expo-

sure. Although there has been a controversy about the clinical 

implications of quinolone resistance in some clinical situa-

tions, such as UTIs, resistance has frequently limited the use of 

these useful antibiotics, and is particularly likely to adversely 

affect outcomes in bacteremic patients or patients with infec-

tions at sites of poor drug delivery. Ongoing surveillance of lo-

cal and national resistance trends will be important, and care-

ful and select use of quinolones will be warranted.
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