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ABSTRACT

The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous
pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress
tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in
industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of
novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds
desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability.
Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely
because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss
different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and
the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner
in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of
products successfully produced in large scale in a sustainable and economically profitable way.
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INTRODUCTION

There has been a surge of interest in the commercial produc-
tion of bio-based chemicals with microorganisms used as cell
factories (Becker and Wittmann 2012; Chung et al. 2015; Tsuge
et al. 2016). The yeast Saccharomyces cerevisiae has been a fa-
vorite organism in this respect because of its long-standing use
in classical industrial applications, such as beer and wine pro-
duction, its extensive toolbox for genetic modification and the
vast knowledge on its physiology, molecular biology and genet-
ics (Kampranis and Makris 2012).

Although industrial yeast strains have great robustness, they
often lack tolerance to specific stress factors when used as cell
factories. A first near-universal stress factor is the toxicity of the
end product, which has to be accumulated with high yield and
maximal titer in order to ensure economic viability of the in-
dustrial process. Favored chemicals for cell factory production
like organic acids exert strong inhibition on the metabolism of
microorganisms, including yeast (Narendranath, Thomas and
Ingledew 2001). Even the accumulation of very high levels of
ethanol in biofuel production is toxic to the yeast (Stanley et al.
2010a; Pais et al. 2013). A second source of stress factors is the

Received: 31 March 2017; Accepted: 4 June 2017
C© FEMS 2017. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, pro-
vided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

1

http://www.oxfordjournals.org
mailto:johan.thevelein@mmbio.vib-kuleuven.be
mailto:journals.permissions@oup.com


2 FEMS Yeast Research, 2017, Vol. 17, No. 4

BIOETHANOL
Pretreatment
-Physical
-Chemical
-Physiochemical
-Biological

Enzymatic 
hydrolysis

45-55°C

Fermentation

30-35°C

Enzymes

Distillation

Yeast

Product 
recovery

Inhibitor stress
-Weak acids
-Furaldehydes
-Phenolic compounds

Metabolic stress
-Redox imbalance
-Protein burden
-Toxic metabolites
Environmental stress
-High temperature
-High osmolarity

Product stress
-Ethanol
-Organic acids

1G feedstocks

Energy grass, poplar, willow,
  bagasse, paper sludge …

BIO-BASED 
CHEMICALS

Corn, wheat, sorghum,
 sugar cane, sugar beet

2G feedstocks

Figure 1. Schematic overview of the different steps in the industrial production of bioethanol and bio-based chemicals with first- and second-generation substrates
using yeast cell factories and the most common stress factors associated with the different subprocesses.

composition of the substrate and its pretreatment process. Pure
sugar streams can be used as feedstock for cell factory pro-
duction of bio-based chemicals, but because of the low value
of bulk chemicals and biofuels, the use of cheaper substrates
is preferred. The latter are usually much more heterogeneous
and often contain high levels of inhibitors, either present in the
substrate itself or generated during the pretreatment process
(Palmqvist and Hahn-Hägerdal, 2000). This necessitates the en-
gineering ofmuch higher tolerance against these inhibitors than
is generally present in natural or industrial strains of species
used as cell factories, including yeast. A third major stress fac-
tor is high temperature. Enzymatically catalyzed reactions and
thus also microbial production processes for bio-based com-
pounds proceed faster at higher temperature, which is favored
because it enhances the productivity of the commercial plant
and thus reduces capital expenses (capex). In addition,microbial
fermentation processes are exergonic. They produce heat, and
large-scale fermentors thus have to be properly cooled. In com-
bination with changing environmental temperatures, this can
cause temperature gradients and fluctuations in the fermentors
that can compromise fermentation rate and productivity (Abdel-
Banat et al. 2010). Additional stress factors include high osmolar-
ity. Because of the need to achieve high product titers, very high
gravity fermentations are required, increasing osmotic pressure
during fermentation. Salt tolerance can be important because
of high salt levels introduced during the pretreatment, the use
of new feedstocks such as seaweed, the cleaning and water re-
circulation practices (Maiorella, Blanch and Wilke 1984; Silver-
stein et al. 2007; Wi et al. 2009; Chavez-Rodriguez et al. 2013; Wei,
Quarterman and Jin 2013). These stress factors not only require
a high level of general robustness of the cell factory microor-
ganism but also much higher tolerance to specific stress factors
than usually present even in the most robust industrial strains.
The stress factors very often also reinforce each other making it
even more difficult to reach the required level of fermentation
performance under real industrial conditions.

A rather unexpected outcome of the development of mi-
crobial cell factories is that the new artificially engineered
metabolic pathways tend to be much more sensitive to stress-
ful conditions than the intrinsic metabolic pathways of the or-
ganism. This is very clear for instance in the co-fermentation of
glucose and xylose in second-generation bioethanol production,
in which the artificially engineered xylose fermentation turns
out to be much more sensitive to inhibitors such as acetic acid
compared to glucose fermentation (Bellissimi et al. 2009). This is
likely due to the extensive adaptation and selection that the mi-
croorganism has undergone during evolution when fermenting
its natural substrates under myriads of different environmental
conditions, whereas fermentation of the artificial substrate has
never undergone a similar fine-tuned integration in the regula-
tory network governing microbial metabolism.

This review provides an overview of the most important
stress factors for yeast cell factories in industrial production pro-
cesses (Fig. 1). Many of these stress conditions are general for all
fermentations. However, due to the nature of the biomass and
the pretreatment process used in second-generation bioethanol
production, yeast cell factories are confronted with several ad-
ditional stress factors in this process.

To improve the yields and titers, superior alleles conferring
tolerance to specific stress factors could be engineered in indus-
trial strains using several methods, with one of the most power-
ful the recently developed, highly precise and scarless CRISPR-
Cas9 genome editing approach.

Also, several non-conventional yeast species display specific
properties that are highly desirable in the fermentation indus-
try such as thermotolerance, weak acid tolerance and osmotol-
erance (Kluyveromyces marxianus, Zygosaccharomyces bailii andDe-
baryomyces hansenii, respectively) (Radecka et al. 2015). However,
despite the superior growth of these yeast species under the
specific stress condition, their implementation in industrial fer-
mentations is often troublesome due to absent or very limited
fermentation capacity and a low general robustness.
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RELEVANT STRESS FACTORS

Industrial production processes put a multitude of stresses on
yeast cell factories. Physical and chemical extracellular stresses
include temperature, osmotic pressure and the presence of lig-
nocellulosic biomass-derived inhibitors. Furthermore, produc-
ing recombinant proteins in yeast cell factories can create a
protein burden on the cell and engineering novel metabolic
pathways can cause redox imbalances.

Environmental stress factors

Alcoholic fermentation is a well-established industrial process
where several factors can affect yeast performance and most
of them are also relevant in other bio-based fermentations. For
many of the abovementioned stress factors, genes that confer
resistance have already been identified. However, most of these
studies were performed with lab strains and it is not clear to
what extent the genes identified can be used to increase the tol-
erance of industrial strains.

High ethanol concentration
In order to make the distillation of ethanol economically vi-
able, industry usually requires a minimal concentration of 4%–
5% (v/v) ethanol. Lower ethanol concentrations dramatically in-
crease the energy demand for distillation (Stampe et al. 1983;
Zacchi and Axelsson 1989). In the USA, corn ethanol produc-
tion often reaches a final ethanol concentration of 16%–18%,
while Brazilian sugar cane ethanol falls in the range of 8%–
11% (Shapouri and Gallagher 2005; Basso et al. 2008). The pro-
duction processes are becoming more advanced resulting in
higher ethanol yields and titers, and the industry is thus in need
of yeast strains with higher maximal ethanol accumulation
capacity.

Ethanol hasmany effects on cell growth and viability. It alters
membrane composition and fluidity (Jimenez and Benı́tez 1987;
Chi and Arneborg 2000; You, Rosenfield and Knipple 2003; Takagi
et al. 2005; Huffer et al. 2011; Henderson and Block 2014), which
results in deregulated flux of ions, especially protons. This re-
duces the proton-motive force over the membrane (Cartwright
et al. 1986), compromising nutrient uptake through the many
proton symporters that are active in yeast. Also, divalent ions
such as Mg2+ are of importance. It has been shown that mag-
nesium is not only important as cofactor during fermentation,
but also as ethanol protectant (Walker and Maynard 1997). Ad-
ditionally, ethanol reduces the activity of the plasmamembrane
H+-ATPase (Cartwright, Veazey and Rose 1987; Aguilera et al.
2006) and of glycolytic enzymes due to reduced water activ-
ity (Hallsworth, Nomura and Iwahara 1998; Ogawa et al. 2000;
Alexandre et al. 2001). Another possible consequence of ethanol
toxicity is the loss of mitochondrial DNA (Ibeas and Jimenez
1997).

Many studies on ethanol tolerance were carried out using
DNAmicroarrays in which either the genome-wide gene expres-
sion levels of a strain in the presence or in the absence of ethanol
stress (7% (Alexandre et al. 2001), 5% (Hirasawa et al. 2007)) or
those of an ethanol tolerant and an ethanol-sensitive strain un-
der the same conditions were compared (Watanabe et al. 2007c;
Dinh et al. 2009; Lewis et al. 2010). Screening of the Saccharomyces
cerevisiae gene deletion collection resulted in identification of
46 mutants with higher sensitivity to ethanol (van Voorst et al.
2006). Swinnen et al. (2012) identified two causative genes for
high ethanol tolerance (MKT1 and APJ1) in S. cerevisiae VR1–
5B, a haploid segregant of the very ethanol tolerant, industrial

S. cerevisiae strain VR1. As inferior parent, the lab strain BY4741,
inwhich theMKT1 gene is defective, was used. TheVR1–5BMKT1
allele rendered the strain BY4741more ethanol tolerant, butmay
not be very useful for further improving ethanol tolerance in in-
dustrial strains since they do have already a wild-type MKT1 al-
lele. This experience underscores the importance of using in-
dustrial or natural strains for identification of relevant (mutant)
genes that can improve a specific trait of interest in industrial
production strains.

High osmotic pressure and ion toxicity
Osmotic stress in bioethanol production is caused by high
sugar concentrations and/or high salt concentrations. In first-
generation bioethanol production, osmotic pressure is mostly
caused by the concentrated streams of about 35% sugar that
are used and are required to reach ethanol titers of 16%–18%
(Bertrand et al. 2016). In second-generation bioethanol produc-
tion, it is difficult to reach high concentrations of fermentable
sugars. They are usually limited to about 12% sugar so that an
ethanol titer of only 5%–7% is reached. Hence, osmotic pressure
caused by high sugar concentration is usually not a problem in
second-generation bioethanol production. On the other hand,
only part of the solids can be converted into fermentable sugars.
Increased solids loading requires additional pumping power and
proper mixing is impaired when the viscosity in the reactor is
too high (Fan et al. 2003). At high solids loading, the cellulolytic
enzymes also start to become inhibited (Kristensen, Felby and
Jorgensen 2009). Solids mainly affect the enzymatic hydrolysis
because of enzyme adsorption to their surface while they have
less effect on the yeast fermentation.

High sodium salt concentrations present in the second-
generation bioethanol production process, due to the pretreat-
ment method or to procedures used to detoxify the hydrolysate,
could also compromise the fermentation rate and yield. Casey
et al. (2013) investigated the effect of different salts on glucose-
xylose co-fermentation by S. cerevisiae. Their results indicate
that the different salts do not affect final yield, but instead re-
duce the sugar consumption rate. In this respect, the xylose con-
sumption rate is more affected by higher salt concentrations
than the glucose consumption rate. Another observation is that
salt toxicity is less dependent on the type of cation present (Na+,
K+ or NH4

+) and more on the type of anion (SO4
2− is more toxic

than Cl−). However, the presence of certain cations does seem
to influence the growth rate of S. cerevisiae differentially. While
sodium and calcium salts have a similar, strongly inhibitory ef-
fect on yeast growth, potassium and magnesium salts affect
yeast growth to a lesser extent (Bautista-Gallego et al. 2008).

Removing the salt is not a good option because of the costs
involved (Sanchez and Cardona 2008). Furthermore, wastewater
treatment and water recycling practices can also result in accu-
mulation of (sodium) salt in pipelines and fermentors. The dif-
ferent salts do not only cause osmotic stress to the cell, but can
also cause ion toxicity (Ranatunga et al. 2000; Hohmann 2002;
Millati, Niklasson and Taherzadeh 2002; Hohmann, Krantz and
Nordlander 2007; Wei, Quarterman and Jin 2013).

Some of the feedstocks contain, besides potassium and
sodium salts, also (heavy) metal salts. Sugarcane bagasse, for in-
stance, usually contains Mg2+and Fe2+ salts and other trace ele-
ments of Mn2+, Cu2+ and Zn2+ compounds (Wythes,Wainwright
and Blight 1978; Kaushal et al. 1981). Although manganese, cop-
per and zinc are essential for cellular function, an excessive
amount is toxic for the cell. In the comprehensive work of Jin
et al. (2008), the effect of different metal ions was compared
for their inhibition of the growth of S. cerevisiae. Transcriptional
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analysis revealed that most metals reduce ribosome biosynthe-
sis and thereby actively reduce cell growth.

High extracellular solute concentrations lead to passive wa-
ter diffusion out of the cell, causing cell shrinkage and reduced
intracellular water activity (Brown 1976; Cray et al. 2015). Sac-
charomyces cerevisiae and other microorganisms can generally
only grow in a very narrow range of water activity (0.990–0.998)
(Brown 1976). This has enabled food producers to reduce food
spoilage by actively reducingwater activity (Abdullah et al. 2000).
Reduced water availability has also been shown to raise ox-
idative stress, which could lead to lipid peroxidation, protein
degradation andDNAdamage (Hansen, Go and Jones 2006; Garre
et al. 2010). Saccharomyces cerevisiae has distinct mechanisms to
cope with these types of stress, but there also seems to be com-
mon mechanisms (Causton et al. 2001) such as a central role for
the HOG pathway, increasing intracellular osmolytes, especially
glycerol andupregulation of export of toxic ions (Posas et al. 2000;
Tamás et al. 2000; Muzzey et al. 2009).

Most of the efforts to unravel the molecular-genetic basis of
osmotolerance in yeast have used microarray gene expression
data or physiological characterization of osmotolerant yeast
species (Posas et al. 2000; Schoondermark-Stolk et al. 2002; Eras-
mus, van der Merwe and van Vuuren 2003; O’Rourke and Her-
skowitz, 2004). To our knowledge, none of the genes linked to
osmotolerance in fundamental research have been used to en-
gineer higher osmotolerance in industrial strains.

High temperature
Thermotolerance is another highly desirable trait in the yeast
fermentation industry. This is not limited to tropical regions
where temperatures can easily reach more than 40◦C in the
summer. Appropriate cooling of the fermentors is required be-
cause of the exergonic fermentation process (Wheals et al.
1999). Higher tolerance to temperature overshoots and a higher
mean fermentation temperature would provide more consis-
tent fermentation performance, reduced contamination, lower
ethanol distillation costs, a higher fermentation rate and thus
reduced fermentor sizes and lower capital costs, and reduced
cooling/heating expenses (Hamelinck, Hooijdonk and Faaij 2005;
Stephen,Mabee and Saddler 2012). High thermotolerance is even
more important in advanced processes of second-generation
bioethanol production. As opposed to the regular process of
separate hydrolysis and fermentation, in which enzymatic hy-
drolysis and yeast fermentation are carried out sequentially, in
simultaneous saccharification and fermentation (SSF), en-
zymatic hydrolysis and yeast fermentation are carried out
simultaneously. The latter process minimizes feedback inhi-
bition by monosaccharides on enzymatic hydrolysis of the
lignocellulosic polymers and also minimizes bacterial contami-
nation because of the sustained very low free sugar levels. How-
ever, the optimum fermentation temperature of most S. cere-
visiae strains is 30◦C–35◦C while the optimum temperature of
the (ligno-)cellulolytic enzymes is 45◦C–55◦C (Choudhary, Singh
and Nain 2016). Hence, higher thermotolerance of the yeast al-
lowing fermentation temperatures of 40◦C or higher would be
highly beneficial for the SSF process. The same is true for con-
solidated bioprocessing, a further advanced process in which
(ligno-)cellulolytic enzymes are produced by the host yeast. As a
result, the amount of the enzymes needed for hydrolysis of the
sugar polymers, which still amounts to 20%–30% of the cost of
the ethanol, can be reduced significantly (Kawaguchi et al. 2016).
Obviously, also in this case a higher hydrolysis/fermentation
temperature will greatly benefit the efficiency of the process.

In response to a temperature increase, yeast upregulates the
transcription of heat-shock proteins (HSPs) and the accumula-
tion of trehalose (Neves and François 1992; Ribeiro, Silva and
Panek 1994; Lindquist and Kim 1996; Feder and Hofmann 1999).
Whereas Hsp104 assists in correct protein folding, Hsp12 in-
creases the integrity of the plasma membrane (Sanchez et al.
1992; Sales et al. 2000; Watanabe et al. 2007c; Welker et al. 2010).
The protective function of trehalose ismost likely due to the fact
that membrane and protein structures are stabilized (Wiemken
1990; Singer and Lindquist 1998; Ogawa et al. 2000; Kaino and
Takagi 2008; Verghese et al. 2012). Increased temperatures may
also lead to an increase in ROS formation in the form of hy-
drogen peroxide and superoxide, as well as free oxygen radi-
cals (Moraitis and Curran 2004; Morano, Grant and Moye-Rowley
2012).

Several genes have been implicated in thermotolerance in
S. cerevisiae. Overexpression of RSP5, a ubiquitin ligase (Shah-
savarani et al. 2012), increases thermotolerance. Enzymes in-
volved in membrane synthesis and composition like ERG3
(Caspeta et al. 2014), a C-5 sterol desaturase, chaperones such
as HSP104 and HSP12 (Sanchez et al. 1992), genes involved in tre-
halose metabolism (TPS1, TPS2 and NTH1 (De Virgilio et al. 1994))
and genes of RNA processing, such as PRP42 and SMD2 (Yang
et al. 2013), have been linked to high thermotolerance. Neverthe-
less, successful industrial application of these genes in improv-
ing thermotolerance of commercial yeast strains has not been
reported yet. One possible reason is that genetic modification of
these genes improves thermotolerance at the expense of other
properties that are important in industrial practice, either in the
fermentation itself or in propagation, drying or storage of the
bulk yeast.

Weak acids
The most abundant and inhibitory weak acid present in ligno-
cellulose biomass is acetic acid. Its level varies considerablywith
the composition of the biomass. Second-generation feedstocks
for bioethanol production have a very variable composition in
terms of cellulose, hemicellulose and lignin content. Hemicel-
lulose is a heteromeric polysaccharide consisting of substituted
glucans, mannans and xylans (McNeil et al. 1984; Scheller and
Ulvskov 2010; Limayem and Ricke 2012). Also, the type of pre-
treatment process has a considerable effect on the level of acetic
acid (Kristensen, Felby and Jorgensen 2009; Du et al. 2010; Zha,
Muilwijk and Coulier 2012).

Many pretreatment methods release acetyl groups from the
hemicellulose fraction. The resulting acetic acid in unbuffered
hydrolysates easily causes sluggish fermentations or may in-
hibit fermentation completely (Palmqvist et al. 1999; Palmqvist
and Hahn-Hägerdal 2000; Narendranath, Thomas and Ingledew
2001; Graves et al. 2006; Bellissimi et al. 2009). This is mostly due
to the intracellular accumulation of protons and dramatic drop
in pH caused by diffusion of the acetic acid through the plasma
membrane and its dissociation at the intracellular pH which is
far above its pKa of 4.76 (Guldfeldt and Arneborg 1997). Similar
toxicity problems are caused by other organic acids, such as le-
vulinic acid and formic acid, which are conversion products of
hexose and pentose sugars, respectively (Horvat et al. 1985; Ras-
mussen, Sorensen and Meyer 2014).

Acetic acid can also enter the cell through the Fps1 aquaglyc-
eroporin channel by means of facilitated diffusion. Since Fps1
can only transport the undissociated form, and since the ac-
etate ion can also not diffuse through the phospholipid bilayer
of the plasma membrane, acetic acid toxicity is greatly reduced
at an extracellular pH above its pKa (4.76) (Mollapour and Piper
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2007; Ullah et al. 2012). After dissociation of acetic acid in the
cytoplasm, the resulting accumulation of protons and intracel-
lular acidification strongly stimulate the activity of the proton
ATPase, which consumes large amounts of ATP to expel the
protons again from the cells. This results in a decrease in ATP
availability, which lowers all biosynthetic processes. This is re-
inforced further by the decrease in proton-motive force, due to
the lower intracellular pH andmembrane potential, which com-
promises nutrient uptake and thus reduces overall metabolism
including the expression of newnutrient transporters (Eraso and
Gancedo 1987; Imai and Ohno 1995; Lohmeier-Vogel, Sopher and
Lee 1998; Martinez-Munoz and Kane 2008; Ullah et al. 2012; Ding
et al. 2013). The low cytosolic pH is also inhibitory to the activ-
ity of glycolytic enzymes, which weakens ATP production and
thus further compromises the overall energy status of the cell
(Pampulha and Loureiro-Dias 1990; Veine, Arscott and Willians
1998).

The ABC-transporter Pdr12 plays a role in acetic and levulinic
acid tolerance. Its overexpression makes cells more resistant
to levulinic acid, while deletion improves acetic acid tolerance.
The mechanism behind this seemingly contradictory action has
not yet been elucidated (Kawahata et al. 2006; Ullah et al. 2012;
Nygård et al. 2014). Also, the genes of the RIM101 pathway, a zinc-
finger transcription factor, play a role in acetic acid tolerance.
Targets of Rim101 include genes encoding iron transporters and
proteins involved in cell wall maintenance and organization.
The mechanism behind its protective function is not clear yet
(Fernandes et al. 2005; Mira et al. 2009).

Genome-wide screens have revealed many genetic elements
important for high acetic acid tolerance (Mira et al. 2010; Mira,
Teixeira and Sa-Correia 2010). A major role in this respect is
played by the Haa1 transcription factor that mediates expres-
sion of multiple genes required for high acetic acid tolerance
(Fernandes et al. 2005; Mira, Becker and Sa-Correia 2010). Several
genes involved in acetic acid tolerance have been also identified
by polygenic analysis, being HAA1, VMA7, GLO1, DOT5 and CUP2
(Meijnen et al. 2016). In previous studies, the transcription factor
HAA1was already linked to weak acid tolerance (Fernandes et al.
2005; Mira, Becker and Sa-Correia 2010), as wasVMA7 (Kawahata
et al. 2006). Meijnen et al. (2016) identified a unique point muta-
tion in theHAA1 gene product (G1517A) that is sufficient by itself
to increase acetic acid tolerance in the xylose fermenting indus-
trial S. cerevisiae strain GSE16-T18. The point mutation consider-
ably reduced the lag phase of the fermentation in the presence
of acetic acid. CUP2 is a paralog of HAA1 and was shown to be
involved in copper tolerance (Buchman et al. 1989; Welch et al.
1989). Interestingly, polygenic analysis revealed that CUP2 also
plays a role in acetic acid tolerance (Meijnen et al. 2016) and a
recent report has shown that Zygosaccharomyces bailii has only
one HAA1/CUP2 ortholog which is involved both in acetic acid
and copper tolerance (Palma et al. 2017).

Recently, Gonzalez-Ramos et al. (2016) evolved a laboratory
strain by serial microaerobic batch culture to obtain mutants
with a superior acetic acid resistance phenotype. By analyz-
ing whole-genome sequencing data, a common set of genes
had acquired mutations during the evolutionary engineering.
GIS4, SKS1, ADH3, ASG1, SAC6 and EUG1 had acquired SNPs in
most of the evolved strains. The first four were confirmed by in-
troducing them in a non-evolved strain and the mutations in
GIS4, SKS1 and ADH3 had an additive effect. These genes had
never been linked before to acetic acid tolerance by transcrip-
tional profiling or QTL analysis (Li and Yuan, 2010; Mira et al.
2010; Ding et al. 2013; Meijnen et al. 2016). The successful ap-
plication of these alleles remains to be done in an industrially
relevant strain.

Other chemical inhibitors
A first class of chemical inhibitors present in lignocellu-
lose hydrolysates are the furaldehydes, such as furfural and
5’-(hydroxymethyl)-2-furfural (HMF), which are conversion
products of hexoses and pentoses, respectively. This conver-
sion is mainly due to pretreatment methods applying high heat
and high pressure. HMF is less inhibitory compared to furfural
(Taherzadeh et al. 2000). The main mechanism involved in toler-
ance to furaldehydes is that yeast converts these furaldehydes
into less toxic compounds such as furfuryl alcohol and 2,5-bis-
hydroxymethylfuran, respectively. This is most likely catalyzed
by NAD(P)H-dependent (glycolytic) dehydrogenases (Modig, Li-
den and Taherzadeh 2002; Liu et al. 2004). To achieve complete
oxidation of 2.25g/L furfural in a hydrolysate, Hórvath et al. (2001)
calculated that the cells require 2.5 times more ATP than in the
absence of the furfural. In addition to competitive inhibition of
alcohol dehydrogenase 1, furfural and HMF also have a direct al-
losteric inhibitory effect on the enzyme, resulting in a lower final
ethanol titer.

Tolerance to furaldehydes has been linked to the expression
of pentose phosphate pathway genes, and it was shown that
overexpression of ZWF1, an oxidoreductase, enhanced tolerance
to furfural, most likely due to an increase in cellular reducing
power (Gorsich et al. 2006). Cunha et al. (2015) confirmed the
beneficial effect of ZWF1 and also linked overexpression of PRS3
and RPB4 to improved furaldehyde resistance. Many genes of the
pleiotropic drug resistance (PDR) gene family have also been im-
plicated and we refer the reader to the review of Liu for a com-
prehensive account (Liu 2011).

A second class of chemical inhibitors are the phenolic com-
pounds derived from the lignin in lignocellulosic biomass. Lignin
is a complex organic polymer of phenolic compounds, includ-
ing acids, aldehydes and alcohols (Campbell and Sederoff 1996).
The main mechanism of yeast tolerance is not due to export
of the phenolic compounds, but, as for the furaldehydes, to in
situ detoxification. Coniferyl aldehyde has been identified as the
most toxic phenolic compound in the lignin fraction, and there
seems to be a correlation between specific chemical classes and
toxicity (Adeboye, Bettiga and Olsson 2014; Adeboye et al. 2015).
Lignin is very hydrophobic and binds to cellulose, preventing cel-
lulase access for its hydrolysis. In addition, lignin also interacts
with the cellulose-binding module of cellulases further reduc-
ing hydrolytic efficiency (Eriksson, Börjesson and Tjerneld 2002;
Kumar et al. 2012; Vermaas et al. 2015). Moreover, genes that are
involved in aromatic acid conversion, such as PAD1 and FDC1,
have been shown to increase tolerance to furaldehydes and to
enhance final ethanol yield (Larsson, Nilvebrant and Jönsson
2001; Mukai et al. 2010). The validation of this approach in an
industrial context, however, has not been reported.

Combined stress factors and intrinsic stress tolerance
Transcription of HSPs such as Hsp104 and Hsp12 as well as tre-
halose biosynthesis enzymes has in many cases been shown
to be upregulated under ethanol stress. HSPs and trehalose not
only have a protective function against ethanol stress, but also
to many of the abovementioned stress factors (Wiemken 1990;
Neves and François 1992; Mansure et al. 1994; Ribeiro, Silva and
Panek 1994; Lindquist and Kim 1996; Feder and Hofmann 1999).
Recent research has revealed that at least under certain stress
conditions it is not so much trehalose itself that exerts a pro-
tective function on the cell, but that the Tps1 protein itself is in
some way involved (Petitjean et al. 2015, 2016).

The general stress response is important because during
the bioethanol production process multiple stress factors act
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together in different combinations depending on the timing
in the fermentation, the process conditions and the type of
biomass used. For instance, Woo et al. (2014) assessed the spe-
cific growth rate at increasing acetic acid levels at two tem-
peratures, 30◦C and 42◦C, and also under combined ethanol
and temperature stress, and they observed synergistically acting
negative effects in both cases.

Metabolic stress

Production of bio-based chemicals requires a microorganism
that can cope with a high level of metabolic stress. Since these
chemicals are not natively produced by S. cerevisiae, or at least
not in the high amounts required for an industrial production
process, engineering of metabolic pathways and overexpression
of recombinant enzymes generally leads to diverse stress fac-
tors, especially protein burden, possible redox imbalances and
product inhibition.

Protein burden
Strong overexpression of recombinant proteins in order to cre-
ate a superior yeast cell factory can cause a metabolic burden or
protein burden on the cell. This can be caused by the high de-
mand for energy, reducing power and amino acid building blocks
for the production of the high levels of recombinant proteins,
and/or competition between expressed proteins at the level of
the protein biosynthetic machinery, and/or the secretion path-
way. Another problem can be protein crowding in a confined
cellular space (Srienc, Campbell and Bailey 1986; Sardonini and
DiBiasio 1987; Gopal, Broad and Lloyd 1989; Janes et al. 1990;
Nevoigt 2008). As a result, the overexpression of proteins can
cause in many cases an impaired specific growth rate, delayed
fermentation start-up, reduced fermentation rate and/or yield,
decreased respiration capacity or reduced biomass yield. The
cost of protein production in bacteria is commonly attributed
to protein translation, and ribosomal activity is considered to be
a major limiting factor for the growth rate of the cells (Emilsson
and Kurland 1990; Kurland 1992; Vind et al. 1993; Scott et al. 2010,
2014; Scott and Hwa 2011).

Only a limited amount of insight in the molecular mecha-
nisms of protein burden in eukaryotic cells is available (Hauf,
Zimmermann andMüller 2000; Lang, Murray and Botstein 2009).
The concept of metabolic burden in S. cerevisiaewas investigated
and elaborated by Görgens et al. (2001). They compared S. cere-
visiae strains expressing a heterologous xylanase II (XYN2) from
Trichoderma reesei and quantified themetabolic effects of expres-
sion of plasmid-based constructs behind a glycolytic promoter
(ADH2 or PGK1). Their research showed no significant burden on
the cells when the heterologous gene is expressed from a mul-
ticopy plasmid. However, when the gene was expressed behind
a glycolytic promoter, a reduction in maximum specific growth
rate, biomass yield and specific glucose consumption was ob-
served. They describe the metabolic effect of foreign gene ex-
pression as ‘disproportionally large with respect to the amount
of heterologous protein produced’. Themost obvious reasons for
their findings are the increased energy demand and/or the com-
petition for limiting amounts of transcription or translation fac-
tors, precursors and energy (Görgens et al. 2001). However, alter-
native explanations such as negative interference of the foreign,
heterologous protein or the artificial recombinant protein with
cellular factors important for growth and/or fermentation can-
not be ruled out. The effect of recombinant gene expression on
transcription and protein translation in S. cerevisiae was studied
by Kafri et al. (2016). They showed that the processes that limit

protein production depend on the growth conditions, that ribo-
somal activity is not universally limiting in rapidly growing cells
and that cells can adapt the abundance of endogenous proteins
to meet at least to some extent the metabolic burden.

In Schizosaccharomyces pombe, recombinant protein produc-
tion can be limited by lipid biosynthesis, TCA cycle activity and
the supply of NADPH and ATP. Another important factor is the
nutrient composition of themedium that can strongly influence
protein secretion (Klein et al. 2014). A similar effect was detected
in S. cerevisiae, in which supplementation of the growthmedium
with amino acids improves growth and protein production (van
Rensburg et al. 2012). Furthermore, high gene copy numbersmay
strongly affect the metabolic activity of the cell (Lin et al. 2013;
Klein et al. 2014). To determine the copy number limit for overex-
pression of a target gene, Makanae and co-workers developed a
method named ‘genetic tug-of-war’ (gTOW). Using this genetic
method, they concluded that the yeast cell is robust to a copy
number increase by up to 100 in more than 80% of its protein-
coding genes. Also, they identified 115 dosage-sensitive genes
of which a significant number are genes involved in cytoskeletal
organization and intracellular transport. This dosage sensitivity
was suggested to be caused by protein burden and stoichiomet-
ric imbalances (Makanae et al. 2013).

Redox factor imbalance
Another frequently encountered stress factor in cells modified
by metabolic engineering is a disturbance in the balance of
redox factors. The preference of enzymes for specific cofac-
tors leads to a depletion and/or accumulation for instance of
NAD(P)H. Hence, metabolic engineering of yeast requires appro-
priate modelling of redox homeostasis with correct prediction
of cofactor usage (Nevoigt 2008).

The first efforts to engineer xylose fermentation into S. cere-
visiae involved expression of xylose reductase (XYL1) and xyli-
tol dehydrogenase (XYL2) of Pichia stipitis. This created a slow-
growing strain with a low fermentation rate on xylose (Jeffries
and Jin 2004). Since Xyl1 prefers NADPH over NADH and Xyl2
only uses NAD+ (Verduyn et al. 1985; Rizzi et al. 1989), it led
to inability of recycling NADH and thus accumulation of NAD+

(Jeffries 2006).
Several approaches have been used to overcome redox fac-

tor imbalances. The modification of cofactor specificity is un-
dertaken frequently in metabolic engineering, as was the case
in pentose utilization with the identification of mutant xylose
reductase enzymes that have a higher affinity for NADH than for
NADPH (Jeppsson et al. 2006; Watanabe et al. 2007a). Another ap-
proach was the engineering of xylitol dehydrogenase for NADP+

cofactor specificity (Watanabe et al. 2007b).
Recent research on 2,3-butanediol production was also con-

fronted with the issue of redox imbalance. It was caused by
deletion of the PDC genes, with the aim of abolishing ethanol
production for enhancing the flux into the 2,3-butanediol pro-
duction pathway (Kim et al. 2013). In this case, the cofactor
imbalance led to production of glycerol instead of 2,3-
butanediol, because the disequilibrium was balanced by con-
version of NADH to NAD+ (Remize et al. 1999; Kim et al. 2016).
However, it could be corrected by expressing NADH oxidase from
Lactococcus lactis (noxE), obtaining amaximal 2,3-butanediol yield
(Kim and Hahn 2015; Kim et al. 2015, 2016).

Another approach is the expression of a transhydrogenase
that is natively absent in yeast (Bruinenberg et al. 1985), catalyz-
ing the following reaction: NADH + NADP+ → NAD+ + NADPH
(Sauer et al. 2004b). Implementation of transhydrogenase ac-
tivity can balance the disturbed redox state in metabolically
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engineered yeast as shown by Suga et al. (2013). They overex-
pressed three enzymes, i.e. Mae1, Mdh2 and Pyc2, that have
a transhydrogenase-like activity in a xylose-fermenting S. cere-
visiae strain, and this allowed proper control of the redox state.
However, expression of a bacterial transhydrogenase in yeast re-
sulted in a significant decrease in maximal specific growth rate,
biomass and ethanol yield (Nissen et al. 2001).

Toxic metabolites
Industrial-scale production of bulk and fine chemicals requires
high titers of the end product (Stephanopoulos 2007). High con-
centrations of these chemicals are often toxic to the producing
host cell (Keasling 2010). Imbalances introduced by suboptimal
metabolic engineering often lead to accumulation of metabolic
intermediates that may also be toxic to the cells. An example is
the frequent accumulation of the toxic intermediate acetalde-
hyde in engineered yeast cell factories (Ng et al. 2012; Bae, Kim
and Hahn 2016). This cytotoxic compound, which is also pro-
duced in low quantities during alcoholic fermentation, diffuses
poorly across the plasma membrane, which leads to intracellu-
lar accumulation and inhibition of sensitive reactions and en-
zymes (Aranda and del Olmo 2004).

One way to address this type of metabolic stress is through
upregulation of efflux pumps (Kell et al. 2015; Sheng and Feng
2015). Overexpression of membrane exporters can apparently
enhance the yield of cytotoxic products. For instance, produc-
tion of short branched-chain fatty acids is enhanced by overex-
pression of the native Pdr12 efflux pump (Yu et al. 2016). Over-
expression of the S. cerevisiae Snq2, Pdr5 and Pdr15 transporters
was shown to increase tolerance against and secretion of alka-
nes (Ling et al. 2013). Similarly, expressing the Abc2 and Abc3
membrane transporters of Yarrowia lipolytica in S. cerevisiae im-
proved its tolerance to alkanes (Chen, Ling and Chang 2013).

Recent studies have explored another potential solution to
address toxic effects of intermediary metabolites using the con-
cept of ‘metabolons’. This strategy has actually been adapted
from nature since biosynthetic enzymes are also sometimes
physically associated in large complexes (Jorgensen et al. 2005;
Zhang et al. 2006; Trantas, Panopoulos and Ververidis 2009; Sin-
gleton, Howard and Smirnoff 2014). This spatial localization
does not only facilitate the transfer of intermediates between
the consecutive enzymes of a pathway due to channeling of the
metabolites, but it also prevents the diffusion of the intermedi-
ates away from the enzyme complex keeping their overall level
far below a concentration that otherwise could become toxic
for the cells (Siddiqui et al. 2012). Minimizing the diffusion of
toxic intermediates while stimulating their rapid conversion to
less toxic constituents through sequestration within an enzyme
complexmight thus improve cell growth and especially the final
yield of the product of interest (Srere 1987; Jorgensen et al. 2005;
Roze, Chanda and Linz 2011; Chen and Silver 2012).

STRAIN ENGINEERING FOR IMPROVING
STRESS TOLERANCE

Saccharomyces cerevisiae provides excellent platform strains for
conversion into cell factories. The species already possesses
several traits that are required for cell factories, such as high
fermentation rate, high propagation rate, high general robust-
ness, high tolerance to alcohols and ease of genetic modifica-
tion. These traits are even more pronounced in the many indus-
trial strains that have been developed over the years, including
those for bioethanol production that show excellent tolerance

to most stress factors prevalent in first-generation bioethanol
production.

Tolerance against these stress factors is also of great impor-
tance for creation of efficient yeast cell factories. Tolerance to
specific stress factors can be enhanced through random genetic
modification followed by selection or through targeted genetic
modification based on previous knowledge of genetic determi-
nants underlying tolerance to specific stress factors or general
stress tolerance. The former can be achieved by random muta-
genesis, genome shuffling, whole-genome hybridization or evo-
lutionary adaptation, each time followed by selection of superior
strains under a specific condition (Steensels et al. 2014; David
and Siewers 2015; Jullesson et al. 2015). A disadvantage of all
these approaches is that they can only be used for selective traits
for which selection is possible based on growth rate or main-
tenance of viability. An advantage is that they generally lead
to non-GMO strains that can be brought rapidly into industrial
application.

Basic yeast research has produced a wealth of information
on genetic determinants of tolerance to specific stress factors.
The usefulness of this information has been limited by two
major factors. The first is that most of this research has been
performed with laboratory yeast strains which generally have
much weaker tolerance to stress factors than industrial yeast
strains. The second is that most information is available on
genetic factors required for tolerance to stress factors and of
which therefore the deletion reduces stress tolerance. Much less
information is available on genetic factors that can be modified
(by overexpression or by specific mutagenesis) to enhance toler-
ance to stress factors. As opposed to the random approaches,
targeted genetic modification generally leads to GMO strains,
either cisgenic (containing extra or modified species-own DNA
only) or transgenic (containing heterologous DNA) organisms.

Stress tolerance is a complex, polygenic trait and there is lit-
tle information on genetic determinants that can improve toler-
ance in industrial yeast strains to specific stress factors and even
less to a mixture of stress factors. As a result, improvement of
stress tolerance by non-directed engineeringmethodologies has
been more successful up to now for development of superior in-
dustrial yeast strains used for bioethanol production compared
to targeted geneticmodification strategies (Cakar et al. 2005; Gor-
sich et al. 2006; Petersson et al. 2006; Shi, Wang and Wang 2009;
Hou 2010; Cakar et al. 2012; Demeke et al. 2013; Steensels et al.
2014; Gonzalez-Ramos et al. 2016).

Evolutionary engineering

Evolutionary engineering is a non-directed methodology to im-
prove yeast strains for a specific trait by subjecting the cells to
a continuous selective pressure. In repetitive batch cultivations
or chemostat cultivation under selective pressure, genetic di-
versity is generated through spontaneous mutagenesis and the
more fitter cells are continuously selected because of fastermul-
tiplication or better survival. The most adapted lineage(s) will
finally dominate the entire culture after prolonged cultivation
(Dykhuizen and Hartl 1983; Sauer 2001).

Evolutionary engineering has been applied to improve sev-
eral industrially important traits in S. cerevisiae, such as sub-
strate utilization, product formation and stress tolerance.
Ethanol fermentation with different carbon sources was en-
hanced successfully. Rapid xylose utilization is one of the
main requirements for yeast strains used in second-generation
bioethanol production. This challenge has been addressed
extensively using evolutionary engineering (Sonderegger and
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Sauer 2003; Kuyper et al. 2005; van Maris et al. 2007; Liu and
Hu 2010; Zhou et al. 2012; Demeke et al. 2013). Other car-
bon sources for which utilization has been improved by evo-
lutionary engineering include arabinose (Wisselink et al. 2007;
Sanchez et al. 2010) and lactose (Guimaraes et al. 2008). Fur-
thermore, improvement of several stress tolerance characteris-
tics has been achieved successfully by evolutionary engineering,
such as freeze tolerance (Teunissen et al. 2002), ethanol tolerance
(Stanley et al. 2010b) and evenmultistress resistance (Cakar et al.
2005).

It is highly relevant for industrial application to improve
multiple traits at the same time by applying different selective
pressures simultaneously in order to achieve the best possible
combination of the individual adaptations. Wright et al. (2011)
performed evolutionary engineering inmediumwith acetic acid
and xylose to obtain a superior xylose-fermenting yeast strain
under industrial conditions. Performing repetitive batch culti-
vations directly in lignocellulosic hydrolysates selects evolved
strains that show increased tolerance to all inhibitors present in
the hydrolysates (Tomas-Pejo et al. 2010; Koppram, Albers and
Olsson 2012).

Genome shuffling

Genome shuffling is extensive inbreeding of two or more yeast
strains after which the strain(s) with the desirable trait is ob-
tained by selection for faster growth or maintenance of higher
viability under a specific condition of interest. Alternatively, the
strains can also be mixed repeatedly by polyethylene glycol-
mediated protoplast fusion. It is a whole-genome engineering
technology that introduces many random changes at many dif-
ferent positions in the genome. Recombination of desirable mu-
tant genes into a single strain can generate strongly improved
phenotypes (Nicolaou Gaida and Papoutsakis 2010). In S. cere-
visiae, this technique has been applied successfully to enhance
tolerance to specific stress factors. Shi, Wang and Wang (2009)
enhanced thermotolerance, ethanol productivity and ethanol
tolerance using genome shuffling. Their best performing strain
was claimed to grow at up to 55◦C on plates. Moreover, it uti-
lized 20% (w/v) glucose at 45◦C –48◦C and produced 9.95% (w/v)
ethanol while it tolerated up to 25% (v/v) ethanol.

The efficiency of protoplast fusion is crucial for efficient
genome shuffling using this method. Eukaryotic hybrids are un-
stable due to diversion of the genetic background of the par-
ents (Giudici et al. 2005). To address this issue, researchers have
attempted to make genome shuffling more efficient in several
ways. For instance, the number of potentially useful mutations
was increased by ethyl methane sulfonate (EMS) mutagenesis
followed by sexual and asexual reproduction instead of pro-
toplast fusion (Hou 2009). This methodology was applied suc-
cessfully to improve ethanol productivity (Hou 2010) as well as
stress tolerance (Pinel et al. 2011) and fermentation performance
(Zheng et al. 2011a). In other research, acetic acid tolerance in
S. cerevisiae was enhanced using drug resistance marker-aided
genome shuffling, which was proven to be advantageous for
highly efficient selection of the genome shuffledmutants (Zheng
et al. 2011b). Demeke et al. (2013) developed an industrial D-
xylose fermenting strain through genome shuffling by sporula-
tion and mass mating of an EMS mutagenized segregant and its
parent, followed by evolutionary adaptation.

The genome shuffling method has also been modified to
counter other disadvantages of protoplast fusion, such as time-
consuming protoplast preparation, fusant regeneration and fu-
sant instability (Zhang and Geng 2012). Genomic DNA extraction

from one parent followed by its transfer into the other parent
also allowed recombination of the two genomes. To allow a sec-
ond round of shuffling, the strain obtained can be transformed
againwith thewhole genome of the first parent. Such amodified
interspecies genome shuffling methodology was used success-
fully to construct a xylose-fermenting S. cerevisiae strain through
transformation with the whole genome of Pichia stipitis (Zhang
and Geng 2012).

CRISPR-Cas9

Genome editing is highly dependent on the efficacy of the engi-
neering methodology used. In recent years, a very precise ge-
netic targeting and modification technology, that is based on
clustered regularly interspaced palindromic repeats (CRISPR)
and CRISPR-associated proteins (Cas), has gained widespread
application in many species because of its high efficacy and
flexibility (Doudna and Charpentier 2014). Since this is a tar-
geted modification strategy, it requires knowledge of the genes
that are important for a specific trait of interest such as genes
determining tolerance to specific stress factors. Determining
the causative elements is thus essential prior to improving the
yeast. This can be done by previously described methodolo-
gies such as pooled-segregant whole-genome sequence anal-
ysis (Segre, Murray and Leu 2006; Swinnen, Thevelein and
Nevoigt 2012). This technique was applied successfully to iden-
tify causative genes for several industrially important traits,
such as high ethanol tolerance (Swinnen et al. 2012; Pais et al.
2013), acetic acid tolerance (Meijnen et al. 2016), low glycerol pro-
duction (Hubmann et al. 2013) and thermotolerance (Yang et al.
2013).

Genome engineering in S. cerevisiae reached a new level of ef-
ficiency with CRISPR-Cas9, as described by DiCarlo et al. (2013),
and also strongly facilitated targeted genome engineering in in-
dustrial yeast strains (Stovicek, Borodina and Forster 2015). This
technology can be applied for introducing both single and mul-
tiple marker-free gene knockouts (Bao et al. 2015; Mans et al.
2015), as was the case for establishing high mevalonate pro-
duction in yeast (Jakociunas et al. 2015a). Besides gene knock-
outs, successful CRISPR-Cas9-mediated gene integration can be
achieved, which is often required in development of yeast cell
factories for bio-based chemical production (Jakociunas, Jensen
and Keasling 2016). Marker-free integration of single or multiple
genes, or even entire metabolic pathways, has become possible
in a single step with the application of CRISPR-Cas9 combined
with homologous recombination. Evaluation of a gene library
by direct genomic insertion in a diploid strain in order to iden-
tify the most active variants of a cellodextrin transporter for in-
creased cellobiose utilizationwas achieved in a single step (Ryan
et al. 2014).

Adaptation of the original CRISPR-Cas9 method by combi-
nation with in vivo assembly using homologous recombination
(CasEMBLR)makes itmore versatile (Jakociunas et al. 2015b). The
applicability of this approach was validated by introduction of
the carotenoid pathway through insertion of 15 DNA fragments
inmultiple loci and through creating a tyrosine producing strain
by simultaneously knocking out two genes and integrating 10
DNA fragments (Jakociunas et al. 2015b). This methodology of
combining CRISPR-Cas9 with in vivo assembly has been used
for introduction of several traits in yeast. Horwitz et al. (2015)
chromosomally integrated an entire 11-gene pathway for mu-
conic acid production, and Tsai et al. (2015) constructed a xylose-
fermenting strain in this way.
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Another recent study designed specific guide RNA sequences
to target multiple delta sites (Di-CRISPR) (Shi et al. 2016). This
allows simultaneous integration of multiple copies in different
positions in the yeast genome. The authors successfully inte-
grated 18 copies of a 24 kb combined xylose utilization and (R,R)-
2,3-butanediol (BDO) production pathway with a high efficiency
in a single marker-free step in the delta elements, thus creating
a yeast strain that produced BDO directly from xylose (Shi et al.
2016). This approach is of great interest for integrating multiple
copies of a gene or a pathway in a single step into the genome.

Global transcription machinery engineering

A relatively new technology to improve important phenotypes
in cell factories is global transcription machinery engineering
(gTME). This non-directed approach is based on mutagenesis
of transcription factors and/or cofactors (Nevoigt 2008). Altering
key regulatory proteins generates a new transcription profile by
reprogramming gene transcription. This was first accomplished
by Alper and co-workers (Alper et al. 2006; Ding et al. 2009), who
created a strain with increased ethanol tolerance caused by an
altered TATA-binding protein Spt15. Three mutations in SPT15
(F177S, Y195H and K218R) improved the mutant’s performance
compared to the control in the presence of high ethanol concen-
trations. These findings were challenged by Baerends et al. (2009)
who could not observe the same effect in leucine prototrophic
strains and ascribed the original effects on ethanol tolerance to
alleviation of leucine auxotrophy. On the other hand, Yang et al.
(2011) used the same approach with the Spt15 transcription fac-
tor and also successfully demonstrated improved ethanol toler-
ance in rich mediumwith specific mutant alleles. However, they
also used only leucine auxotrophic strains.

Besides enhancement of ethanol tolerance, gTME has also
been successfully applied in S. cerevisiae to improve xylose
utilization (Liu et al. 2010) and fermentation in corn cob hy-
drolysates (Liu et al. 2011), and to enhance co-fermentation of
xylose and glucose (Liu et al. 2008). This implies that gTME may
be a promising technique for strain improvement but that more
positive results especially with industrial strains and industri-
ally relevant conditions are required.

INDUSTRIAL USE OF ALTERNATIVE
STRESS-TOLERANT NON-CONVENTIONAL
YEAST SPECIES

Saccharomyces cerevisiae is still the preferred yeast species in
many industrial applications, but there is a plethora of other
yeast species that have some very desirable traits, and the use
of some of these as cell factories for production of bio-based
compounds has been investigated. However, very often they
lack the general robustness that S. cerevisiae has acquired dur-
ing its domestication and extensive use in industry. Another
major shortcoming is their requirement for aerobic conditions,
whereas S. cerevisiae is able to accomplish complete fermenta-
tions in the anaerobic conditions prevailing in large non-aerated
fermentors.

Several species of the genus Zygosaccharomyces possess ex-
treme tolerance to specific stress factors. Zygosaccharomyces
rouxii and Z. bailii are both well-known food spoilage yeasts due
to their extreme osmotolerance andweak acid tolerance, respec-
tively (Martorell et al. 2007). Production of miso makes use of the
very osmotolerant character of Z. rouxii to produce furanones,
which give miso its typical taste (Hayashida, Nishimura and

Slaughter 1998). Zygosaccharomyces rouxii has also been used as
cell factory for recombinant protein production. Although simi-
lar titers as in S. cerevisiae have been obtained for some proteins,
industrial production has never been achieved, possibly due to
the limited knowledge and experience with Z. rouxii in indus-
try (Ogawa et al. 1990). More recently, identification of the mech-
anisms underlying its very high osmotolerance has become of
interest in order to ameliorate osmotolerance in established in-
dustrial microorganisms (Mattanovich et al. 2012).

Another very osmotolerant yeast species is Debaryomyces
hansenii. It can tolerate salt concentrations over 4.0 M NaCl,
while S. cerevisiae is not able to grow in the presence of over 2.0
M NaCl (ŌNishi 1963). This feature would give it an advantage in
fermentation media containing high salt levels, e.g. due to the
pretreatment process, recirculation of water, cleaning practices,
use of feedstocks rich in salt or use of seawater. Despite being
one of the best xylitol producing yeast species, industrial im-
plementation has been hampered by its dependency on oxygen
(Breuer and Harms 2006). As with Z. rouxii, research has been
focused on identifying genes responsible for the high salt toler-
ance of D. hansenii in order to improve industrial strains of es-
tablished yeast species. In this regard, an S. cerevisiae lab strain
displayed improved salt tolerance by expression of genes from
D. hansenii (Prista et al. 2002).

Zygosaccharomyces bailii has been more extensively investi-
gated as a cell factory because of its high tolerance toweak acids.
Many of these acids are of interest as low value bulk chemicals
(e.g. acetic acid, L-ascorbic acid, succinic acid, and so on), but are
only tolerated in low concentrations bymostmicroorganisms. L-
Ascorbic acid productionwas engineered both in S. cerevisiae and
Z. bailii, obtaining a much higher titer using Z. bailii (Sauer et al.
2004a). In addition, the molecular tools developed so far for Z.
bailii are more advanced than for Z. rouxii (Branduardi, Dato and
Porro 2014).

Two yeast species relatively closely related to S. cerevisiae can
grow up to at least 49◦C:Hansenula polymorpha and Kluyveromyces
marxianus (Banat, Nigam and Marchant 1992; Reinders et al.
1999). Hansenula polymorpha is a methylotrophic yeast that is
mostly used as a model for investigation of peroxisome func-
tion and nitrate assimilation (Kunze, Kang and Gellissen 2009).
Its ability to grow on xylose and methanol combined with its
high thermotolerance has also created an interest to use it as a
cell factory. Examples of recombinant protein productionwithH.
polymorpha include the production of phytase and human IFNα

-2a at lab scale (Mayer et al. 1998; Degelmann et al. 2002) and
human serum albumin at pilot scale (Heo et al. 2003). Despite
these successes, the H. polymorpha expression systems and the
long fermentation times are major drawbacks for the organism
to become routinely used in industrial production.

UnlikeD. hansenii, K.marxianushas a longer track record in in-
dustry. Its GRAS status (generally recognized as safe), broad sub-
strate range and thermotolerance make it an attractive host for
recombinant protein production. Whereas S. cerevisiae has only
limited protein secretory capacity, K. marxianus has become a
natural secretor during evolution for multiple enzymes, includ-
ing inulinase, polygalacturonases and ß-glucosidase (Fonseca
et al. 2008). Schwan, Cooper andWheals (1997) reported that in K.
marxianus strain CCT3172 endopolygalacturonase was the only
secreted enzyme, making it preferred over other species/strains
due to lower downstreamprocessing costs. In spite of its promis-
ing characteristics, most K. marxianus strains require sufficient
aeration and tend to overglycosylate (recombinant) proteins
(Hensing et al. 1994). Furthermore, high sugar concentrations
inhibit ethanol production in K. marxianus, making this a less
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attractive host for bio-based fuel production (Margaritis and
Bajpaj 1983).

CONCLUSIONS

This review has discussed the main stress factors encountered
by yeast cell factories used for production of bioethanol and bio-
based chemicals and also how to engineer the cell factories for
increased stress tolerance. Yeast cell factories are subject to a
variety of stress factors during first- and second-generation fer-
mentation processes. The industry is in dire need of microor-
ganisms that can cope with the multitude of stress factors that
can occur.

A variety of yeast species possess specific stress tolerance
characteristics that are of interest to the industry but lack other
desirable traits. Saccharomyces cerevisiae is still considered to be
one of the most robust and versatile microorganisms. Its long-
standing track record in the fermentation industry makes it an
obvious choice for further improvement of its stress tolerance
properties to make it even more suitable for use in biofuel and
bio-based chemical production with difficult feedstocks. How-
ever, S. cerevisiae is lacking the capacity for utilization or produc-
tion of certain compounds, it can also make undesirable post-
translational modifications in protein production and has lower
tolerance to certain stress factors than other species. Therefore,
other microorganisms could be favored for specific industrial
production processes.

Most information on the molecular-genetic basis of stress
tolerance has been gained with laboratory yeast strains. This
information is often not applicable to industrial yeast strains.
Hence, more research is needed on the genetic basis of stress
tolerance characteristics in industrial and natural yeast strains.
These strains contain interesting alleles for targeted strain im-
provement while minimizing the risks of side effects on other
industrially important traits.

Most research has also concentrated on genetic elements
that are required to maintain stress tolerance and much less on
genetic modifications that can improve stress tolerance. Since
industrial yeast strains are generally much more robust and
stress tolerant than laboratory yeast strains, more research on
genetic factors important for stress tolerance and especially
enhancement of stress tolerance in industrial yeast strains is
required.

Genetic modifications that improve stress tolerance in yeast
can compromise other properties that are important for indus-
trial application, such as fermentation performance, propaga-
tion rate and tolerance to drying and storage conditions. Hence,
it is important to evaluate newly constructed yeast strains under
as many conditions as possible that are relevant in the industry.

The recent advent of highly powerful and precise genome en-
gineering technologies, especially the CRISPR-Cas9 technology,
has enabled much faster engineering of industrial yeast strains
and will hopefully stimulate the development of highly produc-
tive cell factories for various applications in the production of
biofuels and bio-based chemicals.
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