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Abstract

Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is
challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered
occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or
binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding
profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish
TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models,
in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies.
However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when
their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel
computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more
effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph
(DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other
problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph,
available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data,
our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm
differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating
expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so
far has not been characterised for this class of mesodermal CRMs.
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Introduction

A major area in genome research is understanding how the

regulatory information is encoded. Work over the past few decades

has resulted in the notion of a combinatorial regulatory code: the

concerted binding of a context-specific set of transcription factors

(TFs) to regulatory sequences, which is crucial for proper gene

expression. Studies of a handful of single genes and their few well-

characterised enhancers prevailed in the early days (see [1] for

review). The traditionally experimental dissection of enhancers

allowed the placing of TFs within a regulatory hierarchy. A

canonical example of this traditional dissection is the identification

of the various stripe enhancers of the Drosophila even-skipped gene

that respond to different TFs involved in early patterning (see [2,3]

for review). With the advent of genome-wide detection methods,

hundreds of genome-wide TF binding and histone modification

profiles have been generated [4–6] with the aim of deciphering the

combinatorial regulatory code at the global level. Whereas the

inference of the regulatory code may greatly benefit from having

additional data, such as the expression patterns of the genes of

interest under mutant conditions, it is often difficult to collect at

the genome level. In the absence of such additional data, a typical

strategy is to assume that correlation in TF binding indicates

functional interaction between TFs, and to perform correlation-

based analyses, such as enrichment analysis (see [7] for a review of

strategies in analysing multiple TF binding profiles). However,

recent studies provide evidence for so-called ‘‘hotspots’’ to which

many interacting or non-interacting TFs may bind [6,8,9], which

leads to high correlations among binding profiles of both

functionally ‘‘relevant’’ and functionally ‘‘irrelevant’’ TFs. It

remains a significant challenge to distinguish relevant and

important TFs from the others in the understanding of the

combinatorial regulatory code.

Similar to the gene regulation problem described above, many

other biological problems involve highly-correlated features and

high correlation does not necessarily indicate functional relevance.
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Machine learning approaches, especially classification methods,

have been developed to use the measurements of these features (or

‘‘explanatory variables’’) to predict biological outcomes (or ‘‘target

variables’’), e.g. using core promoter DNA motifs to predict

transcription start site locations [10] or using DNA motifs and

transcript structures to predict splicing patterns [11]. Although

these approaches may produce robust predictions, they do not

distinguish which features directly or indirectly influence the

biological outcome. Other machine-learning approaches such as

standard feature selection methods (see [12] for review) are also

not appropriate for this kind of inference in the general case

[13,14].

In contrast, graphical models (GM) [15] encompass a broad

class of tools that infer the joint probability distribution of the

variables in the network (or graph), and distinguish direct from

indirect interactions under broad assumptions. Graphical models

achieve this distinction through the notion of conditional

independence, which is explained in the Results section. Bayesian

networks, also known as Directed Acyclic Graphs (DAGs), are a

type of graphical model that further permit the interpretation of

causality of the inferred interactions.

Two concepts are particularly important in the theory of

Bayesian networks: the causal neighbourhood and the Markov

blanket. Specifically, if there is a directed edge from variable A to

the target variable T in the network, then variable A is defined as

the causal parent of T. If the directed edge goes from T to A, then

A is the causal child of T. The causal neighbourhood of the target

variable consists of the causal parents and causal children of the

target variable. It is thus the set of variables that are most ‘‘causally

immediate’’ for the target variable. The Markov blanket of the

target variable T contains its causal neighbourhood as well as

other causal parents of T’s causal children (these other causal

parents are T’s causal spouses). From the information-theoretical

perspective, the Markov blanket contains all the information about

the target variable [15,16].

In terms of statistical inference, existing algorithms for inferring

Bayesian networks can be broadly classified into constraint-based,

score-based and hybrid algorithms [17]. Constraint-based algo-

rithms perform statistical tests for conditional independence,

whereas score-based algorithms estimate the most (or highly)

likely joint distribution of the variables in the network. Hybrid

algorithms are a combination of the other two, initialising a score-

based search with a network inferred by a constraint-based

algorithm.

In this paper we develop a novel constraint-based graphical

model method, the Neighbourhood Consistent PC (NCPC)

algorithms, to infer the causal neighbourhood and the Markov

blanket of a target variable. Through synthetic data, we de-

monstrate that our algorithm has superior performance to existing

algorithms when the variables are highly correlated, the data of the

target variable is sparse, and the coupling of the target variable

and other variables is weak.

We also develop a novel graphical representation, the Direct

Dependence Graph (DDGraph), which can represent the depen-

dence patterns inferred from the NCPC algorithms. This re-

presentation is broader than the common representation in DAGs,

and is useful for exploratory analyses of NCPC results. In par-

ticular, the DDGraph shows the conditional independencies in the

data even if the underlying network is cyclic or non-faithful to a

DAG. Both NCPC and DDGraph are implemented in the R

package ddgraph, which is part of Bioconductor (http://

bioconductor.org/packages/2.11/bioc/html/ddgraph.html).

Applying our algorithm to genome-wide TF profiles and

expression profiles of cis-regulatory modules (CRMs) published

in [18] provides novel insight into the transcriptional regulation

during mesoderm differentiation in Drosophila embryonic devel-

opment. We identify not only known TFs that are relevant

for specific CRM classes, but also a potentially CRM-specific

repression mechanism that has not been suggested before.

Although we focus on gene regulation in our paper, our algorithm

is applicable to other scenarios discussed earlier that involve highly

correlated biological features.

Results

Direct and indirect dependencies
We illustrate the concepts of direct and indirect dependencies in

terms of the combinatorial binding code of transcription factors.

Our aim is to identify transcription factors that directly influence the

regulatory output of a set of CRMs. Consider the following

example. Transcription factor A binds to the CRM of a number of

genes and thus directly regulates these target genes, whereas

transcription factor B binds to several CRMs where A also binds

(perhaps because of chromatin structure), but does not regulate the

target genes of A. Therefore, A and B have overlapping binding

profiles, and both appear to be associated with gene expression

changes. However, the apparent effect of B can be explained away

by the effect of A. This means that, if we divide the CRMs into

those bound by A and those not bound by A, the binding of B is

not associated with gene expression changes in either group.

Mathematically speaking, B and the genes are conditionally

independent given A, suggesting that the effect of B is at most

indirect. In contrast, if we divide the CRMs into those bound by B

and those not bound by B, the binding of A is still associated with

gene expression changes in either or both groups. Mathematically

speaking, A and the genes are dependent given B, suggesting that the

effect of A is direct. Detecting conditional independence is thus

central in separating direct from indirect effect [15]. Incidentally,

when we consider all the CRMs together, both A and B can be

associated with (or equivalently, marginally dependent with) the genes.

Below we formally define the types of statistical dependencies

our NCPC algorithm and its extension detect. We use Xi, a binary

vector, to represent the binding states of the i-th TF at a set of

CRMs. We use T, also a binary vector, to represent the expression

states of the genes with which the CRMs are associated. We

Author Summary

Transcription factors (TFs) are proteins that bind to DNA
and regulate gene expression. Recent technological
advances make it possible to map TF binding patterns
across the whole genome. Multiple single-gene studies
showed that combinatorial binding of multiple transcrip-
tion factors determines the gene transcriptional output.
A common naive assumption is that correlated binding
profiles may indicate combinatorial binding. However, it
has been found that many TFs bind to distinct hotspots
whose role is currently unclear. It is thus of great interest
to find transcription factor combinations whose correlated
binding is causally most immediate to gene expression.
Building upon theories of statistical dependence and
causality, we develop novel graphical modelbased algo-
rithms that handle highly correlated transcription factor
binding profiles more efficiently and reliably than existing
algorithms do. These algorithms can also be applied to
other biological areas involving highly correlated variables,
such as the analysis of high-throughput gene knock-down
experiments.

Dissection of TF Binding Site Profiles
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denote the set of all m TF binding profiles as V, such that

V~ X1,X2, . . . Xmf g. As mentioned in Introduction, T is the target

variable or outcome, and the Xs are the explanatory variables or

features. Consistent with standard notation, we use symbol to

represent ‘‘marginally independent’’, and symbol / to represent

‘‘marginally dependent’’. We also use symbol | to represent

‘‘conditioning on’’. Bold capital letter S indicates a subset of V,

whereas S(Xi) indicates a subset of V that does not include Xi, i.e.,

S Xið Þ( V \Xif g.
Definition 1. Variables Xi and T are directly dependent if Xi and

T are marginally dependent (i.e., Xi / T) as well as dependent when

conditioning on any subset S(Xi) of V that does not include Xi. That is, it holds

that Xi / T | S(Xi).

Definition 2. Variables Xi and T are conditionally dependent if

Xi and T are marginally independent (i.e., Xi T), but there exists at least

one non-empty subset S(Xi) such that Xi / T | S(Xi).

Definition 3. Variable Xi and T are indirectly dependent if

Xi / T, but for at least one non-empty subset S(Xi), it holds that Xi T | S(Xi).

Note that, in the example above, A and T are directly

dependent, whereas B and T are indirectly dependent. When

many TFs are involved, often several TFs have similar types of

dependence with T. Such collections of TFs are of interest in

understanding the complex transcriptional regulatory network and

are related to the causal neighbourhood and Markov blanket

introduced in the previous section and formally defined below.

Definition 4. A subset S of V is a causal neighbourhood of T if

every variable Xi in S is directly (Definition 1) dependent with T.

Definition 5. A subset S of V is a Markov blanket of T if every

variable Xi in S is either directly (Definition 1) or conditionally (Definition 2)

dependent with T.

As mentioned in the Introduction, whereas the Markov blanket

of T is the minimal set of explanatory variables that provide all the

information about T, the causal neighbourhood a subset of the

Markov Blanket - contains the main players that have a direct,

causal connection with T. Note that we aim to identify the causal

neighbourhood and do not identify whether the causal neighbour-

hood is the cause of T, or T is the cause of the variables in the

causal neighbourhood (see Discussion). It means that binding of

the TFs in the causal neighbourhood may induce or inhibit certain

genes; alternatively, they may be the outcome of the induction or

inhibition of certain genes.

Neighbourhood Consistent PC algorithms
Here we present two versions of the Neighbourhood Consistent

PC (NCPC) algorithm, which are based on the PC algorithm [15].

Similar to the PC algorithm (see Supplementary Text), our

algorithms perform a series of statistical tests on each explanatory

variable to select variables in direct, conditional and indirect

dependencies to target T. More importantly, our algorithms detect

these dependencies even when the explanatory variables X are

highly correlated among themselves. For example, consider the

case where two highly correlated variables Xi and Xj both have

direct or conditional dependence with the target variable T.

However, when testing the null hypothesis of Xi (or Xj) and T being

independent given Xj (or Xi) for data with a finite sample size, we

may not reject this null hypothesis for a given confidence level.

Thus, both Xi and Xj may be discarded during the selection

procedure. Indeed, the original PC algorithm discards such

variables, leading to a low accuracy rate in these scenarios (see

Section ‘‘Comparison with other algorithms on synthetic data’’).

To account for potential correlation among variables X, our

NCPC algorithms specifically check for and retain pairs of

variables with the two patterns described below. These patterns

depend on the type I error rate a of the statistical test used in the

algorithm.

Candidate pattern 1. Variables Xi and Xj have a joint
dependency pattern if at level a, (i) they each are marginally

dependent with T; (ii) Xi and T are conditionally independent given Xj and

S, and (iii) Xj and T are conditionally independent given Xi and S, where S is

any (possibly empty) subset of V, excluding Xi and Xj. Xi and Xj in this

pattern are candidates for having direct dependency with T.

Candidate pattern 2. Variables Xi and Xj have a conditional
joint dependency pattern if, at level a, (i) they each have

conditional dependency with T, (ii) Xi and T are conditionally

independent given Xj and S, and (iii) Xj and T are conditionally independent

given Xi and S, where S is a subset of V including the variables Xi, Xj are

conditional on, and possibly other variables (excluding Xi and Xj). Xi and Xj

in this pattern are candidates for having conditional dependency with T.

Although these candidate patterns are mathematically incon-

sistent (see proof in Supplementary Text), we show in the

subsequent section on synthetic data that these patterns can arise

in applications with highly correlated variables, and thus should

not be discarded.

Between the two versions, the basic NCPC algorithm, shown in

Box 1, infers only the causal neighbourhood, retaining variables

possibly in direct and indirect dependence with T, as well as those

in the joint dependency pattern. The NCPC* algorithm, which is

the extended version, infers the Markov blanket, retaining in

addition variables possibly in conditional dependence and those in

the conditional joint dependency pattern. The differences between

the two versions will be explained below. See details of the two

versions in Supplementary Text.

The NCPC* algorithm differs from the NCPC algorithm in two

main ways. Firstly, during the initialisation step, in addition to the

candidate set C of Xs marginally dependent with T, NCPC* also

includes Xs that are dependent with T given variables in C.

Secondly, NCPC* checks for conditional dependence for individ-

ual Xs as well as conditional joint dependency patterns for pairs of

Xs.

The NCPC and NCPC* algorithms have similar computational

complexity to the PC algorithm. That is, in the worst case, the

number of required tests increases exponentially with the size of

the causal neighbourhood (NCPC) or that of the Markov blanket

(NCPC*), although in real life applications, the size of the causal

neighbourhood and that of the Markov blanket of T are often

small. Multiple testing correction [19,20] can be used as suggested

for the PC algorithm [21] (see Supplementary Text for details).

As local network reconstruction algorithms our NCPC algo-

rithms assume that there are no hidden variables or directed cycles

(i.e., feedback loops) in the Markov blanket of T, although hidden

variables or directed cycles may exist in other parts of the system.

In Discussion, we examine the impact of deviations from these

assumptions.

Assuming an infinite sample size, a perfect statistical test

(‘‘conditional independence oracle’’) and a dependence structure

faithful to a DAG without hidden (i.e. unmeasured) variables, the

NCPC* algorithm can correctly label all the variables in the

network; that is, this algorithm is asymptotically correct for a

distribution faithful to a DAG (see [15] and [22] for similar

discussions on asymptotic correctness). This is because all the

causal spouses of the target variable T enter the candidate list in

Steps 1 and 2, such that the set of candidates contains the whole

Markov blanket of T. Conditional on the whole Markov blanket,

all the remaining variables can then be correctly labelled as in

indirect dependence. In contrast, the NCPC algorithm is not

asymptotically correct, except when there are no variables with

conditional dependence, such that the Markov blanket of T is

Dissection of TF Binding Site Profiles
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identical to its causal neighbourhood. In general the NCPC

algorithm may falsely identify indirect dependence as direct

dependence. However, as we show in Section ‘‘Comparison with

other algorithms on synthetic data’’, the NCPC algorithm may be

empirically more stable than the NCPC* algorithm and thus lead

to better results in practice.

The Direct Dependence Graph
NCPC and NCPC* output labels for the explanatory

variables X. These labels are the inferred types of dependence,

namely ‘‘direct’’, ‘‘indirect’’ and ‘‘joint’’, as defined in Defini-

tions 1–3, and the candidate dependency patterns, namely

‘‘conditional’’ and ‘‘conditional joint’’, as described in Candi-

date Patterns 1–2. To visualise the inferred dependencies

between multiple explanatory variables and the target variable,

and especially to represent Candidate Patterns 1–2, we develop

a novel graphical representation: the Direct Dependence Graph

(DDGraph).

DDGraphs use both directed edges (ending in dots) and

undirected edges to capture a multitude of dependency patterns

with respect to the target variable T (see Figure 1 for the graphical

vocabulary). For example, directed edge Xi –N Xj represents that Xj

is conditionally independent of T given Xi. Solid undirected edge

Xi–Xj represents that Xi and Xj are both dependent given T and

marginally dependent. Dashed undirected edge Xi - - Xj represents

that Xi and Xj are conditionally independent given T. Additionally,

black edges indicate dependence patterns that are mathematically

consistent, and grey edges indicate the dependence patterns that

are inconsistent (e.g. edges in Candidate Patterns 1 and 2).

A DDGraph and a DAG with the same dependence patterns

around the target variable T is shown in Figure 2A. In a

DDGraph, variables connected to the target variable T with an

undirected edge are in the causal neighbourhood of T, and

variables reachable from T by traversing only undirected edges are

in the Markov blanket of T (Figure 2A). These variables are also

easily recognizable with their oval shapes, whereas variables in

indirect dependence with T have a rectangular shape. By contrast,

the causal neighborhood and Markov blanket in a DAG have to

be inferred from the direction of the edges (Figure 2A).

A DDGraph also represents joint and conditional joint

dependency patterns, which are mathematically inconsistent and

thus impossible to represent with DAGs (Figure 2B). Indeed,

DAGs, as well as other factorization-based graphs, such as factor

graphs [23], that represent a factorization of a joint probability

distribution cannot represent these inconsistent dependency

patterns.

Comparison with other algorithms on synthetic data
We generated synthetic data based on the 15 correlated TF

binding profiles in [18]. See Materials and Methods for details on

data generation. The target variable T, which is a binary vector

that contains the expression states of a set of CRMs, is sparse:

similar to the real data, only around 10% of CRMs show class-

specific expression. We generated data for three sample sizes: 300,

500 and 1000; the sample size in the data of [18] is 310. In

addition, we simulated a causal neighborhood of two variables (X1,

X2) for T, and these causal neighbors are weakly correlated with T

(correlation 0.17–0.25). We simulated data with four levels of

correlation between the two causal neighbors: no correlation (0),

weak correlation (0.25), strong correlation (0.50; similar to the

average correlation of 0.46 we found in the data from [18]), and

very strong correlation (0.75).

We further introduced a third variable (X3) as the confounding

variable in the network and generated correlated data for two

realistic scenarios:

N Time - The two causal neighbours (X1, X2) and the third

variable (X3) represent the binding profiles of the same TF at

three times, such that X1RX2RX3, in which the correlation

between X1 and X3 is smaller than that between X1 and X2 and

between X2 and X3 (Figure 3A).

N Hidden - The three variables are correlated with a common

unobserved cause, e.g., the chromatin and/or cell population

structure (represented by H in Figure 3B). We set the

correlation between any pairs of these three variables to be

the same.

With these synthetic data, we focus on the performance of

separating direct from indirect dependence and detecting the

causal neighbourhood. We applied our NCPC and NCPC*

algorithms, at an a level of 0.05, to these data. Of the constraint-

based algorithms, multiple testing correction has been mathemat-

ically and empirically demonstrated only for the PC algorithm

[21,24,25], therefore, for fair comparison we applied all al-

gorithms, including NCPC/NCPC*, without any multiple testing

correction. To investigate the effectiveness of identifying pairs of

variables in Candidate Patterns 1 and 2 (see Section ‘‘Neighbour-

hood Consistent PC algorithms’’), we applied the NCPC algorithm

in two ways: detecting variables only in direct dependence with the

target variable, and in addition detecting pairs of variables in joint

dependence (Candidate Pattern 1). Similarly, we applied the

Box 1. NCPC Algorithm.

Input:

N Matrix X with columns representing different variables
(X1, X2, …Xm) and rows representing observations.

N Column vector T of target variable values, with
observations corresponding to those of X.

N Conditional independence test appropriate for the dataset

Algorithm:

1. Initialise a set of direct dependence candidates C with all
Xi marginally dependent with T

2. Let n = 1

3. Repeat:

(a) Enumerate all subsets S of size n from candidate set C

(b) For every Xi, if Xi is conditionally independent of T

given any of the subsets S, remove it from the set of

candidates

(c) Set n = n+1

(d) Break out of the loop if n is greater than number of

candidates C, or, stopping criterion is met

4. Label candidates C as having direct dependence

5. Systematically check for joint pattern of dependence in
tests performed in Step 3

6. If Xi is conditionally independent of T only in a joint
pattern, label as having joint dependence

7. Label all variables removed in Step 3 not having joint
dependence as having indirect dependence

8. Label all remaining variables as having no dependence

9. Return calls for each of the variables in X

Dissection of TF Binding Site Profiles
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NCPC* algorithm in two ways: detecting variables only in direct

and conditional dependence with the target variable as well as

pairs of variables in joint dependence, and detecting, in addition,

pairs of variables in conditional joint dependence (Candidate

Pattern 2). For comparison, we also applied the following

algorithms to the synthetic data: the original PC algorithm [15];

score-based algorithms that infer the whole network, such as Hill-

climbing with BIC penalization [26] or with a Dirichlet prior (BDe

penalization [27]); other constraint-based algorithms that infer the

local structure, such as IAMB [28], FastIAMB [29], InterIAMB

[29] and MMPC [30]; as well as a hybrid algorithm MMHC [30].

We measured the proportion of correct predictions from these

algorithms over 1000 data sets generated for each combination of

the sample size and correlation in either of the two scenarios. A

prediction is correct when only the two causal neighbors and no

other variables are identified. These prediction rates for the

‘‘Time’’ scenario are summarized in Figure 4. The prediction rates

for the ‘‘Hidden’’ scenario are similar and are summarized in

Supplementary Figure S1 in Text S1.

Identifying variables in direct dependence and in joint

dependence, the NCPC algorithm (‘‘NCPC dir+jnt’’), has the

highest (accounting for variation in simulated data) rate of correct

predictions amongst all the algorithms in all the cases examined

here, except in the biggest dataset with 0 correlation. This superior

performance is particularly notable when the correlation between

the variables is high and the dataset is small. By including the

variable pairs in joint dependence, ‘‘NCPC dir+jnt’’ achieves

better performance ‘‘NCPC dir’’ because this inclusion drastically

improves recall (corresponding to low false negative rates),

especially when the sample size is not large, although the inclusion

lowers precision (corresponding to high false positive rates) slightly

(see rates of precision and recall defined in Materials and Methods

and computed in Supplementary Figures S2 and S3 in Text S1).

The comparison of the two implementations of the NCPC

algorithm provides some empirical evidence for including pairs

of variables at least in Candidate Pattern 1 as candidates for direct

dependence. With the sample size as large as 1000, the data are

informative enough for ‘‘NCPC dir’’ to perform similarly or even

slightly better than ‘‘NCPC dir+jnt’’. The performance of the two

implementations of the NCPC* algorithm, however, is worse than

the NCPC algorithm in most cases. This is likely because in order

to identify the Markov blanket, which is larger than the causal

neighbourhood, the NCPC* algorithm sacrifices the false positive

rates more to gain even lower false negative rates. At different

levels of correlation, the NCPC and NCPC* algorithms both have

more stable precision and recall rates than other algorithms

(Supplementary Figures S2 and S3 in Text S1). This may explain

why the NCPC and NCPC* algorithms (four implementations)

perform better than all the other algorithms.

Increasing the sample size improves the prediction for most

algorithms, as we expected. However, when the correlation in the

data is 0.75, the NCPC and NCPC* algorithms have lower rates of

correct predictions for data with a sample size of 500 than for data

with a sample size of 300. This may be due to the a level chosen

for the statistical test before running the algorithm, especially when

the P-values obtained by the NCPC and NCPC* algorithms are

close to the value of a. A more stringent a level such as 0.01 leads

to improved performance (Supplementary Figures S4 and S5 in

Text S1). This highlights the importance of choosing an

appropriate a value, and suggests re-running the algorithm with

a different a level if the P-values obtained are close to the initial a
value. We recommend the user to inspect the P-values of key

conditional independence tests that give rise to the DDGraph and

to change the a value accordingly.

Application of NCPC and NCPC* to fly mesoderm
development

Zinzen et al. [18] published an in vivo ChIP-chip temporal

binding profiles of key transcription factors that are involved in

mesoderm development in fly embryos, as well as the CRM

Activity Database (CAD), the largest such database thus far, which

contains tissue-specific temporal expression patterns driven by

these CRMs. The five key TFs, Twist (Twi), Myocyte enhancer

factor 2 (Mef2), Tinman (Tin), Bagpipe (Bap), and Biniou (Bin),

were each measured in some or all of five developmental stages,

producing 15 correlated TF binding profiles (Figure 5). Zinzen et

Figure 1. The graphical vocabulary of the DDGraph. The vocabulary consists of five types of nodes and two types of edges. For the edges,
directed edges ending with dots indicate conditional independences between Xk and the target variable T given Xi. Undirected edges indicate
dependencies, which involve T in different ways, and for conditional independencies between Xi and Xj given T. Consider a case of non-faithful
distribution where T is an XOR function of X1 and X2 with carefully set parameters so that from data it looks like X1 and X2 are marginally
independent of T. In this case, X1 and X2 would be conditionally dependent when conditioning on each other. This distribution would be represented
as two dotted nodes with a dotted line between them, but disconnected from T. This kind of graph signals a non-faithful distribution where the
neighbourhood and Markov blanket are not defined by transversing undirected edges from T.
doi:10.1371/journal.pcbi.1002725.g001

Dissection of TF Binding Site Profiles
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Figure 2. Comparison of DDGraphs and DAGs. (A) The causal neighbourhood of the target variable T consists of variables X1 and X2, while T’s
Markov blanket consists of X1, X2, X4 (in ovals). The remaining variables X3 and X5 have indirect dependence (in rectangles). The DDGraph (left) and
the DAG (right) represent the same conditional dependencies. The causal neighbourhood/the Markov blanket and the variable in indirect
dependence are distinguishable by the variable shapes in the DDGraph, but have to be inferred in the DAG by following the edges. (B) joint
dependency patterns representable in the DDGraph (left) cannot be represented by DAGs (right). The DAG shown here represents the conditional
independencies between X1 (or X2) and T given X2 (or X1), but it does not represent the marginal dependency between X1 (or X2) and T. Neither this
DAG or any other DAG can represent the entire joint dependency pattern.
doi:10.1371/journal.pcbi.1002725.g002

Figure 3. Two scenarios for generating the synthetic data with correlated variables. While the synthetic data were generated for a
network of 15 explanatory variables, only variables X1 and X2 have direct dependence with the target variable T, and therefore constitute the causal
neighborhood of T. Variable X3 is included as the confounding variable. (A) The ‘‘Time’’ scenario in which X1, X2 and X3 correspond to three time
points with stronger correlation between X1 and X2 and between X2 and X3 than between X1 and X3. (B) The ‘‘Hidden’’ scenario in which X1, X2 and
X3 are correlated due to a common cause H in the network. This common cause is used in data generation, but is not available to algorithms.
doi:10.1371/journal.pcbi.1002725.g003
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al. further focused on 310 CRMs from the CAD that have both

TF binding and expression data, and classified these CRMs into

five classes based on their tissue-specific expression patterns:

mesodermal (Meso), mesodermal and somatic muscle (Meso&SM),

visceral muscle (VM), visceral and somatic muscle (VM&SM) and

somatic muscle (SM).

Here we applied the NCPC and NCPC* algorithms to the same

310 CRMs with the 15 TF binding profiles. The advantage of this

dataset is that any computational predictions can be benchmarked

against a wealth of previously established biological results. At an a
level of 0.05, we identified expression class-specific causal neigh-

bourhoods using NCPC (Figure 6 and Supplementary Figure S6 in

Text S1). The Markov blankets identified by applying NCPC*

(Supplementary Figure S7 in Text S1) are similar to their

corresponding causal neighbourhoods. We discusss the biological

implications of our inference in the next section.

We also applied other algorithms benchmarked in the previous

section to this data set. Hill-climbing with BIC identified a smaller

but overlapping set of variables (Supplementary Figure S8 in Text

S1), consistent with our results on synthetic data that this

algorithm has higher precision but a lower recall rate than our

NCPC algorithms. Hillclimbing with BDe identified a bigger but

overlapping set of variables (Supplementary Figure S9 in Text S1),

also consistent with our results on synthetic data that this

Figure 4. Proportion of correct predictions for the ‘‘Time’’ scenario. Each cell shows the mean proportion of correct predictions (with 95%
confidence intervals) averaged over 1000 data sets generated in each case. Highest prediction proportions accounting for variation in the data
(pairwise T-tests with a cut-off of 0.001 for the P values) are shown in bold. See Materials and Methods for the generation of the synthetic data and for
the calculation of the correct prediction proportion.
doi:10.1371/journal.pcbi.1002725.g004
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algorithm has lower precision than but a similar recall rate to our

NCPC algorithms. The IAMB family of methods found either a

smaller but overlapping set of variables, or no variables

(Supplementary Figures S10, S11 and S12 in Text S1). The

original PC algorithm performed similarly to the IAMB methods

(Supplementary Figure S13 in Text S1). MMHC produced similar

results to those from the ordinary hill-climbing method (Supple-

mentary Figures S14 and S15 in Text S1).

TF combinatorial code of fly mesoderm development
We applied our method on the dataset of early mesoderm

development in the Drosophila embryo [18]. The five transcrip-

tion factors Twi, Tin, Mef2, Bin and Bap have been previously

implicated in mesoderm development of the fly. Among the five

TFs we analysed here, Twi, together with another TF Snail, is the

earliest marker of mesoderm and is required for mesoderm

formation [31]. Tin, a direct target of Twi, is crucial for the

differentiation of heart, somatic and visceral mesoderm and is

present also in dorsal somatic muscle precursor cells [32]. Mef2,

crucial for early muscle differentiation, is present in both visceral

and somatic muscle [33–35]. Activated by Tin, Bap specifies cells

that become the visceral muscle [36,37]. Finally, Bin is expressed

only in visceral muscle cells and is crucial for their differentiation

[38].

After identifying the causal neighbourhood, we further exam-

ined which specific TF combinations are enriched or depleted in

Figure 5. Clustered pairwise correlation matrix of the 15 transcription factor binding profiles over all 310 CRMs. Note that the cluster
that consists of Mef2 8–12 h and Bin 6–12 h (lower left corner of the matrix) is anti-correlated with early Twi 2–4 h binding.
doi:10.1371/journal.pcbi.1002725.g005
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each of the five expression classes, compared with the rest of the

310 CRMs analysed here (Figure 7). Most of these TF

combinations have been established in single-gene studies:

N Meso - these CRMs are active only in the early mesoderm

(2–6 h). For these we find that Twi 2–4 h binding alone

activates these CRMs (Figure 6). This result is not surprising,

as Twi is the key regulator of mesoderm development. Note

also that Twi 2–4 h is negatively correlated with binding

profiles from later stages (Figure 5), perhaps due to changes in

the chromatin structure during development, such that the set

of early CRMs bound by Twi at 2–4 h are not accessible at

later stages.

N Meso&SM - these CRMs are active in both early mesoderm

(2–6 h) and somatic muscle precursor cells (after 6 h). This

CRM class contains only 9 active CRMs, the fewest among the

five classes. Tin at 2–4 h and 4–6 h and Mef2 from the same

time intervals all have joint dependence with the CRM class

activity (Figure 6). Furthermore, the presence of both TFs at

both stages are significantly enriched in this CRM class

(Figure 7), suggesting that this class of CRMs have a different

TF combinatorial code from that for the CRMs active only in

early mesoderm (‘‘Meso’’). However, Mef2 is not significantly

bound after 6 h, and no data is available for Tin after 6 h.

Thus, it is unclear which TFs contribute to the somatic activity

later on.

N SM - these CRMs are active in somatic muscles after 6 h or

later in development. This CRM class was difficult to predict

with a Support Vector Machine, the approach [18] used. Here

we found only Mef2 at 10–12 h to be directly associated with

the CRM class activity (Figure 6), although Mef2 at 6–8 h has

a P-value just above the a level of 0.05 and could have been

inferred to pair up with Mef2 at 10–12 h to form the joint

dependence pattern. It is likely that for this class of CRMs we

are missing some of the key TFs.

N VM - these CRMs are active in visceral muscle after 6 h of

development. TFs Bin and Bap are known to express only in

visceral muscle and are crucial for its development. Thus we

would expect both of them to constitute the combinatorial code.

We found that Bin at 6–8 h and at 8–10 h are in joint

dependence with this CRM class (Figure 6), and that Bin

binding at both stages is indeed significantly enriched (Figure 7).

These observations together indicate that persistent binding of

Bin alone activates this CRM class. Note we did not recover Bap

as part of the combinatorial code. By examining the DDGraph

we note that Bap is found to have indirect dependence with a P-

value just above the threshold (0.06). Furthermore, to our

knowledge, the only CRM where Bap binding has been directly

proven is the betaTub60D enhancers [39], however the CRM

containing this binding site (CRM ID 1443) was annotated with

VM&SM activity. Thus, annotation bias might explain why Bap

is missing from the combinatorial code at a = 0.05.

Figure 6. DDGraphs for the 5 CRM classes inferred by the NCPC algorithm at a = 0.05. Variables in green circles are target variables.
Variables in ovals are inferred causal neighbours. Variables in rectangles are inferred to have indirect dependence with the target. Values on the
edges are (unadjusted) P-values from conditional independence tests. The same NCPC algorithm with no multiple testing correction was used as in
the synthetic data benchmark. See Figure 1 for the graphical vocabulary.
doi:10.1371/journal.pcbi.1002725.g006

Dissection of TF Binding Site Profiles

PLOS Computational Biology | www.ploscompbiol.org 9 November 2012 | Volume 8 | Issue 11 | e1002725



In addition to previously established regulatory principles out-

lined above, the genome-wide statistics also suggest a thus far

uncharacterized mechanism of prevention of early Twi binding at

2–4 h of embryogenesis for the class of CRMs active in visceral

and somatic muscle (VM&SM) at 8–12 h of development. This

suggests that these CRMs are selectively shut off during early

embryogensis, but are bound later on by tissue-specific transcrip-

tion factors:

N VM&SM - these CRMs are active in visceral and somatic

muscle after 8 h of development. It is known that at this stage

Mef2 is expressed in both visceral and somatic muscles, while

Bin is expressed only in visceral muscles [33–35,38]. We

identified that Bin and Mef2 binding at 10–12 h are in joint

and direct dependence, respectively, with this CRM class

(Figure 6). This is consistent with the important role previously

established for these TFs in visceral and somatic muscle

development [33–35,38]. Earlier Mef2 binding at 8–10 h has

been found to be indirect, but with a P-value barely above the

0.05 threshold (P-value of 0.051). Thus, it is possible that Mef2

binding at 8–10 h is also part of the combinatorial code. In

addition, Mef2 binding at 10–12 h alone is significantly

associated with activity of this CRM class (Figure 7), we find

that although the pattern when both Mef2 and Bin are co-

bound is most highly enriched, only a minority of CRMs have

this pattern. Instead, most either have only Mef2 binding, or

only Bin binding. In fact, the binding of Mef2 and Bin at 10–

12 h seems largely independent (Figure 6), suggesting that

these TFs may not interact much with each other during

visceral and somatic muscle development. We also identified,

rather surprisingly, that Twi 2–4 h is in direct dependence

with this CRM class, which may suggest a repression

mechanism that has not been characterised yet. See further

discussion below.

Twi 2–4 h is identified to also have direct dependence with this

VM&SM CRM class (Figure 6), and, interestingly, it is the lack of

Twi binding at 2–4 h that is significantly associated with the

activity of this CRM class. Note that this observation is consistent

with the negative correlations between the binding profiles (over

all 310 CRMs) of Twi 2–4 h and both Bin and Mef2 at later stages

(Figure 5). However, it is unclear how depletion of Twi at an

earlier stage leads to activity of these CRMs several hours later.

One plausible biological explanation is that these CRMs may be

silenced during early embryogenesis (for example, the chromatin

they are located in is inaccessible during this stage), and be bound

by tissue-specific TFs, such as Bin and Mef2, later. Activation of

the CRMs in this class may require concerted efforts, which may

be specific to this CRM class, and which may involve remodelling

of chromatin or inhibition of early Twi binding. It is also unclear

whether additional transcription factors or chromatin remodelling

factors are involved in the activation of this CRM class.

Discussion

In this paper we present a novel graphical model-based method

that distinguishes direct from indirect dependencies between

explanatory variables (or features) and the target variable. Our

Figure 7. Combinatorial patterns of TFs in inferred causal neighbourhoods. For each combinatorial pattern we show the number of CRMs
with this pattern in the CRM class and that in the rest of CRMs (percentages are given in parenthesis). The difference in the two frequencies (CRM
class vs rest) and the corresponding P-value are given in the last two columns. P-values were computed from Fisher’s exact test for each combination
and adjusted for multiple testing using the Benjamini-Hochberg method. See Materials and Methods for details. Frequency differences are colour-
coded: blue for decrease in the CRM class, and orange for increase in the CRM class.
doi:10.1371/journal.pcbi.1002725.g007
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NCPC and NCPC* algorithms work particularly well in cases of

highly correlated features and of sparse or weak signals, as seen in

comparison with other algorithms on synthetic data.

We applied our algorithms to data published in [18], which

consist of the 15 transcription-factor binding profiles over 310

CRMs in Drosophila during mesoderm development. Our analysis

identified known combinations of TFs associated with expression

of different CRM classes. Our analysis also suggests an unchar-

acterized repression mechanism: depletion of Twist binding at 2–

4 h plus presence of tissue-specific factors Mef2 and Bin indicates

activity of the CRMs in the visceral and somatic muscle

development, through CRM silencing in early embryogenesis

and/or chromatin remodelling. Additional TFs may be involved

in mesodermal development, and our algorithms can be easily

applied to newly available data [40] to improve the local network

structures we identified here.

Our NCPC algorithms assume no hidden variables in the

Markov blanket of the target variable. This assumption is

frequently not met in reality; for example, in the case of the

transcriptional regulation, a number of relevant TFs might not

have been measured. In that case, a seemingly irrelevant TF might

be inferred as a causal neighbour if it is correlated with the

unmeasured relevant TF (e.g. due to open chromatin structure).

Such a TF would be a ‘‘proxy’’ for the binding of the relevant TF.

Our NCPC algorithms also assume no feedback loops in the

Markov blanket of the target variable. This may not be the case in

a real biological system. However, if time course data are available

and informative enough such that the underlying Markov blanket

is acyclic at each time point, then our NCPC algorithms can still

be applied (similar to the way we re-analysed the fly mesoderm

development data) to identify causal neighbours. Transcriptional

responses are typically slow (on the order of minutes [41]) which

allows for the data to be collected as time series so that the next

time point is a product of the previous time point and thus the

dynamics made acyclic in time.

The statistical tests our algorithms perform for the variables in

these systems tend to be highly dependent. It is still a challenge to

control the false discovery rate for highly dependent tests. We

implemented the multiple testing procedure of [21] for controlling

the false discovery rate (see Supplementary Text for detail).

However, we found that this procedure can be overly conservative

and can lead to loss of statistical power, for example even at 0.3

FDR the somatic muscle (SM) class has no causal neighbours (data

not shown) although in-vivo validation found a weak but predictive

signal [18]. Further development in controlling the FDR for

dependent tests in network inference is needed.

The NCPC algorithms infer the causal neighbourhood and do

not optimise the prediction accuracy of the target variable. Hence,

we do not expect these algorithms to be an optimal feature

selection procedure for classification. Nonetheless, the NCPC

algorithms may in principle be used for feature selection to

improve prediction accuracy, for example, by using cross-

validation to choose a P-value threshold that minimises the

cross-validation error. Directly incorporating the dependence

structure in a classifier is still challenging, since it is difficult to

robustly estimate higher-order conditional probabilities from small

datasets (a Naive Bayesian Classifier has been used in practice; see

[42]).

A wealth of genome-wide data have been and are currently

produced, featuring binding sites of transcription factors, chroma-

tin marks and RNA levels [6,9,43]. Our NCPC algorithms can be

applied to tackle more effectively the high correlations that have

been noted among these features [44] and uncover the underlying

combinatorial code specific to a set of regulatory sequences of

interest. However, before the NCPC algorithm can be used on

genomewide data, technical artefacts (e.g. systematic biases in

reporter assays or tested enhancers) need to removed and biases in

the data accounted or corrected for, otherwise they might lead to

spurious associations [45,46].

Although we have focused on TF binding and CRM activity in

this paper, our NCPC algorithms are applicable to other biological

problems involving possible highly correlated features. For

instance, high-throughput imaging of knock-down strains can

produce large sets of highly correlated visual features describing

cell shape [47–49]. Our NCPC algorithms can be applied to

explore the relationships between these visual features and the

genes knocked down, or between these features and characteristics

(e.g., elongation) of the cells involved. Similarly, genome-wide

RNAi screens with multiple classes of phenotypic readout [50,51]

might produce features (phenotypes) that are highly correlated, in

addition to features of gene functional and spatial/temporal

annotation. In the ideal case, we can find out if a phenotype is a

consequence of another phenotype or any of the gene features.

Dissecting direct and indirect effects in these highly correlated

datasets would provide further valuable insight into the underlying

biological mechanisms.

A unified interface to all causal neighbourhood/Markov blanket

methods benchmarked in this paper, including the NCPC/

NCPC* algorithms and the DDGraph representation, is available

as the R package ddgraph, which is part of Bioconductor (http://

bioconductor.org/packages/2.11/bioc/html/ddgraph.html).

Materials and Methods

TF binding and CRM activity data
We used the data from Supplementary Figure 8 of [18]. These

data include 5 TFs previously implicated in development of

mesoderm during D. melanogaster embryogenesis: Twist (Twi),

Tinman (Tin), Myocite enhancing factor 2 (Mef2), Biniou (Bin)

and Bagpipe (Bap). Their binary occupancy at 310 CRMs were

measured in some or all of 5 stages, leading to 15 binding profiles.

Their pairwise correlations are displayed in Figure 5. The data

also contain the in vivo-tested expression patterns of the 310

CRMs. Most of these (210) did not show expression in the

mesoderm, but showed expression in other tissues during

embryogenesis. Out of the 100 that did show mesodermal

expression, they were classified in 6 broad categories based on

expression in specific tissues: Mesodermal (Meso), Mesodermal

and Somatic Muscle (Meso&SM), Visceral Muscle (VM), Visceral

and Somatic Muscle (VM&SM), Somatic Muscle (SM) and

Cardiac Muscle (CM). We focused on the first five in our analysis,

like in the original paper.

Synthetic dataset
To construct the synthetic dataset we used Hill-climbing with

BIC to infer a Bayesian network from the real biological dataset

([18]; see the previous section). We estimated the mean number of

causal parents per node to be roughly 1.5 and the maximum to be

2. We therefore assumed a binomial distribution for the number of

causal parents. We used a beta distribution to generate the

probabilities in the conditional probability table associated with

each node. With these distributions we generated a network

structure that had both marginal probabilities and pairwise

correlations similar to the real data. We used this network

structure to generate binary data for 15 nodes in the network,

which is the number of TF binding profiles in the real data. The

target variable is generated separately using a noisy AND function.
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To generate the CRM class target variables we considered a

causal neighbourhood of size 2 and used a noisy AND function,

representing the simplest combinatorial code of 2 TFs. The noise

in the AND function is incorporated into both the inputs and the

output of the function. The noise in the inputs models the activity

of other TFs, which might, for example, inhibit the CRM activity

in the presence of the TF, or activate the CRM in the absence of

the TF. The noise in the output models the noise in the reporter

assay used to find the activity of a CRM. Let F(RA, RB) be a

boolean AND function with two inputs. Thus F(RA, RB) = 1 only if

RA = RB = 1. Further, let A and B denote the real functional

binding profiles of two TFs that constitute the combinatorial code.

The noise at the input of the boolean AND function can be

modelled by ‘‘readout’’ probabilities: output = F(RA, RB) ? P(RA|A) ?

P(RB|B). If we assume that the conditional probabilities have the

same distribution for A and B: P(RA|A) = P(RB|B), then we just

need to specify two readout probabilities. We set these to be

P(RA = 1|A = 1) = 0.5 and P(RA = 1|A = 0) = 0.1. At the output of

boolean AND function, we use a false positive rate of 0.01 and

false negative rate of 0.2. This parameter setting results in 10% of

the CRMs being active, similar to the Zinzen et al. data.

Furthermore, the data generated for these CRMs from the noisy

AND function is weakly correlated (correlation between 0.17 and

0.25) with A and B. This level of correlation is also similar to the

observed correlations between the CRM classes and TF binding

profiles in the real data.

To incorporate the two scenarios ‘‘Time’’ and ‘‘Hidden’’

described in the main text, we randomly chose three variables in

each simulated network. We then rewired these three variables to

match each scenario. For the ‘‘Time’’ scenario we allowed for the

first variable to have causal parents as in the unmodified network,

while variables two and three have causal parents only from the

scenario. However, they retained the original causal children of

the unmodified network. This ensured that we can fully control the

correlation between these three variables, but also leave it as much

as possible in the context of rest of the network. In the ‘‘Hidden’’

scenario, we generated an additional hidden variable and made it

a causal parent for the three variables in the scenario. Now the

three variables only retained their original causal children, but not

their causal parents. To generate the binary profile of the target

variable, we applied the noisy AND function as before.

The hill-climbing and IAMB algorithms were applied using the

bnlearn R package, and PC algorithm was applied using the pcalg

R package. Both can be accessed using a unified interface in our R

package ddgraph.

Applying NCPC and other algorithms and assessing their
performance

For NCPC and NCPC* we used the Monte-Carlo chi-square

test, while for the IAMB algorithms we used the Mutual

Information test recommended by the authors [28], but with

Monte Carlo-calculated P-values due to small sample sizes. We

compared these two tests in a simple case of two variables and

found that the Monte-Carlo chisquare test was slightly better than

the Monte-Carlo Mutual Information test. However, their

differences were not noticeable when applied to our synthetic

data. For MMHC we use the default constraint-based algorithm

(MMPC).

To assess the performance of the algorithms, we defined a

prediction as correct if there are no false positive and no false

negatives. The accuracy was measured by the prediction rate,

which was the proportion of correct predictions over all the

synthetic networks. We also defined precision as TP/(TP+FP),

where TP is the number of true positives, and FP is the number of

false positives. Additionally, we defined recall as TP/(TP+FN)

where FN is the number of false negatives. Rates of precision and

recall were also averaged over all the synthetic networks.

Controlling the power of conditional independence tests
in the NCPC algorithms

As the size of the conditioning set increases, the power of the test

decreases. To increase power, we limited the total count l of

datapoints per conditioning set to 10. Our NCPC and NCPC*

algorithms performed the test if this requirement was met and

considered the variables to be dependent otherwise.

Alternatively, one may constrain the size of the conditioning set.

Since our data are binary, we set the maximal size of the

conditioning set k to k~tlog2 Tminð Þ{2s, where Tmin is the smaller

of the number of ones and the number of zeros in T. We found

that these two rules performed similarly on our binary data. The

second rule, however, may also be applied to continuous features

with a binary target variable.

Testing enrichment of TF combinations
For n TFs, each of which is either present or not at a CRM, we

performed Fisher’s exact test to test whether a combination of

presence and absence of these TFs is statistically significantly

associated with a CRM class. This test essentially compares the

frequencies of the combination within this CRM class and across

the other four classes. We applied the Benjamini-Hochberg

correction [19], which adjusts the P-values to control the False

Discovery Rate (FDR), and retained those combinations with

adjusted P-values smaller than 0.15.

Supporting Information

Text S1 Supplementary information. Contains Supple-

mentary Text S1 and Supplementary Figures S1–15. The

Supplementary Text S1 contains a proof of mathematical

inconsistency of the joint and conditional joint dependence

patterns, the description of the PC algorithm and a detailed

pseudo-code of the NCPC algorithms.

(PDF)
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