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Manganese is an important metal for the maintenance of several biological functions,
but it can be toxic in high concentrations. One of the main forms of human exposure
to metals, such as manganese (Mn), is the consumption of solar salt contaminated.
Mn-tolerant bacteria could be used to decrease the concentration of this metal from
contaminated sites through safer environmental-friendly alternative technology in the
future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria
from water samples collected from a Mn mine in the Iron Quadrangle region (Minas
Gerais, Brazil). Two bacterial isolates were identified as Serratia marcescens based
on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis.
Maximum resistance of the selected isolates against increasing concentrations of
Mn(II), up to 1200 mg L−1 was determined in solid media. A batch assay was
developed to analyze and quantify the Mn removal capacities of the isolates. Biological
Mn removal capacities of over 55% were detected for both isolates. Whereas that
mechanism like biosorption, precipitation and oxidation could be explaining the Mn
removal, we seek to give an insight into some of the molecular mechanisms adopted
by S. marcescens isolates. For this purpose, the following approaches were adopted:
leucoberbelin blue I assay, Mn(II) oxidation by cell-free filtrate and electron microscopy
and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that
S. marcescens promotes Mn removal in an indirect mechanism by the formation of
Mn oxides precipitates around the cells, which should be further explored for potential
biotechnological applications for water recycling both in hydrometallurgical and mineral
processing operations.

Keywords: manganese, bioremediation, Serratia marcescens, manganese oxidation, biooxidation

Abbreviations: BLAST, Basic Local Alignment Search Tool; EDX, energy-dispersive X-ray spectroscopy; gDNA, genomic
DNA; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; ICP-OES, inductively coupled plasma optical emission
spectrometry; LBB, leucoberbelin blue I; MCO, multicopper oxidase; Mn, manganese; MTC, maximum tolerated
concentration; SEM, scanning electron microscopy; TEM, transmission electron microscopy.
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INTRODUCTION

Contaminated mine water remains a major problem worldwide
and is associated with severe environmental, socio-economic,
and public health impacts. It is mostly characterized by extreme
pH (acidity or alkalinity), high salinity levels, particularly sulfate,
Al, sundry toxic metals such as Fe, Cd, Co, Cu, Mo, Zn, Ni, and
V, and sometimes even radionuclides (Imtiaz et al., 2015; Beane
et al., 2016; Sethurajan et al., 2016). In Brazil and the state of
Minas Gerais in particular, mining activities have a long history
and have played a major role in both economic development
and environmental pollution throughout the country (Instituto
Brasileiro de Mineração [IBRAM], 2012; Massante, 2015).
Although significant progress has recently been made to address
mine water management, environmental pollution due to the
disposal of untreated mine water remains a major problem
worldwide (Klein et al., 2014). In the specific case of manganese
(Mn), several lines of evidence suggest a positive association
between environmental exposures, which are common and
cumulative in a lifetime, and development of neurodegenerative
diseases. Thus, environmental or occupational exposure to Mn
has been implicated in neurodegeneration related to impaired
dopaminergic (DAergic), glutamatergic and GABAergic
transmission, mitochondrial dysfunction, oxidative stress, and
neuroinflammation (Peres et al., 2016).

Normally Mn is removed by adding some basic chemical to the
drainage prior to returning them to the environment. Chemical
oxidation could be performed to Mn removal by adding strong
oxidizing agents (e.g., potassium permanganate, hypochlorite or
ozone) or by aeration (Silva et al., 2010), although they are often
expensive and inefficient and produce secondary pollutants such
as toxic byproducts (Ehrlich, 1999; Das et al., 2011).

As an alternative, bioremediation by Mn(II)-oxidizing
bacteria has been shown to be a viable strategy for metal removal
(Gallard and van Gunten, 2002; Pacini et al., 2005; Mariner
et al., 2008; Luan et al., 2012). Biological Mn oxidation can
occur by two mechanisms. The first mechanism is the direct
mechanism, which is mediated by cellular components such as
proteins. This mechanism has been studied for several years and
the role of MCO enzymes in the oxidation of Mn(II) by several
species of bacteria has been demonstrated (Brouwers et al.,
1999, 2000; Tebo et al., 2004, 2005; Dick et al., 2008; Mayhew
et al., 2008; Soldatova et al., 2012; Geszvain et al., 2013; Su et al.,
2013). The second mechanism for biological Mn oxidation is
the indirect mechanism, which occurs when the metabolism
or growth of microorganisms changes the pH or the redox
conditions of the environment or releases metabolic products
that can chemically oxidize Mn(II) to Mn(III) or Mn(IV)
(Nealson et al., 1988; Tebo et al., 2004; Learman et al., 2011).
Richardson et al. (1988) reported that cyanobacteria and algae
could promote Mn oxidation by an indirect mechanism. In both
cases, Mn(II) oxidation occurred as a result of environmental
modifications of pH and redox potential (Eh). Hullo et al.
(2001) also demonstrated a non-enzymatic Mn(II) oxidation
mechanism mediated by Bacillus subtilis. They observed that
the oxidation occurred due to the increased pH promoted by
B. subtilis. Although these bacteria contain a spore coat protein,

CotA, that is similar to laccases, this protein did not play any role
in the Mn(II) oxidation.

Many bacterial strains that are capable of promoting the
oxidation of Mn(II) to Mn(IV) by indirect, indirect, or both
mechanisms have been identified. Bacillus sp. SG-1, Pseudomonas
putida strains MnB1 and GB-1, and Leptothrix discophora
strains SS-1 and SP-6, are examples of bacteria that have been
extensively studied for bioremediation (Adams and Ghiorse,
1987; van Waasbergen et al., 1996; Hope and Bott, 2004;
Tebo et al., 2005; Geszvain et al., 2013). Johnson and Hallberg
(2003), Tuffin et al. (2006), and Wang et al. (2011) reported
that environmental characteristics such as extreme conditions
(e.g., pH, metal concentration, etc.) influence the microbial
community composition.

In a previous report, we showed that isolates belonging to the
genera Stenotrophomonas, Bacillus, and Lysinibacillus from water
samples collected from a Mn mine in the Iron Quadrangle region
(Minas Gerais, Brazil) were able to perform Mn(II) oxidation by
a non-enzymatic pathway (Barboza et al., 2015), and the isolates
used in this present article were also isolated from the same
place. Serratia marcescens shows promise for the development
of biotechnological and bioremediation processes, for example,
in the decolorization of synthetic dyes (Verma and Madamwar,
2003) and the industrial effluent known as black liquor, and the
removal of organophosphorus pesticides from soils (Cycon et al.,

TABLE 1 | Phenotypic profiles of the isolates CL11 and CL35.

Results

Conducted test CL11 CL35

Colony form Rod Rod

Gram staining − −

Catalase + +

Cytochrome oxidase − −

ortho-Nitrophenyl galactoside − −

Arginine decarboxylase − −

Lysine decarboxylase + +

Ornithine decarboxylase + +

H2S − −

Urease + +

Voges–Proskauer + +

L-Phenylalanine − −

Indole − −

Citrate + +

Malonate − −

Rhamnose − −

Adonitol + +

Salicin + +

Arabinose − −

Inositol + +

Sorbitol − −

Sucrose + +

Mannitol + +

Raffinose − −

Symbols: positive (+); negative (−).
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FIGURE 1 | Phylogenetic identification of the CL11 and CL35 isolates. The relationships between the 16S rRNA gene sequences of the isolates and the closest
GenBank sequences with the 16S rRNA gene from previously reported Mn(II)-oxidizing bacterial strains (labeled with ∗) are shown. The GenBank accession numbers
of the sequences are shown in brackets. Bootstrap values of ≥50% with 1,000 replicates are indicated at the branch points.

2013). Although the role of S. marcescens in iron and Mn oxide
formation during pipe corrosion has been investigated (Rajasekar
et al., 2007a,b), the potential for Mn(II) tolerance and removal
is not understood. Thus, in this work, we seek to investigate the
Mn(II) tolerance and oxidation capacity of S. marcescens isolates
with the goal of identifying new isolates with biotechnological
potential for Mn removal from mine waters.

MATERIALS AND METHODS

Sample Collection and Isolation of
Mn-Tolerant Strains
Several samples were obtained from Mn mine water collected
from the Iron Quadrangle region (Minas Gerais, Brazil). To

select Mn(II)-tolerant strains, the samples were appropriately
diluted and spread on agar plates with K medium (0.001 g L−1

FeSO4·7H2O; 2 g L−1 peptone, 0.5 g L−1 yeast extract, and
10 mM HEPES buffer, pH 7.5) supplemented with 50 mg L−1

Mn(II) as MnSO4·H2O. After 7 days of incubation at 28 ± 2◦C,
two colonies growing on the plates were isolated and selected for
the subsequent assays.

Evaluation of Mn(II) Tolerance
The isolated bacteria were spread on solid K medium
supplemented with various Mn(II) concentrations (140–1200 mg
L−1) to determine their maximum tolerance to this metal.
The MTC was defined as the highest concentration of the
contaminant for which bacterial growth could be observed after
7 days of incubation at 28 ± 2◦C. Two strains isolated from
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FIGURE 2 | Mn(II) ion tolerance. Isolates CL11 and CL35 were grown on K
medium supplemented with various concentrations of Mn(II) ions. The isolates
were cultured at 30◦C for 2 weeks.

the sediments, named CL11 and CL35 pending their subsequent
identification, with the capability to tolerate high Mn(II)
concentrations, were selected, characterized, and identified for
further Mn(II) removal studies.

Characterization and Identification of
CL11 and CL35 Isolates
The isolates were characterized based on their morphology,
Gram staining, and oxidase, catalase, and biochemical tests.
The metabolic profiles were assessed using the Bactray system
(LaborClin, Paraná, Brazil) following the manufacturer’s
protocol. Subsequently, the results of the biochemical tests were
analyzed using the Bactray software. This program utilizes a
dataset of the metabolic profiles of many bacteria and compares
the experimental results with the dataset.

Identification of the CL11 and CL35 strains through molecular
methods was also carried out. For this, the 16S rRNA gene was

amplified and sequenced using forward 27F and reverse 1942R
primers (Yang et al., 2013). For gDNA extraction, the Wizard
Genomic kit (Promega) was used following the manufacturer’s
recommendations and samples were stored at 4◦C until use.
Prior to gDNA extraction, the isolates were grown in K medium
without Mn(II) (0.001 g L−1 FeSO4·7H2O, 2 g L−1 peptone,
0.5 g L−1 yeast extract, and 10 mM HEPES buffer at pH 7.5)
overnight at 30◦C under constant stirring at 150 rpm. The cells
were recovered via centrifugation at 14,681 × g for 5 min and
used for gDNA extraction.

PCR amplification was performed in a reaction mixture
consisting of Taq buffer 1X, 1.5 mM MgCl2, 0.2 mM of
each deoxynucleotide, 0.2 mM of each primer, 2.5 U Taq
DNA polymerase (Thermo Scientific TaqDNA Polymerase,
Fermentas), 1 ng DNA template, and water to bring the total
volume to 25 µL. A thermocycling program was carried out using
the following protocol: an initial denaturation step (94◦C, 5 min),
followed by 35 cycles of denaturation (94◦C, 45 s), annealing
(63◦C, 1 min), and extension (72◦C, 2 min). A single final
extension step (72◦C, 20 min) concluded the reaction (Barboza
et al., 2015). Purification of the PCR products was carried out as
described previously (SambrooK et al., 1989).

The amplicons were sequenced in the forward direction using
a BigDye Terminator kit (Applied Biosystems) according to the
manufacturer’s instructions and analyzed using an automated
DNA sequencer (3500 Genetic Analyzer, Applied Biosystems).
Triplicates were used to construct the consensus sequences
using the ClustalW tool (Aiyar, 2000). The bacterial sequence
was used to produce phylogenetic trees constructed using the
neighbor-joining method and the Jones-Taylor-Thornton model
(Saitou and Nei, 1987) using the consensus sequences. Bootstrap
resampling analysis of 1,000 replicates was performed to estimate
the confidence levels of the tree topologies and the FigTree
1.4 software was used for phylogenetic analyses. The partial
sequences of the 16S rRNA gene sequences of the S. marcescens
isolates were deposited in GenBank under the accession numbers
KX444553 (CL11) and KX44455 (CL35).

Mn Removal Assay
Manganese removal experiments were carried out with synthetic
solutions of fresh K medium supplemented with ca. 45 mg
L−1 Mn(II). The isolate stocks stored at −80◦C were grown in

TABLE 2 | Mn(II) ion removal by the CL11 and CL35 isolates and pH variation
during small-scale batch experiments over a 1-week period.

Mn(II) Initial Mn(II) Residual Mn(II) Initial Final

removal ion concentration ion concentration pH pH

Control 0% 44.23 mg L−1 45.13 mg L−1 7.52 6.89

CL11 66.42%∗# 44.89 mg L−1 15.07 mg L−1 7.38 8.08

CL35 56.37%∗ 42.99 mg L−1 18.74 mg L−1 7.38 7.94

pH 7.5 7.05% 40.82 mg L−1 37.93 mg L−1 7.54 7.43

pH 8.0 50.86% 42.64 mg L−1 20.95 mg L−1 8.03 8.04

pH 8.2 48.77% 38.75 mg L−1 19.85 mg L−1 8.23 8.16

∗Statistically different from control and pH 7.5. #Statistically different from pH 8.0
and pH 8.2.
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FIGURE 3 | Decay of manganese concentration during manganese removal assay by the CL11 and CL35 isolates and qualitative determination of Mn(II) oxidation.
The time course plots for Mn(II) removal, pH changes, and cell growth (where applicable) for (A) the control experiments and (B) the CL11 and (C) CL35 isolates.
The cells were grown in K medium for 1 week. (D) For the qualitative determination of Mn(II) oxidation, 0.04% of LBB reagent was added to the strains grown in K
medium with 45 mg L−1 Mn(II) for 1 week. The error bars indicates the standard deviation of the biological triplicate.

FIGURE 4 | Role of pH in manganese oxidation during manganese removal assay. K medium supplemented with 45 mg L−1 Mn(II) at pH values of (A) 7.5, (B) 8.0,
or (C) 8.2 was maintained at 30◦C under constant stirring (150 rpm) for 7 days. The samples were collected and manganese removal was determined by inductively
coupled plasma optical emission spectrometry. Manganese oxidation was detected by the addition of 0.04% LBB reagent to the samples. The error bars indicates
the standard deviation of the technical triplicate.

100 mL of K medium without Mn(II) at 30◦C under constant
stirring (150 rpm) for 24 h. Then, this culture was transferred
to 250-mL flasks containing 90 mL of fresh K medium without
Mn(II). Subsequently, 10 mL of the culture (with an approximate
optical density of 1.0 at 600 nm) was transferred to 90 mL of
fresh K medium with ca. 45 mg L−1 Mn(II), and the flasks
were incubated at 30◦C under constant stirring (150 rpm) for
7 days. Samples were collected periodically to measure the Mn(II)
concentration (ICP-OES, Varian 725), pH, and bacterial growth
(via the optical density at 600 nm using a Hitachi 2800 A
series spectrophotometer). The Mn quantification was enhanced

as previously described by Barboza et al. (2015): an aliquot of
4 ml of each sample was centrifuged for 15 min at 14,681 × g
and then filtered through a 0.22-µm membrane. The filtrate
was diluted ten times in distilled water, and acidified with
HCl (1:1) solution. Mn removal from the culture medium was
measured by the decay of Mn concentration in the samples, via
ICP-OES assay. Briefly, the ICP-OES analyzes were performed
using the following parameters: accuracy of 5%, detection limit
of 0.001 mg L−1 and limit of quantification of 0.01 mg L−1. For
the equipment calibration, after the initial adjustments, which
comprise the optical stabilization and calibration of the spectral
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FIGURE 5 | Decay of manganese concentration during manganese removal assay and Mn(II) oxidation in cell-free filtrates of (A) CL11 and (B) CL35 under standard
conditions or after the addition of proteinase K. The isolates were grown in K medium and the supernatant was recovered to evaluate the oxidation of Mn as
described in section “Materials and Methods.” Samples were collected periodically and manganese removal was determined by ICP-OES. The presence of
manganese oxide was monitored by the addition of LBB to the samples. The error bars indicates the standard deviation of the biological triplicate.

lines (Mn wavelength: 257.610 nm), the analytical calibration
curve was constructed which comprises the points of the curve
(0; 2.5; 5.0; and 10 mg L−1 of Mn). Then, the external standard
was analyzed (5 mg L−1 of Mn) and subsequently the analysis
of the samples was started. All measurements were made in
triplicate and the ICP-OES was configured to report the average
value, respecting the accuracy of the 5% method. Control flasks
(abiotic experiments) with the pH adjusted to 7.5, 8.0, or
8.2 were maintained under similar conditions, and bacterial
growth was prevented by adding Nipagin (0.14%)/Nipazol
(0.1%). The experiments were performed in triplicate. Results
were compared using the ANOVA (ONE-WAY) (Turkey test)
and were considered statistically significant at p < 0.0001. The
software used was GraphPad Prism.

Mn(II) Oxidation by Cell-Free Filtrate
The cell-free filtrates were prepared as described previously
(Learman et al., 2011). The cell-free filtrate The cell free filtrate
of each sample was divided into two equal parts, one of which
was treated with proteinase K (100 µg mL−1, Promega) at 37◦C
for 3 h before adding of, approximately 45 mg L−1 of Mn(II).
The flasks (i.e., with or without proteinase K) were incubated at
37◦C and 150 rpm for 7 days. Samples were collected periodically

to evaluate the Mn removal and Mn oxidation, by ICP-OES and
leucoberbelin blue I dye (LBB, Sigma–Aldrich, United States)
assay, respectively.

Mn(II) Oxidation Assays
To assess whether Mn removal occurred via Mn oxidation,
0.1 mL samples of the cultured CL11 and CL35 isolates grown
with ca. 45 mg L−1 Mn(II) for a week were mixed with 0.5 mL of
0.04% LBB in 45 mM acetic acid (Krumbein and Altmann, 1973).
As negative controls, K medium with or without 45 mg L−1

Mn(II) or with only the isolate were mixed with LBB and a Mn
carbonate (MnCO3) solution. As a positive control, K medium
with Mn oxide (MnO2) was used.

Electron Microscopy and
Energy-Dispersive X-Ray Spectroscopy
(EDX) Analyses
The CL11 and CL35 isolates cultured in liquid K medium with
ca. 45 mg L−1 Mn(II) for 7 days, as previously described, were
analyzed via TEM and SEM. SEM/EDX assays were carried out
using an FEI Quanta 200 FEG, and TEM/EDX assays were
performed using a Tecnai G2 12 Spirit Biotwin FEI-120 kV and
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FIGURE 6 | Electron microscopy of the (A) CL11 and (B) CL35 isolates. SEM
and TEM images of the isolates cultured in K medium in the presence or
absence of 45 mg L−1 Mn(II) for 7 days.

a Tecnai G2 20 SuperTwin FEI-200 kV. Electron microscopy
were carried out in the Center of Microscopy at the Universidade
Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

RESULTS

Phenotypic and Phylogenetic Analysis of
the Isolates
Both of the isolates were rod-shaped, non-pigmented, Gram-
negative, and catalase and cytochrome oxidase negative (Table 1).
The biochemical test results were analyzed using the Bactray
software, and both isolates were identified as S. marcescens with
a confidence level of 99.97%. To confirm this identification, we
also used a molecular approach for phylogenetic identification.
The 16S rRNA genes from both isolates were amplified,

sequenced, and found to exhibit 91.5 and 81.17% of 16S RNA
coverage compared with the S. marcescens sequences deposited
in the database for CL11 (accession number KX444553) and
CL35 (accession number KX444554), respectively. The BLAST
(Altschul et al., 1990) was used to search for similar sequences
from GenBank. Furthermore, the 16S rRNA sequences of
several well-known Mn(II)-oxidizing bacteria were included in
the phylogenetic study. We found that the isolates CL11 and
CL35 were closely clustered with the genus Serratia, primarily
with S. marcescens (Figure 1). Because the phenotypic and
phylogenetic characterizations showed the same results, we
identified both isolates as S. marcescens.

Evaluation of Mn(II) Tolerance
Initially, the isolates were grown in solid K medium containing
different Mn(II) ion concentrations (140, 300, 600, and
1200 mg L−1). The capability for Mn(II) removal was verified
by the development of brown color in the colonies or in culture
medium. As shown in Figure 2, both the Cl11 isolate and the
CL35 isolate were able to grow at the Mn concentrations used.

S. marcescens Promotes Mn Removal by
Mn(II) Oxidation
To investigate the further use of the wild S. marcescens isolates in
bioremediation approaches, batch Mn removal experiments were
performed. The ability to Mn removal of the isolates was tested
with respect to incubation time (0 min to 7 days) as well as the
initial ca. 45 mg L−1 Mn(II) concentration and pH conditions.
We found that isolates CL11 and CL35 were able to remove
56.37–66.42% of the Mn(II) from a synthetic solution containing
approximately 45 mg L−1 Mn(II) after 1 week. We also observed
an increase in pH (7.38 to 8.0; Table 2 and Figures 3B,C). In the
abiotic control experiment, no Mn removal was observed from
the culture medium, and the pH decreased from 7.52 to 6.89.

As the pH in the abiotic experiments decreased to 6.89
and the pH of the media containing the isolates increased to
approximately 8.0, abiotic experiments were performed using K
medium with the pH adjusted to 7.5, 8.0, or 8.2 (Figure 4). It was
observed that at pH 8.0 or above, the Mn removal reached 50%
efficiency (Figures 4B,C) and the pH remained constant during
the experiments (Figure 4). The addition of the LBB reagent in
samples collected periodically also demonstrated Mn oxidation
at pH 8.0 or above (Figure 4).

Mn(II) oxidation assays were also performed using cell-free
filtrates in either the presence or absence of proteinase K to assess
whether any extracellular proteins were responsible for the Mn
oxidation. We did not observe Mn removal or oxidation by the
cell-free filtrates from the isolates CL11 (Figure 5A) or CL35
(Figure 5B) in either the presence or absence of the protease.
These results indicate that no extracellular proteins were involved
in the Mn oxidation by the isolates studied.

SEM/EDX and TEM/EDX Analyses
Scanning electron microscopy and TEM analyses revealed no
aggregates either on cell membrane of the isolates or within the
cells after 7 days of culture (Figure 6). However, when the isolates
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FIGURE 7 | Energy-dispersive X-ray spectroscopy (EDX) results for (A) CL11 and (B) CL35. The corresponding TEM images are shown in Figure 6.

were grown in the presence of Mn(II) ions, we observed the
extracellular precipitation of a Mn-containing mineral phase, as
revealed by the EDX spectra (Figure 6, indicated by arrows, and
Figure 7).

DISCUSSION

The Mn could be found in several oxidation states depending on
the redox conditions of the environment and the bacteria play
an important role in the Mn geochemical cycle. L. discophora
(strains SS1 and SP-6), P. putida, and Bacillus sp. SG-1 are the
most studied species related to Mn(II) oxidation (Barboza et al.,
2016). Similarly, S. marcescens isolates were found as part of
the microbial community at a Mn mine in the Iron Quadrangle
region (Minas Gerais, Brazil) (Barboza et al., 2015).

In this study, we have shown that these isolates are capable
of promoting Mn oxidation, at least under laboratory conditions,
and that this oxidation probably does not involve extracellular

enzymes and is instead due to interaction with a metabolic
product from bacteria (e.g., hydroxy acids) or a bacterial cell
component.

The role of S. marcescens in bioprocesses such as the
decolorization of synthetic dyes (Verma and Madamwar,
2003) and the industrial effluent known as black liquor
(Chandra et al., 2011) and the bioremediation of environments
contaminated with pesticides or uranium (Abo-Amer, 2011;
Kumar et al., 2011), was described, however, this is the first study
showing the potential of S. marcescens in Mn bioremediation
processes. Both of the isolates used in this study (CL11 and
CL35) were able to grow at Mn(II) concentrations of up
to 1200 mg L−1 (Figure 2) and remove more than 55%
of Mn(II) from the culture medium in 7 days (Table 2
and Figures 3B,C). Several studies have shown that different
bacteria species tolerate and are able to remove Mn, however,
in these work smaller Mn concentrations were used to
evaluate the tolerance of bacteria against this metal (Xuezheng
et al., 2008; Joshi and Modi, 2013; Barboza et al., 2016;
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Tang et al., 2016). Despite this, our research group identified
other bacteria species, such as Bacillus sp., Stenotrophomonas
sp., and Lysinibacillus sp. isolated from the same mine where
the strains CL11 and CL35 were obtained, suggesting that the
ambient may have influence on the high Mn tolerances of these
microorganisms (Barboza et al., 2015).

To investigate which mechanism was used by the isolates
CL11 and CL35 to promote Mn removal, control experiments
were performed at pH 7.5, 8.0, and 8.2, since a pH value of
approximately 8.0 was reached in the Mn-removal experiments
with the isolates. It was observed that at pH 8.0 and 8.2, the
Mn was removed by oxidation (Figures 4B,C) with an efficiency
of 50% (Table 2). Despite many attempts to buffer the culture
medium with HEPES, a pH increase was also observed during Mn
removal by the isolates (Table 2 and Figures 3B,C), whereas both
negligible Mn removal and no increase in the pH were observed
in the abiotic experiments at pH 7.5 or below (Figures 3A, 4A).
Therefore, we suggested that bacterial growth induces changes
in the pH and favors the chemical removal of Mn(II). Several
published finding reinforce that pH is one of the major factors
affecting manganese oxidation (Bamforth et al., 2006; Burger
et al., 2008; Divekar, 2010; Silva et al., 2010, 2012). Under our
conditions, the Mn oxidation was confirmed by addition of the
LBB reagent (Figure 3D).

We also tested if S. marcescens, under the growth conditions
used in this work, would be capable of inducing the secretion of
proteins that alter the environmental conditions and thus favor
the oxidation of the Mn(II) to Mn(III) or Mn(IV). As the Mn
removal rate was not affected by proteinase K treatment of the
cell-free filtrate, we infer that the Mn removal/oxidation was not
dependent on the presence of a protein in the culture medium
(Figure 5). Together, these results reinforce the hypothesis that
the Mn removal mediated by the S. marcescens isolates mainly
occurs via a mechanism that does not involve extracellular
enzymes, although we cannot exclude the participation of
intracellular proteins.

Electron microscopy did not reveal any Mn precipitates on the
cell membrane or inside the cells, but EDX scanning revealed
Mn-containing precipitates around the cells produced by both
isolates only in the presence of Mn(II) ions (Figure 6, indicated
by the arrow). It is known that typically, biogenic Mn oxides are
poorly crystalline and Mn oxides are deposited around bacterial
cells. For instance, Mn oxides were found to be deposited around
the exosporium of Bacillus sp. SG-1 (Nealson et al., 1988; Dick
et al., 2008; Soldatova et al., 2012), whereas the oxides were
found around the sheaths in L. discophora (Emerson and Ghiorse,
1992). Miyata et al. (2007) observed similar structures in ultrathin

sections of Mn microconcretions, which we also observed using
SEM and TEM microscopy.

CONCLUSION

Concern for Mn(II) contamination has assumed great
importance as it poses potential hazards to the environment,
wildlife, and human health. In this study, we confirmed the
presence of two Mn-tolerant S. marcescens isolates in mine
water. The CL11 and CL35 isolates were found to be tolerant
to high concentrations of Mn(II) and possess good Mn(II)
oxidation capacities. This ability of the S. marcescens isolates
makes them suitable candidates for the treatment of water
contaminated with Mn(II). However, further studies, such as into
their interactions with the water environment, are still needed
before the application of these strains in field-scale biooxidation.
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