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Michael Lynch*, Georgi K Marinov
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Abstract The evolution of the eukaryotic cell marked a profound moment in Earth’s history, with

most of the visible biota coming to rely on intracellular membrane-bound organelles. It has been

suggested that this evolutionary transition was critically dependent on the movement of ATP

synthesis from the cell surface to mitochondrial membranes and the resultant boost to the

energetic capacity of eukaryotic cells. However, contrary to this hypothesis, numerous lines of

evidence suggest that eukaryotes are no more bioenergetically efficient than prokaryotes. Thus,

although the origin of the mitochondrion was a key event in evolutionary history, there is no reason

to think membrane bioenergetics played a direct, causal role in the transition from prokaryotes to

eukaryotes and the subsequent explosive diversification of cellular and organismal complexity.

DOI: https://doi.org/10.7554/eLife.20437.001

Introduction
The hallmark feature distinguishing eukaryotes from prokaryotes (bacteria and archaea) is the univer-

sal presence in the former of discrete cellular organelles enveloped within lipid bilayers (e.g. the

nucleus, mitochondria, endoplasmic reticulum, golgi, vacuoles, vesicles, etc.). Under a eukaryocentric

view of life, these types of cellular features promoted the secondary origin of genomic modifications

that ultimately led to the adaptive emergence of fundamentally superior life forms (Martin and Koo-

nin, 2006; Lane and Martin, 2010). Most notably, it has been proposed that the establishment of

the mitochondrion provided an energetic boost that fueled an evolutionary revolution responsible

for all things eukaryotic, including novel protein folds, membrane-bound organelles, sexual repro-

duction, multicellularity, and complex behavior (Lane, 2002, 2015).

However, despite having more than two billion years to impose their presumed superiority, eukar-

yotes have not driven prokaryotes extinct. Prokaryotes dominate eukaryotes both on a numerical

and biomass basis (Whitman et al., 1998; Lynch, 2007), and harbor most of the biosphere’s meta-

bolic diversity. Although there is no logical basis for proclaiming the evolutionary inferiority of pro-

karyotes, one central issue can be addressed objectively – the degree to which the establishment of

eukaryotic-specific morphology altered energetic efficiency at the cellular level.

Drawing on observations from biochemistry, physiology, and cell biology, we present a quantitative

summary of the relative bioenergetic costs and benefits of the modified architecture of the eukaryotic

cell. The data indicate that once cell-size scaling is taken into account, the bioenergetic features of

eukaryotic cells are consistent with those in bacteria. This implies that the mitochondrion-host cell con-

sortium that became the primordial eukaryote did not precipitate a bioenergetics revolution.

Results

The energetic costs of building and maintaining a cell
The starting point is a recap of recent findings on the scaling properties of the lifetime energetic

expenditures of single cells. All energy utilized by cells can be partitioned into two basic categories:

that employed in cell maintenance and that directly invested in building the physical infrastructure
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that comprises a daughter cell. Maintenance costs involve a diversity of cellular functions, ranging

from turnover of biomolecules, intracellular transport, control of osmotic balance and membrane

potential, nutrient uptake, information processing, and motility. Cell growth represents a one-time

investment in the production of the minimum set of parts required for a progeny cell, whereas cell

maintenance costs scale with cell-division time. The common usage of metabolic rate as a measure

of power production is uninformative from an evolutionary perspective, as it fails to distinguish the

investment in cellular reproduction from that associated with non-growth-related processes.

To make progress in this area, a common currency of energy is required. The number of ATP!ADP

turnovers meets this need, as such transformations are universally deployed in most cellular processes

of all organisms, and where other cofactors are involved, these can usually be converted into ATP

equivalents (Atkinson, 1970). When cells are grown on a defined medium for which the conversion

rate from carbon source to ATP is known (from principles of biochemistry), the two categories of

energy allocation can be quantified from the regression of rates of resource consumption per cell on

rates of cell division (Bauchop and Elsden, 1960; Pirt, 1982; Tempest and Neijssel, 1984).

A summary of results derived from this method reveals two universal scaling relationships that

transcend phylogenetic boundaries (Lynch and Marinov, 2015). First, basal maintenance costs

(extrapolated to zero-growth rate, in units of 109 molecules of ATP/cell/hour, and normalized to a

constant temperature of 20�C for all species) scale with cell volume as a power-law relationship

CM ¼ 0:39V0:88; (1a)

where cell volume V is in units of mm3. Second, the growth requirements per cell (in units of 109 mol-

ecules of ATP/cell) scale as

CG ¼ 27V0:97: (1b)

The total cost of building a cell is

eLife digest Over time, life on Earth has evolved into three large groups: archaea, bacteria, and

eukaryotes. The most familiar forms of life – such as fungi, plants and animals – all belong to the

eukaryotes. Bacteria and archaea are simpler, single-celled organisms and are collectively referred to

as prokaryotes.

The hallmark feature that distinguishes eukaryotes from prokaryotes is that eukaryotic cells

contain compartments called organelles that are surrounded by membranes. Each organelle

supports different activities in the cell. Mitochondria, for example, are organelles that provide

eukaryotes with most of their energy by producing energy-rich molecules called ATP. Prokaryotes

lack mitochondria and instead produce their ATP on their cell surface membrane.

Some researchers have suggested that mitochondria might actually be one of the reasons that

eukaryotic cells are typically larger than prokaryotes and more varied in their shape and structure.

The thinking is that producing ATP on dedicated membranes inside the cell, rather than on the cell

surface, boosted the amount of energy available to eukaryotic cells and allowed them to diversify

more. However, other researchers are not convinced by this view. Moreover, some recent evidence

suggested that eukaryotes are no more efficient in producing energy than prokaryotes.

Lynch and Marinov have now used computational and comparative analysis to compare the

energy efficiency of different organisms including prokaryotes and eukaryotes grown under defined

conditions. To do the comparison, the results were scaled based on cell volume and the total

surface area deployed in energy production.

From their findings, Lynch and Marinov concluded that mitochondria did not enhance how much

energy eukaryotes could produce per unit of cell volume in any substantial way. Although the origin

of mitochondria was certainly a key event in evolutionary history, it is unlikely to have been

responsible for the diversity and complexity of today’s life forms.

DOI: https://doi.org/10.7554/eLife.20437.002
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CT ¼CGþ tCM ; (1c)

where t is the cell-division time in hours.

Derived from cells ranging over four orders of magnitude in volume, neither of the preceding scal-

ing relationships is significantly different from expectations under isometry (with exponent 1.0), as the

standard errors of the exponents in Equations (1a,b) are 0.07 and 0.04, respectively. Moreover, as

there is no discontinuity in scaling between prokaryotes and eukaryotes, these results suggest that a

shift of bioenergetics from the cell membrane in prokaryotes to the mitochondria of eukaryotes con-

ferred no directly favorable energetic effects. In fact, the effect appears to be negative.

Taking into account the interspecific relationships between cell-division time and cell volume

(Lynch and Marinov, 2015) and using Equation (1b), one can compute the scaling of the rate of

incorporation of energy into biomass, CG=t. For bacteria, cell-division times decline with increasing

cell volume as ~V�0:17, albeit weakly (the SE of the exponent being 0.11), implying that the rate of

biomass accumulation scales as ~V0:97þ0:17 ¼ V1:14 on a per-cell basis and as ~V1:14�1:00 ¼ V0:14 on a

cell volumetric basis (with the SEs of both exponents being 0.12). In contrast, in most eukaryotic

groups, cell-division times increase with cell volume, on average scaling as ~V0:13, implying a scaling

of ~V0:84 for the rate of biomass accumulation per cell and ~V�0:16 on a volumetric basis (with SEs

equal to 0.06 for the exponents). Thus, in terms of biomass production, the bioenergetic efficiency

of eukaryotic cells declines with cell volume, whereas that of bacterial cells does not. The pattern

observed in bacteria is inconsistent with the view that surface area limits the rate of energy produc-

tion, as this leads to an expected scaling of ~V2=3 on a per-cell basis.

Energy production and the mitochondrion
The argument that mitochondria endow eukaryotic cells with exceptionally high energy provisioning

derives from the idea that large internal populations of small mitochondria with high surface area-to-

volume ratios provide a dramatic increase in bioenergetic-membrane capacity (Lane and Martin,

2010). In prokaryotes, the F0F1 ATP synthase (the molecular machine that transforms ADP to ATP in

the process of chemiosmosis) and the electron transport chain (ETC) components (which create the

chemiosmotic proton gradient) are restricted to the cell membrane, but in eukaryotes, they are con-

fined to inner mitochondrial membranes. A key question is whether the bioenergetic capacity of cells

is, in fact, limited by membrane surface area.

Although the situation at the time of first colonization of the mitochondrion is unknown, the iconic

view of mitochondria being tiny, bean-shaped cellular inclusions is not entirely generalizable. For

example, many unicellular eukaryotes harbor just a single mitochondrion or one that developmentally

moves among alternative reticulate states (e.g. Rosen et al., 1974; Osafune et al., 1975;

Biswas et al., 2003; Yamaguchi et al., 2011). Such geometries necessarily have lower total surface

areas than a collection of spheroids with similar total volumes. For the range of species that have

been examined, many of which do have small individualized mitochondria, the total outer surface

area of mitochondria per cell is generally on the order of the total area of the plasma membrane,

with no observed ratio exceeding 5:1, and many being considerably smaller than 1:1 (Figure 1a). It

may be argued that the outer surface area of the mitochondrion is of less relevance than that of the

inner membrane (where the ATP synthase complex sits), but the ratios of inner (including the internal

cristae) to outer membrane areas for mitochondria in mammals, the green alga Ochromonas, the

plant Rhus toxicodendron, and the ciliate Tetrahymena are 5.0 (SE = 1.1), 2.4, 2.5, and 5.2, respec-

tively (Supplementary material). Thus, the data are inconsistent with the idea that the mitochondrion

engendered a massive expansion in the surface area of bioenergetic membranes in eukaryotes.

Three additional observations raise questions as to whether membrane surface area is a limiting

factor in ATP synthesis. First, the localization of mitochondrial ATP synthase complexes is restricted

to two rows on the narrow edges of the inner cristae (Kühlbrandt, 2015). Because this confined

region comprises <<10% of the total internal membrane area, the surface area of mitochondrial

membranes allocated to ATP synthase appears to be less than the surface area of the cell itself. Sec-

ond, only a fraction of bacterial membranes appears to be allocated to bioenergetic functions

(Magalon and Alberge, 2016), again shedding doubt on whether membrane area is a limiting factor

for energy production. Third, in every bacterial species for which data are available, growth in cell

volume is close to exponential, that is, the growth rate of a cell increases as its cell volume increases
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despite the reduction in the surface area:volume ratio (Voorn and Koppes, 1998; Godin et al.,

2010; Santi et al., 2013; Iyer-Biswas et al., 2014; Osella et al., 2014; Campos et al., 2014).

Further insight into this issue can be achieved by considering the average packing density of ATP

synthase for the few species with proteomic data sufficient for single-cell counts of individual proteins.

By accounting for the stoichiometry of the various subunits in the complex, it is possible to obtain sev-

eral independent estimates of the total number of complexes per cell under the assumption that all

the proteins are assembled (Supplementary material). For example, the estimated number of com-

plexes in E. coli is 3018, and the surface area of the cell is ~15.8 mm2. Based on the largest diameter of

the molecule (the F1 subcomplex), a single ATP synthase in this species occupies ~64 nm2

(Lücken et al., 1990) of surface area, so the total set of complexes occupies ~1.8% of the cell mem-

brane. Four other diverse bacterial species for which these analyses can be performed yield occupan-

cies ranging from 0.6% to 1.5%, for an overall average of 1.1% for bacteria. This will be an
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Figure 1. Scaling features of membrane properties with cell size. (a) Relationship between the total outer surface

area of mitochondria and that of the plasma membrane for all species with available data. Diagonal lines denote

three idealized ratios of the two. (b) The number of ATP synthase complexes per cell scales with cell surface area

(S, in mm2) as 113S1:26 (r2 ¼ 0:99). (c) Relationship between the total (inner + outer) surface area of mitochondria

and cell volume for all species with available data. Open points are extrapolations for species with only outer

membrane measures, derived by assuming an inner:outer ratio of 4.6, the average of observations in other

species. References to individual data points are provided in Appendix 1–tables 1 and 2.

DOI: https://doi.org/10.7554/eLife.20437.003
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overestimate if only a fraction of proteins are properly assembled and embedded in the cell

membrane.

This kind of analysis can be extended to eukaryotes, noting that eukaryotic ATP synthases are

slightly larger, with maximum surface area of ~110 nm2 (Abrahams et al., 1994; Stock et al., 1999).

Although ATP synthase resides in mitochondria in eukaryotes, it is relevant to evaluate the fractional

area that would be occupied were they to be located in the cell membrane. Such hypothetical pack-

ing densities are 5.0% and 6.6%, respectively, for the yeasts S. cerevisiae and S. pombe, and 6.6%

and 6.8% for mouse fibroblasts and human HeLa cells. Although these observations suggest a

~5 fold increase in ATP synthase abundance with cell surface area in eukaryotes, the data conform to

a continuous allometric function with no dichotomous break between the bacteria and eukaryotes

(Figure 1b).

Similar conclusions can be reached regarding the ETCs, although direct comparisons are more

difficult due to the diversity of electron transport chain complexes in prokaryotes (Price and Dries-

sen, 2010). The number of ETC complexes is comparable to that of ATP synthases in both bacteria

and eukaryotes (Supplementary Material), and the physical footprint of the ETC is ~5� that of F0F1
(~570 nm2; Dudkina et al., 2011), implying that an average of ~5.5% of bacterial cell membranes is

dedicated to the ETC and that the corresponding hypothetical packing density for eukaryotes would

be ~30% (if in the cell membrane).

There are a number of uncertainties in these packing-density estimates, and more direct estimates

are desirable. The optimum and maximum-possible packing densities for ATP synthase also remain

unclear. Nonetheless, the fact remains that any packing problems that exist for the cell membrane are

also relevant to mitochondrial membranes, which have additional protein components (such as those

involved in internal-membrane folding and transport into and out of the mitochondrion).

The biosynthetic cost of lipids
Any attempt to determine the implications of membranes for cellular evolution must account for the

high biosynthetic costs of lipid molecules. There are two ways to quantify such a cost. First, from an

evolutionary perspective, the cost of synthesizing a molecule is taken to be the sum of the direct use

of ATP in the biosynthetic pathway plus the indirect loss of ATP resulting from the use of metabolic

precursors that would otherwise be converted to ATP and available for alternative cellular functions

(Akashi and Gojobori, 2002; Lynch and Marinov, 2015). Second, to simply quantify the direct con-

tribution to a cell’s total ATP requirement, the costs of diverting metabolic precursors are ignored.

By summing the total costs of all molecules underlying a cellular feature and scaling by the life-

time energy expenditure of the cell, one obtains a measure of the relative drain on the cell’s energy

budget associated with building and maintaining the trait. This measurement, sc; can then be viewed

as the fractional increase in the cell’s energy budget that could be allocated to growth, reproduc-

tion, and survival in the absence of such an investment, ignoring the direct fitness benefits of

expressing the trait, sa. For selection to be effective, the net selective advantage of the trait, sn ¼

sa � sc; must exceed the power of random genetic drift, 1=Ne in a haploid species and 1=ð2NeÞ in a

diploid, where Ne is the effective population size.

Most cellular membranes are predominantly comprised of glycerophospholipids, which despite

containing a variety of head groups (e.g. glycerol, choline, serine, and inositol), all have total biosyn-

thetic costs per molecule (in units of ATP hydrolyses, and including the cost of diverting intermediate

metabolites) of

cL ’ 320þ ½38 � ðNL� 16Þ�þ ð6 �NUÞ; (2a)

cL ’ 340þ ½40 � ðNL� 16Þ�þ ð6 �NUÞ; (2b)

in bacteria and eukaryotes, respectively, where NL is the mean fatty-acid chain length, and NU is the

mean number of unsaturated carbons per fatty-acid chain (Supplementary material). Although var-

iants on glycerophospholipids are utilized in a variety of species (Guschina and Harwood, 2006;

Geiger et al., 2010), these are structurally similar enough that the preceding expressions should still

provide excellent first-order approximations. The reduced (direct) cost, which ignores the loss of

ATP-generating potential from the diversion of metabolic precursors, is
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c0L ’ 110þ½7 � ðNL � 16Þ�þ ð6 �NUÞ; (3a)

c0L ’ 120þ½9 � ðNL � 16Þ�þ ð6 �NUÞ; (3b)

in bacteria and eukaryotes, respectively. From the standpoint of a cell’s total energy budget, the

evolutionary cost of a lipid molecule is cL=CT .

For most lipids in biological membranes, 14 � NL � 22 and 0 � NU � 6; so the cost per lipid mole-

cule is generally in the range of cL ’ 200 to 600 ATP, although the average over all lipids deployed in

species-specific membranes is much narrower (below). Cardiolipin, which rarely constitutes more than

20% of membrane lipids is exceptional, having an evolutionary cost of ~640 ATP/molecule (and a

reduced cost of ~240 ATP). To put these expenditures into perspective, the evolutionary biosynthetic

costs of each of the four nucleotides is » 50 ATP hydrolyses per molecule (Lynch and Marinov,

2015), whereas the average cost of an amino acid is » 30 ATP (Atkinson, 1970; Akashi and Gojo-

bori, 2002).

Application of the preceding expressions to the known membrane compositions of cells indicates

that the biosynthetic costs of eukaryotic lipids are higher than those in bacteria (Supplementary

table). For example, for a diversity of bacterial species the average direct cost per lipid molecule in

the plasma membrane is 123 (SE = 3) ATP, whereas that for eukaryotes is 143 (2). The latter estimate

is identical to the mean obtained for whole eukaryotic cells, but the cost of mitochondrial lipids is

especially high, 155 (5). These elevated expenses in eukaryotes are joint effects of the cost of mito-

chondrial export of oxaloacetate to generate acetyl-CoA and the tendency for eukaryotic lipids to

have longer chains containing more desaturated carbons.

To understand the total bioenergetic cost associated with membranes, we require information on

the numbers of lipid molecules required for membrane formation, which is equivalent to the total

surface area of the membrane divided by the number of lipid molecules/unit surface area, and multi-

plied by two to account for the lipid bilayer. Estimates of the head-group areas of membrane lipids

are mostly within 10% of an average value of 6.5 � 10�7
mm2 (Petrache et al., 2000; Kučerka et al.,

2011), so the cost of a membrane (in units of ATP, and ignoring lipid turnover and the space occu-

pied by transmembrane proteins) is

CL ’ ð3:1� 10
6Þ � cL �A; (4)

where A is the membrane surface area in units of mm2, and cL is the average cost of a lipid.

Enough information is available on the total investment in mitochondrial membranes that a gen-

eral statement can be made. Over the eukaryotic domain, the total surface area of mitochondria

(inner plus outer membranes, summed over all mitochondria, in mm2) scales with cell volume (V , in

units of mm3) as 3.0V0.99 (Figure 1c; SEs of intercept and slope on log plots are 0.22 and 0.08, respec-

tively). Applying this to Equation (4), with the average total cost of mitochondrial lipids (cL ¼ 440

ATP/ molecule; Appendix 1–table 4), and using the expression for the total growth requirements of

a cell, Equation (1b), the relative cost of mitochondrial membrane lipids is

sc ’ 0:15V0:02; (5)

or ~15% of the total growth budget of a minimum-sized (1 mm3) eukaryotic cell, and nearly indepen-

dent of cell size within the range typically found in eukaryotes (SE of the exponent is 0.08). The

direct contribution of mitochondrial membrane lipids to a cell’s growth budget is ~36% of this total

cost. These costs of mitochondrial membranes represent a baseline price, not incurred by prokar-

yotes, associated with relocating bioenergetics to the interior of eukaryotic cells, that is, ~5%. Unfor-

tunately, the additional costs of maintenance of mitochondrial lipids is unknown, but for rapidly

growing cells, the vast majority of a cell’s energy budget is allocated to growth (Lynch and Marinov,

2015), so the above costs should still apply as first-order approximations; for slowly growing cells,

the costs will be higher or lower depending on whether the cost of mitochondrial-membrane mainte-

nance is above or below that for total cellular maintenance. Proteins do not occupy >50% of mem-

branes, so accounting for this would change the preceding results by a factor <2.

For prokaryotic cells without internal membranes, the relative contribution of the cell membrane

to a cell’s total energy budget is expected to decline with increasing cell size, owing to the decline

in the surface area to volume ratio. For the tiny cells of Leptospira interrogans and Mycoplasma
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pneumoniae (average volumes of 0.03 and 0.22 mm3, respectively), ~63 and 43% of a cell’s growth

budget must be allocated to the plasma membrane, but for the larger Bacillus subtilis and Escheri-

chia coli (on average, 1.4 and 1.0 mm3, respectively), these contributions drop to ~14 and 19%, and

they would be expected to continue to decline with further increases in cell size, scaling inversely

with the linear dimension of the cell.

In contrast, owing to the increased investment in internal membranes, the fraction of a eukaryotic

cell’s energy budget devoted to membranes does not diminish with increasing cell size. Although

there are only a few eukaryotic cell types for which this issue can be evaluated quantitatively

(Table 1), the data span three orders of magnitude in cell volume and uniformly suggest that ~10 to

30% of the total growth budget is allocated to lipid biosynthesis, and that an increasing fraction of

such costs is associated with internal membranes in cells of increasing size. The picoplanktonic alga

Ostreococcus, which has a cell volume of just 0.22 mm3 (below that of many prokaryotes), devotes

~32% of its energy budget to membranes, and 44% of these costs (~18% of the total cell budget)

are associated with internal membranes. A moderate-sized mammalian cell devotes a similar ~30%

of its energy budget to membranes, but 96% of these costs (~29% of the total cell budget) are asso-

ciated with internal membranes.

Taken together, these observations imply that the use of internal membranes constitutes a major

drain on the total energy budgets of eukaryotic cells, much more than would be expected in bacteria

of comparable size. Moreover, because the lipids associated with mitochondria alone constitute 20%

to 35% of a eukaryotic cell’s investment in membranes (Table 1), the energetic burden of localizing

membrane bioenergetics to mitochondria is substantial.

Finally, given that the observations summarized in Figure 1a,b are derived from a diversity of

studies, likely with many unique inaccuracies, it is worth considering whether the overall conclusions

are consistent with the known capacity of ATP synthase. First, it bears noting that only a fraction of

the energy invested in biosynthesis is derived directly from the chemiosmotic activity of ATP syn-

thase. For example, amino-acid biosynthesis involves ~1.5 oxidations of NADH and NADPH for every

ATP hydrolysis (Akashi and Gojobori, 2002). Assuming that each of the former is equivalent to ~3

ATP hydrolyses, this implies that only ~18% of the energy invested in amino-acid biosynthesis

involves ATP hydrolysis. As noted in the Supplementary text, the ratio of use of NADH/NADPH to

ATP is more on the order of 2.0 in lipid biosynthesis, reducing the direct investment in ATP to ~14%

Thus, as the vast majority of the energetic cost of building a cell is associated with synthesis of the

Table 1. Contributions of membranes to total cellular growth costs.

Ot denotes the green alga Ostreococcus tauri, Sc the yeast Saccharomyces cerevisiae, Ds the green

alga Dunaliella salina, and Ss the pig (Sus scrofa) pancreas cell; references given in Supplementary

material. Cell volumes and total membrane areas are in units of mm3 and mm2, respectively, with the

latter excluding membranes associated with the plastids in the algal species. The fraction of the total

cell growth budget allocated to membranes is obtained by the ratio of Equations (1b) and (4), using

the species-specific reduced costs in Table 1 where available, and otherwise applying the averages

for eukaryotic species; this total cost is then apportioned into five different fractional contributions in

the following lines.

Ot Sc Ds Ss

Cell volume 1 44 591 1060

Total membranes 15 204 2299 12952

Fraction of absolute cell growth budget 0.324 0.096 0.094 0.302

Plasma membrane 0.556 0.328 0.134 0.044

Mitochondria 0.243 0.359 0.197 0.223

Nucleus 0.113 0.085 0.034 0.008

Endoplasmic reticulum + Golgi 0.034 0.111 0.318 0.706

Vesicles/vacuoles 0.055 0.114 0.316 0.019

DOI: https://doi.org/10.7554/eLife.20437.004
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monomeric building blocks of proteins and membranes, only ~15% of biosynthetic energy may be

derived from ATP hydrolysis.

Given the known energy requirements for the maintenance and growth of a cell, the cell-division

time, and the number of ATP synthase complexes per cell, it is possible to estimate the required

rate of ADP ! ATP conversions per complex. Using the cellular energetic data previously presented

(Lynch and Marinov, 2015) and the ATP synthase abundances in Appendix 1–table 2, after dis-

counting the maximum values by 85%, the estimated required rates of ATP production/complex/sec

are: 2109, 221, and 19 respectively for the bacteria B. subtilis, E. coli, and M. pneumoniae, and 1440

and 329 for the yeasts S. cerevisiae and S. pombe. Several attempts have been made to estimate

the maximum turnover rates (per sec) for F0F1 ATP synthase, usually in reconstituted liposomes, and

these average 195/s in bacteria (Etzold et al., 1997; Slooten and Vandenbranden, 1989;

Toei et al., 2007), 295 in soybean plastids (Schmidt and Gräbe, 1985; Junesch and Gräber, 1991),

120 in S. cerevisiae (Förster et al., 2010), and 440 in bovine heart (Matsuno-Yagi and Hatefi,

1988). Thus, given that a substantial fraction of complexes are likely to be misassembled in artificial

membranes, the energy-budget based estimates of the numbers of ATP turnovers generated per

cell appear to be consistent with the known capacity of ATP synthase.

The cellular investment in ribosomes
The ribosome content of a cell provides a strong indicator of its bioenergetic capacity. Owing to the

large number of proteins required to build the complex, ribosomes are energetically costly, and the

number per cell appears to be universally correlated with cellular growth rate (Fraenkel and Neid-

hardt, 1961; Tempest et al., 1965; Brown and Rose, 1969; Poyton, 1973; Dennis and Bremer,

1974; Freyssinet and Schiff, 1974; Alberghina et al., 1975; Boehlke and Friesen, 1975;

Waldron and Lacroute, 1975; Scott et al., 2010).

We previously pointed out that the genome-wide total and mean number of transcripts per gene

scale with cell volume as V0:36 and V0:28 respectively, and that the analogous scalings are V0:93 and

V0:66 for proteins, with no dichotomous break between prokaryotes and eukaryotes (Lynch and Mari-

nov, 2015). As with the transcripts they process and the proteins they produce, the numbers of ribo-

somes per cell also appear to scale sublinearly with cell volume, in a continuous fashion across

bacteria, unicellular eukaryotes, and cells derived from multicellular species (Figure 2). These obser-

vations are inconsistent with the idea that entry into the eukaryotic world resulted in an elevated

rate of protein production. Moreover, as noted previously (Lynch and Marinov, 2015), the absolute

costs of producing individual proteins and maintaining the genes associated with them are substan-

tially higher in eukaryotes than in bacteria, owing to the substantial increase in gene lengths, invest-

ment in nucleosomes, etc.

Discussion
Lane (2015) and Lane and Martin (2010) have proposed a scenario for how the mitochondrion

became established by a series of adaptive steps, arguing that the eukaryotic leap to increased

gene number and cellular complexity, and a subsequent adaptive cascade of morphological diversifi-

cation, ‘was strictly dependent on mitochondrial power’. However, the scaling of the costs of build-

ing and maintaining cells is inconsistent with an abrupt shift in volumetric bioenergetic capacity of

eukaryotic cells, and although the absolute costs of biosynthesis, maintenance, and operation of

individual genes are much greater in eukaryotes, the proportional costs are less (Lynch and Mari-

nov, 2015). This means that evolutionary additions and modifications of genes are more easily

accrued in eukaryotic genomes from a bioenergetics perspective, regardless of their downstream fit-

ness effects.

The analyses presented here reveal a number of additional scaling features involving cellular bio-

energetic capacity that appear to transcend the substantial morphological differences across the

bacterial-eukaryotic divide. There is not a quantum leap in the surface area of bioenergetic mem-

branes exploited in eukaryotes relative to what would be possible on the cell surface alone, nor is

the idea that ATP synthesis is limited by total membrane surface area supported. Moreover, the

numbers of both ribosomes and ATP synthase complexes per cell, which jointly serve as indicators

of a cell’s capacity to convert energy into biomass, scale with cell size in a continuous fashion both

within and between bacterial and eukaryotic groups. Although there is considerable room for further
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comparative analyses in this area, when one additionally considers the substantial cost of building

mitochondria, it is difficult to accept the idea that the establishment of the mitochondrion led to a

major advance in net bioenergetic capacity.

Most discussion of the origin of the mitochondrion by endosymbiosis starts (and often ends) with

a consideration of the benefits gained by the host cell. This ignores the fact that the eukaryotic con-

sortium consists of two participants. At least initially, the establishment of a stable symbiotic relation-

ship requires that each member of the pair gain as much from the association as is lost by

relinquishing independence. Under the scenario painted by Lane and Martin (2010), and earlier by

Martin and Müller (1998), the original mitochondrial-host cell affiliation was one in which the intra-

cellular occupant provided hydrogen by-product to fuel methanogenesis in the host cell, while even-

tually giving up access to external resources and thereby coming to rely entirely on the host cell for

organic substrates. For such a consortium to be evolutionarily stable as a true mutualism, both part-

ners would have to acquire more resources than would be possible by living alone, in which case this

novel relationship would be more than the sum of its parts.

Although some scenario like this might have existed in the earliest stages of mitochondrial estab-

lishment, it is also possible that one member of the original consortium was a parasite rather than a

benevolent partner (made plausible by the fact that many of the a-protobacteria to which
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Figure 2. The number of ribosomes per cell scales with cell volume (V, in mm3) as 7586V0.82 (r2 = 0.92; SEs of the

intercept and slope on the log scale are 0.13 and 0.05, respectively). Color coding as in previous figures. The data

presented in this figure can be found in Figure 2—source data 1; see also Appendix 1–table 3.

DOI: https://doi.org/10.7554/eLife.20437.005

The following source data is available for figure 2:

Source data 1. Source data for Figure 2.

DOI: https://doi.org/10.7554/eLife.20437.006
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mitochondria are most closely related are intracellular parasites). Despite its disadvantages, such a

system could be rendered stable if one member of the pair (the primordial mitochondrion) experi-

enced relocation of just a single self-essential gene to the other member’s genome, while the other

lost a key function that was complemented by the presence of the endosymbiont. This scenario cer-

tainly applies today, as all mitochondria have relinquished virtually all genes for biosynthesis, replica-

tion, and maintenance, and as a consequence depend entirely on their host cells for these essential

metabolic functions. In contrast, all eukaryotes have relocated membrane bioenergetics from the cell

surface to mitochondrial membranes.

Such an outcome represents a possible grand example of the preservation of two ancestral com-

ponents by complementary degenerative mutations (Force et al., 1999). Notably, this process of

subfunctionalization is most likely to proceed in relatively small populations because the end state is

slightly deleterious from the standpoint of mutational vulnerability, owing to the fact that the original

set of tasks becomes reliant on a larger set of genes (Lynch et al., 2001). Thus, a plausible scenario is

that the full eukaryotic cell plan emerged at least in part by initially nonadaptive processes made pos-

sible by a very strong and prolonged population bottleneck (Lynch, 2007; Koonin, 2015).

The origin of the mitochondrion was a singular event, and we may never know with certainty the

early mechanisms involved in its establishment, nor the order of prior or subsequent events in the

establishment of other eukaryotic cellular features (Koonin, 2015). However, the preceding observa-

tions suggest that if there was an energetic boost associated with the earliest stages of mitochon-

drial colonization, this has subsequently been offset by the loss of the use of the eukaryotic cell

surface for bioenergetics and the resultant increase in costs associated with the construction of inter-

nal membranes. Rather than a major bioenergetic revolution being provoked by the origin of the

mitochondrion, at best a zero-sum game is implied.

Thus, if the establishment of the mitochondrion was a key innovation in the adaptive radiation of

eukaryotes, the causal connection does not appear to involve a boost in energy acquisition. Notably,

a recent analysis suggests that the origin of the mitochondrion postdated the establishment of many

aspects of eukaryotic cellular complexity (Pittis and Gabaldón, 2016). It is plausible, that phagocy-

tosis was a late-comer in this series of events, made possible only after the movement of membrane

bioenergetics to the mitochondrion, which would have eliminated the presumably disruptive effects

of ingesting surface membranes containing the ETC and ATP synthase.

Materials and methods
The results in this paper are derived from an integration of bioenergetic analyses based on known

biochemical pathways and existing morphological observations on a variety of cell-biological fea-

tures. The sources of this information, as well as the basic approaches employed can be found in the

Appendix (where not mentioned directly in the text). The central analyses involve: (1) estimation of

the biosynthetic costs for lipid-molecule production (in terms of ATP equivalents per molecule pro-

duced); (2) mitochondrial surface areas and cell membrane areas; (3) investments in lipids at the cell-

membrane and organelle levels; and (4) numbers of ATP synthase complexes, ETC complexes, and

ribosomes per cell.
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Junesch U, Gräber P. 1991. The rate of ATP-synthesis as a function of delta pH and delta psi catalyzed by the
active, reduced H(+)-ATPase from chloroplasts. FEBS Letters 294:275–278. DOI: https://doi.org/10.1016/0014-
5793(91)81447-g, PMID: 1661688

Kaneko H, Hosohara M, Tanaka M, Itoh T. 1976. Lipid composition of 30 species of yeast. Lipids 11:837–844.
DOI: https://doi.org/10.1007/BF02532989, PMID: 1011938

Kehle T, Herzog V. 1989. A colloidal gold labeling technique for the direct determination of the surface area of
eukaryotic cells. European Journal of Cell Biology 48:19–26. PMID: 2743991

Kistler A, Weber R. 1975. A morphometric analysis of inner membranes related to biochemical characteristics of
mitochondria from heart muscle and liver in mice. Experimental Cell Research 91:326–332. DOI: https://doi.
org/10.1016/0014-4827(75)90111-1, PMID: 1126389

Klis FM, de Koster CG, Brul S. 2014. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae
and Candida albicans. Eukaryotic cell 13:2–9. DOI: https://doi.org/10.1128/EC.00250-13, PMID: 24243791

Klug L, Tarazona P, Gruber C, Grillitsch K, Gasser B, Trötzmüller M, Köfeler H, Leitner E, Feussner I, Mattanovich
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Kučerka N, Nieh MP, Katsaras J. 2011. Fluid phase lipid areas and bilayer thicknesses of commonly used
phosphatidylcholines as a function of temperature. Biochimica et Biophysica Acta (BBA) - Biomembranes 1808:
2761–2771. DOI: https://doi.org/10.1016/j.bbamem.2011.07.022, PMID: 21819968

Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. 2014. Minimal, encapsulated proteomic-sample processing
applied to copy-number estimation in eukaryotic cells. Nature Methods 11:319–324. DOI: https://doi.org/10.
1038/nmeth.2834, PMID: 24487582
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Weibel ER, Stäubli W, Gnägi HR, Hess FA. 1969. Correlated morphometric and biochemical studies on the liver
cell. I. morphometric model, stereologic methods, and normal morphometric data for rat liver. The Journal of
Cell Biology 42:68–91. DOI: https://doi.org/10.1083/jcb.42.1.68, PMID: 4891915

Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. PNAS 95:6578–6583.
DOI: https://doi.org/10.1073/pnas.95.12.6578, PMID: 9618454
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The biosynthetic costs of lipid molecules
The vast majority of lipids in most membranes are phospholipids, with a polar (hydrophilic)

head group attached to a negatively charged phosphate, which in turn is attached to a

glycerol-3-phosphate (G3P), which links to two fatty-acid chains. Diversity within this lipid

family is associated with variation in: the nature of the head groups; the number of carbon

atoms in the fatty-acid chains; and the number of double bonds connecting such carbon atoms

(their presence leading to ‘unsaturated’ fatty acids). Common head groups are choline,

ethanolamine, serine, glycerol, inositol, and phosphatidyl glycerol. In both bacteria and

eukaryotes, fatty-acid chains usually contain 12 to 22 carbons, and only rarely harbor more

than three unsaturated bonds.

Evaluation of the total cost of synthesizing a lipid molecule requires a separate

consideration of the investments in the three molecular subcomponents: the fatty-acid tails;

head groups; and linkers. As adhered to in Lynch and Marinov (2015), such costs will be

quantified in units of ATP usage, specifically relying on the number of phosphorus atoms

released via hydrolyses of ATP molecules, the primary source of energy in most endergonic

cellular reactions. CTP, which is utilized in a few reaction steps in lipid biosynthesis, will be

treated as equivalent to ATP, and electron transfers resulting from conversions of NADH to

NADþ, NADPH to NADPþ, and FADH2 to FAD will be taken to be equivalent to 3, 3, and 2

ATP hydrolyses, respectively (all conventions in biochemistry based on energetic analyses; it is

assumed that NADPþ/NADPH is efficiently recycled and obtained from sources other than

action of the NADH kinase, which would elevate the cost to four high-energy phosphate

groups). The following results are derived from observations cataloged in most biochemistry

text books:

. The starting point for the synthesis of most fatty acids is the production of one particular lin-

ear chain, palmitate, which contains 16 carbon atoms. Synthesis of this molecule takes place

within a large complex, known as fatty-acid synthase. In bacteria, biosynthesis of each palmi-

tate molecule requires the consumption of 8 acetyl-CoA molecules, 7 ATPs, and reductions

of 14 NADPHs. Each molecule of acetyl-CoA is generally derived from a pyruvate molecule,

but each acetyl-CoA molecule diverted to lipid production deprives the cell of one rotation

of the energy producing citric-acid cycle, which would otherwise yield 3 NADH, 1 FADH2,

and 1 ATP per rotation; this leads to a net loss to the cell of the equivalent of 12 ATPs per

acetyl-CoA molecule. Thus, the total cost of production of one molecule of palmitate in bac-

teria is ð8� 12Þ þ ð7� 1Þ þ ð14� 3Þ ¼ 145 ATP.

Fatty-acid production is slightly more expensive in nonphotosynthetic eukaryotes, where ace-

tyl-CoA is produced in the mitochondrion and reacts with oxaloacetate to produce citrate,

which must then be exported. Cleavage of oxaloacetate in the cytosol regenerates acetyl-

CoA at the expense of 1 ATP, and a series of reactions serve to return oxaloacetate to the

citric-acid cycle in an effectively ATP neutral way. Thus, the cost of palmitate increases to

145þ 8 ¼ 153 ATP.
. Each additional pair of carbons added to the palmitate chain requires one additional acetyl-

CoA, one additional ATP, and two additional NADPHs, or an equivalent of 19 ATPs in bacte-

ria, and accounting for mitochondrial export increases this to 20 in eukaryotes.
. Each subsequent desaturation of a fatty-acid bond consumes one NADPH, or 3 ATP

equivalents.
. The G3P linker emerges from one of the last steps in glycolysis, and its diversion to lipid pro-

duction deprives the cell of one further step of ATP production as well as a subsequent pyru-

vate molecule. As pyruvate normally can yield the equivalent of 3 ATPs in the conversion to

acetyl-CoA, which then would generate a net 12 ATPs following entry into the citric-acid

cycle, the use of G3P as a linker in a lipid molecule has a cost of 1þ 3þ 12 ¼ 16 ATP. Linking

each fatty-acid tail requires 1 ATP, and linking the head group involves two CTP hydrolyses.
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. All that remains now is to add in the cost of synthesis of the head group, which we do here

still assuming 16 saturated bonds in each fatty acid. In the case of phosphatidylglycerol, the

head group is G3P, the cost of which is 16 ATP as just noted, so the total cost of this mole-

cule in a bacterium is ’ ð2 � 145Þ þ ð16þ 4Þ þ 16 ¼ 326 ATP. From Akashi and Gojobori

(2002), the cost of a serine is 10 ATP, so the total cost of a phosphatidylserine is 320 ATP,

and because ethanolamine and choline are simple derivatives of serine, this closely approxi-

mates the costs of both phosphatidylethanolamine and phosphatidylcholine. The headgroup

of phosphatidylinositol is inosital, which is derived from glucose-6-phosphate, diverting the

latter from glycolysis and depriving the cell of the equivalent of 9 ATPs, so the total cost of

production of this molecule is 319 ATP. As a first-order approximation, we will assume all of

the above molecules to have a cost of 321 ATP when containing fully saturated fatty acids

with chain length 16. Finally, cardiolipin is synthesized by the fusion of two phosphatidylgly-

cerols and the release of one glycerol, so taking the return from the latter to be 15 ATP, the

total cost per molecule produced is 637 ATP.

Estimation of absolute protein copy numbers per cell
Information on absolute protein copy numbers per cell was collected from publicly available

proteomics measurements (Lu et al., 2007; Wiśniewski et al., 2012, 2014; Maass et al.,

2011; Maier et al., 2011; Schmidt et al., 2011; Beck et al., 2009; Kulak et al., 2014;

Ghaemmaghami et al., 2003; Marguerat et al., 2012; Schwanhäusser et al., 2011) as well as

from ribosome profiling data (as described in Lynch and Marinov, 2015).

The number of protein complexes NPC was calculated as follows:

NPC;raw ¼

X

p

Np=sp

jpj

where Np are the estimated per cell copy numbers for each subunit p with a stoichiometric

ratio sp. Clear outliers (i.e., subunits with zero or near-zero counts) were removed from the

calculation.

As proteomics measurements may not be absolutely reliable, the raw estimates NPC;raw

were then further corrected where possible by taking advantage of the availability of direct

counts of the number of ribosomes per cell:

NPC;corr ¼NPC;raw � cR

where the ribosomal correction factor cR is determined as follows:

cR ¼
NR;direct

NR;raw

where NR;raw refers to the estimated ribosome copy numbers derived as above, while NR;direct is

obtained from direct measurements of ribosome copies per cell.

The composition of the E. coli FO-particle is 1a:2b:10–12c while that of the F1-particle is

3a:3b:1d:1g:1� (Jonckheere et al., 2012; Capaldi et al., 2000), where the individual subunits

are encoded by the following genes:

Subunit Gene

a atpB

b atpF

c atpE

a atpA

b atpD

continued on next page
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continued

Subunit Gene

g atpG

d atpH

� atpC

The same composition and stoichiometry was also assumed for other prokaryotes.

The composition of the yeast F1-particle is 3a:3b:1d:1g:1�:1OSCP (Jonckheere et al.,

2012). The FO-particle has 10 copies of subunit 9 (equivalent to c), and one copy each of

subunits 6 (equivalent to a), 8, 4 (equivalent to b), d, h, f , e, g, i and k, where the individual

subunits are encoded by the following genes:

Subunit Gene

a ATP1

b ATP2

g ATP3

d ATP16

� ATP15

a MT-ATP6

4 ATP4

9 ATP9

8 MT-ATP8

d ATP7

e ATP21

h ATP14

f ATP17

g ATP20

i ATP18

k ATP19

OSCP ATP5

The composition of the mammalian F1-particle is 3a:3b:1d:1g:1�:1OSCP

(Jonckheere et al., 2012). The FO-particle has 8 copies of subunit c, and one copy each of

subunits a, 8, b, d, F6, f , e, and g, where the individual subunits are encoded by the following

genes:

Subunit Gene

a ATP5A1

b ATP5B

g ATP5C1

d ATP5D

� ATP5E

a MT-ATP6

b ATP5F1

c ATP5G1
ATP5G2
ATP5G3

8 MT-ATP8

continued on next page
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continued

Subunit Gene

d ATP5H

e ATP5I

F6 ATP5J

f ATP5J2

g ATP5L

OSCP ATP5O

Appendix 1—figure 1. Relative contribution of ATP (P) and NADH/NADPH/FADH2 (H) to the

biosynthetic costs of lipids and amino acids. (A) Nonreduced costs including opportunity cost

of precursors; (B) Reduced costs without precursors. Amino acid values are obtained from

Akashi and Gojobori (2002), assuming growth on glucose.

DOI: https://doi.org/10.7554/eLife.20437.011
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Appendix 1—table 4. Costs of lipids. The average cost per molecule is calculated for a variety

of species using estimates of lipid compositions from the literature and the formulas described

in the text. The fraction of fatty acids of given length and saturation level is not shown.

Cardiolipin costs are assumed to be 637 (evolutionary) and 236 (reduced) ATP. The cost for

molecules in the ‘other’ category is assumed to be the average of glycerophospholipids (GPL)

in the species and cardiolipin.

GPL cost Composition Mean cost

Species Membrane Tot. Red. GPL Cardiolipin Other Tot. Red. References

Escherichia coli Whole cell 367 115 0.926 0.060 0.015 385 124 Haest et al. (1969);

Rietveld et al. (1993);

Raetz et al. (1979)

Bacillus subtilis Whole cell 308 102 0.818 0.183 0.000 368 127 Bishop et al. (1967);

López et al. (1998)

Caulobacter crescen-

tus

Whole cell 340 111 0.776 0.105 0.119 389 132 Contreras et al. (1978);

Chow and Schmidt (1974)

Staphylococcus aur-

eus

Whole cell 323 105 0.931 0.070 0.000 345 114 Haest et al. (1972);

Mishra and Bayer (2013)

Zymomonas mobilis Whole cell 370 118 0.990 0.010 0.000 373 119 Carey and Ingram (1983)

372 123 mean

8 3 SE

Candida albicans Whole cell 338 123 0.934 0.066 0.000 358 131 Goyal and Khuller (1992);

Singh et al. (2010)

Chlamydomonas rein-

hardtii

Whole cell 390 140 0.935 0.065 0.000 406 146 Janero and Barrnett

(1981); Giroud et al.

(1988); Tatsuzawa et al.

(1996)

Debaryomyces hanse-

nii

Whole cell 408 141 0.913 0.087 0.000 428 150 Kaneko et al. (1976)

Dictyostelium discoi-

deum

Whole cell 400 141 0.965 0.014 0.000 395 139 Davidoff and Korn (1963);

Ellingson (1974);

Weeks and Herring

(1980); Paquet et al.

(2013)

Paramecium tetraure-

lia

Whole cell 415 146 0.996 0.004 0.000 415 146

Pichia pastoris Whole cell 412 144 0.975 0.025 0.000 418 147 Klug et al. (2014)

Saccharomyces cere-

visiae

Whole cell 372 133 0.953 0.047 0.000 385 138 Longley et al. (1968);

Kaneko et al. (1976);

Sharma (2006); Klis et al.

(2014)

Schizosaccharomyces

pombe

Whole cell 411 142 0.945 0.055 0.000 424 147 Koukou et al. (1990)

403 143 mean

8 2 SE

Debaryomyces hanse-

nii

Plasma mem-

brane

398 137 0.913 0.087 0.000 418 146 Kaneko et al. (1976);

Turk et al. (2007)

Dictyostelium discoi-

deum

Plasma mem-

brane

414 145 0.980 0.020 0.000 418 147 Weeks and Herring (1980)

Dunaliella salina Plasma mem-

brane

378 137 1.000 0.000 0.000 378 137 Peeler et al. (1989);

Azachi et al. (2002)

Mus musculus , thy-

mocytes

Plasma mem-

brane

409 142 0.921 0.000 0.079 418 145 Van Blitterswijk et al.

(1982)

Appendix 1—table 4 continued on next page
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Appendix 1—table 4 continued

GPL cost Composition Mean cost

Species Membrane Tot. Red. GPL Cardiolipin Other Tot. Red. References

Saccharomyces cere-

visiae

Plasma mem-

brane

358 129 0.949 0.035 0.026 375 135 Longley et al. (1968);

Zinser et al. (1991);

Swan and Watson (1997);

Tuller et al. (1999);

Blagović et al. (2005)

Schizosaccharomyces

pombe

Plasma mem-

brane

411 142 0.856 0.052 0.092 433 151 Koukou et al. (1990)

Vigna radiata , seed-

ling

Plasma mem-

brane

402 141 1.000 0.000 0.000 402 141 Yoshida and Uemura

(1986)

406 143 mean

8 2 SE

Candida albicans Mitochondrion 344 125 0.710 0.164 0.126 411 150 Goyal and Khuller (1992)

Danio rerio , whole

fish

Mitochondrion 472 162 0.854 0.104 0.042 492 172 Almaida-Pagán et al.

(2014)

Pichia pastoris Mitochondrion 421 145 0.944 0.054 0.002 433 150 Wriessnegger et al.

(2009); Klug et al. (2014)

Rattus norwegicus ,

liver

Mitochondrion 445 154 0.838 0.148 0.024 480 169 Tahin et al. (1981);

Colbeau et al. (1971)

Saccharomyces cere-

visiae

Mitochondrion 312 116 0.897 0.097 0.006 345 128 Tuller et al. (1999);

Zinser et al. (1991);

Blagović et al. (2005)

Serripes groenlandi-

cus , gill

Mitochondrion 428 147 0.972 0.028 0.000 434 150 Gillis and Ballantyne

(1999)

Sus scrofa , heart Mitochondrion 409 143 0.797 0.186 0.017 453 161 Comte et al. (1976)

Tetrahymena pyrifor-

mis

Mitochondrion 402 144 0.812 0.131 0.057 439 159 Gleason (1976); Noza-

wa (2011)

436 155 mean

16 5 SE
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