
 

597

 

J. Gen. Physiol.

 

 © The Rockefeller University Press 

 

•

 

 0022-1295/99/10/597/3 $5.00
Volume 114 October 1999 597–599
Available online 27 September 1999
http://www.jgp.org

 

Letter to the Editor

 

Test of Poisson-Nernst-Planck Theory in Ion Channels

 

Ben Corry,* Serdar Kuyucak,

 

‡

 

 

 

and

 

 Shin-Ho Chung*

 

From the *Protein Dynamics Unit, Department of Chemistry, and 

 

‡

 

Department of Theoretical Physics, Research School of Physical Sci-
ences, Australian National University, Canberra, Australian Capital Territory 0200, Australia

 

Address correspondence to Shin-ho Chung, Protein Dynamics Unit, De-
partment of Chemistry, Australian National University, Canberra, A.C.T.
0200, Australia. Fax: 2-6247-2792; E-mail: shin-ho.chung@anu.edu.au

 

The recent 

 

Perspectives on Ion Permeation

 

 have brought
the debate about the applicability of the Poisson-
Nernst-Planck (PNP) theory in ion channels to a sharp
focus. Despite the differences in opinion, all sides of
the debate agree that the mean field approximation in
PNP theory needs to be checked by comparison with a
more accurate theory; e.g., Brownian dynamics (BD).
Clearly, for such a test to be meaningful it has to be car-
ried out in a three-dimensional (3-D) channel. We have
been performing 3-D BD simulations in ion channels
for the last few years (Li et al., 1998; Chung et al., 1998,
1999; Hoyles et al., 1998), and have been aware of the
differences between the two theories. Therefore, we
would like to contribute to the debate by providing a
simple test of the PNP theory in a cylindrical channel,
which appears to be the most common geometry used
in applications of PNP.

Due to space limitations, we will not elaborate on ei-
ther theory, but refer to Chung et al. (1998, 1999) for
details of 3-D BD simulations, and Kurnikova et al.
(1999) for 3-D–PNP calculations. Reviews of the 1-D BD
and PNP can be found, respectively, in Cooper et al.
(1985) and Eisenberg (1996). We have written a code
similar to the one in Kurnikova et al. (1999) for solving
the PNP equations in 3-D. As a control study, the PNP
and BD calculations are compared in bulk conditions,
and are found to yield the same results for flux and
concentration within the computational errors.

A cross section of the channel shape used is shown in
Fig. 1 (top). The rounding of corners is required due
to the difficulty of solving Poisson’s equation with sharp
corners. A reservoir with radius 30 Å and variable
length is added on both ends of the channel. The
length is adjusted so as to keep the concentration fixed
at 300 mM when the channel radius is varied. In BD
simulations, this concentration is represented by 12
Na

 

1

 

 and 12 Cl

 

2

 

 ions in each reservoir. The reason for
using a larger value than the physiological range (150
mM) is entirely statistical. Otherwise, almost identical

results are obtained for conductance and concentra-
tion at 150 mM, once they are normalized to 300 mM.
The applied potential in BD is represented with a uni-
form electric field of E

 

 5 

 

10

 

7

 

 V/m. The potential differ-
ence between the top and bottom boundaries is deter-
mined from the potential energy profile of a single ion
in the presence of this electric field. This potential dif-
ference is then implemented in the PNP calculations.

The potential energy profile of a single ion across the
channel exhibits a large barrier due to the repulsive
forces from the induced surface charges. This barrier is

 

large enough (

 

<

 

4 kT) for a 4-Å radius channel to pre-
vent an ion from traversing the channel. When other
ions are present in the system, shielding effects might
play a role in lowering this barrier and making the
channel easier to traverse. The importance of shielding
in ion permeation has been amply emphasized in appli-
cations of PNP (Eisenberg, 1996). However, shielding is
a concept developed in continuum theories of bulk
electrolytes (e.g., Debye-Hückel theory), and the valid-
ity of the mean field approximation inherent in contin-
uum theories is firmly anchored on a comparison of
the Debye length of the electrolyte with the system size.
A nearly complete screening of an ion’s charge occurs
at a distance of several Debye lengths in a bulk electro-
lyte. Noting that the Debye lengths are 7.9 and 5.6 Å for
150 and 300 mM solutions and the channel radii are typ-
ically 3–4 Å, one has to worry about the large shielding
effects observed in PNP calculations. Are these genuine
effects or a chimera caused by an inappropriate appli-
cation of the PNP theory outside its domain of validity?

To address these questions, we compare in Fig. 1 A
the concentration profiles predicted by PNP and BD
for Na

 

1

 

 ions in a 4-Å radius channel (a nearly identical
result is obtained for Cl

 

2

 

 ions). Other than a slight
asymmetry in the PNP results caused by the applied po-
tential, the average Na concentration remains around
the reservoir value of 300 mM throughout the channel.
Since a similar result is obtained for the Cl concentra-
tion, we see that almost perfect shielding remains the
modus operandi of PNP even though the channel ra-
dius is smaller than the Debye length. Perfect shielding
implies that there are no induced boundary charges,
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thus ion-channel interaction is completely ignored in
PNP and charge is transported across the channel as if
the dielectric boundary did not exist (i.e., 

 

e

 

protein 

 

5 

 

80).
Perhaps we should emphasize that there is nothing sur-
prising about the PNP results—these are exactly what
one would expect from a theory where ions are repre-
sented as a continuous charge density. The question is,
if we keep the integrity of ions and take the time aver-
age of their motions, would we obtain the same concen-
trations as predicted by PNP? This question can be an-
swered unambiguously via BD simulations. In Fig. 1 A,
we show the BD results (histograms) obtained by aver-
aging the number of Na

 

1

 

 ions in a given layer over the
simulation time. Here we have a completely different
picture. The Na

 

1

 

 ion concentration drops exponen-
tially as one moves into the channel, and it is more
than an order of magnitude smaller than the reservoir
values at the middle of the channel. The exponential
drop results from the action of the barrier seen by an
ion attempting to enter the channel. At times, ions
making forays into the channel have sufficient energy
(due to fluctuations) to probe the channel interior, but
the sharply rising barrier combined with the Boltz-
mann factor makes this increasingly less probable as
the ion gets closer to the center. A similar result is ob-
tained for the Cl

 

2

 

 ion concentration. We emphasize
that ions enter the channel singly most of the time and
not in cation–anion pairs. Thus, the answer to the ques-
tions posed above is negative; that is, there is no shield-
ing inside the narrow channels and the representation
of ions as continuous charge densities in such situa-
tions leads to erroneous results. With increasing chan-
nel radius, the discrepancies between the PNP and BD
concentrations decrease, and an agreement is achieved
at a radius of 

 

r

 

 

 

<

 

 16 Å. At such a large radius, the effect
of the boundary forces on ions becomes insignificant,
while the channel is often occupied by counter ions
leading to appreciable shielding. Thus the situation be-
comes similar to the bulk conditions, and once they
prevail, the two theories agree as they should.

Since the potential and concentration are determined
self-consistently in PNP, the errors committed in con-
centrations are expected to affect the potential results,
and these in turn will lead to inaccuracies in the flux re-
sults. To illustrate the magnitude of these errors and
how they change with increasing channel size, we plot in
Fig. 1 B the normalized conductances obtained from
PNP and BD against the radius. The conductance is nor-
malized by dividing it with the cross-sectional area of the
cylinder to factor out the trivial increase in flux with the
area. The PNP results exhibit a slight reduction with in-
creasing radius, which is due to the access resistance de-
creasing as 1/

 

r

 

. The BD results, in contrast, start with a
zero conductance at 

 

r

 

 

 

5 

 

3 Å and gradually rise to the
PNP levels with increasing radius. The convergence be-

Figure 1. Cross section of the cylindrical channel used in the
comparisons (top). The length of the channel is 35 Å, including
the rounded corners, which have a radius of 5 Å. The dielectric
constants are 80 in the channel and 2 in the protein. An electric
field of E 5 107 V/m is applied as indicated by the arrow. The dot-
ted lines show the layers used in the concentration plot below. (A)
Concentration profiles of Na1 ions in a 4-Å radius channel as pre-
dicted from PNP theory (d) and BD simulations (histograms).
The shaded areas indicate the reservoir values. (B) Conductance
of ions, normalized by the cross-sectional area, are plotted against
the channel radius. The results obtained from the BD simulations
(d, Na1; s, Cl2) are fitted by the dotted lines. The PNP results are
shown by the solid lines.
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tween the two theories occurs at 

 

z

 

14 Å, which is more
than two Debye lengths. The discrepancies observed in
conductance results correlate closely with those in con-
centration discussed above, and thus reaffirm the inti-
mate relationship between the two quantities.

For reasons of clarity, we have discussed above the
simplest possible case of a bare channel with symmetric
solutions and an applied potential to drive the ions
across. In the case of asymmetric solutions, essentially
the same conclusions are obtained. Including fixed
negative charges in the protein wall, however, intro-
duces an ion-channel interaction that was lacking be-
fore and goes some way in reducing the discrepancy be-
tween the PNP and BD results. The agreement in con-
centration is much improved for cations, but not for
anions, for which the discrepancy remains about an or-
der of magnitude. The reason is simply that the fixed
charges largely cancel the potential barrier on a cation
but increase the barrier for an anion. This explains why
an artificially small diffusion coefficient for Cl needs to
be used in PNP to fit the data. Another problem arises
from the ability of the channel to hold arbitrarily large
concentrations in PNP: conductance increases linearly
with concentration, whereas in BD (as in experiments)
it saturates. The BD simulations indicate that the sche-
matic channels considered here are mostly single-ion

channels. As pointed out by Levitt (1999), more prob-
lems will appear in PNP in the case of multi-ion chan-
nels; e.g., potassium channels. 
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