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Tumor microenvironment is a network of complex cellular and molecular systems where

cells will gain specific phenotypes and specific functions that would drive tumorigenesis.

In skin cancers, tumor microenvironment is characterized by tumor infiltrating immune

cells that sustain immune suppression, mainly lymphocytes. Melanoma cellular

heterogeneity can be described on genetic, proteomic, transcriptomic and metabolomic

levels. Melanoma cells display a metabolic reprogramming triggered by both genetic

alterations and adaptation to a microenvironment that lacks nutrients and oxygen supply.

Tumor cells present clear metabolic adaptations and identifying deregulated glycolysis

pathway could offer new therapy targets. Moreover, the immune cells (T lymphocytes,

macrophages, NK cells, neutrophils and so on) that infiltrate melanoma tumors have

metabolic particularities that, upon interaction within tumor microenvironment, would

favor tumorigenesis. Analyzing both tumor cell metabolism and the metabolic outline

of immune cells can offer innovative insights in new therapy targets and cancer

therapeutical approaches. In addition to already approved immune- and targeted therapy

in melanoma, approaching metabolic check-points could improve therapy efficacy and

hinder resistance to therapy.
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INTRODUCTION

Metabolic requirements change when cells enter the proliferation process this is due to the fact
that cell metabolism needs to sustain a different cellular stage. Accordingly, cancer cell needs to
fulfill an increased biosynthesis rate because all cancer cells are characterized by a deregulated
cell proliferation. Therefore, cancer cells have to direct available nutrients toward biosynthetic
pathways maintaining ATP levels for a proper homeostasis. A drug targeting metabolic pathways
could be common for many types of solid tumors (1). Nevertheless, normal cells when proliferate
have the samemetabolic needs to cancer cells, this raises the issue of targeting a metabolic pathways
that can be common to normal and cancer cells, therefore finding the therapeutic window for an
anticancer cell metabolism is still a matter of intense study.

Tumor consists of heterogeneous cellular populations and is subjected to various stimuli that
would favor tumor development. These factors can be of neuroendocrine origin (2), UV irradiation
(3), inflammatory conditions (4) or even, the still in debate, presence of Human papilloma viruses
(HPV). HPV, a DNA virus, is strongly related to various non-melanoma cancers where ’high-
risk’ mucosal HPV consist mainly of 16, 18, 31, 33, and 35 types (5). The involvement of HPV
in melanoma tumorigenesis has very few reports, in principle contradictory and mainly done
on mucosal melanomas. So, there are groups that report the presence while other the lack of
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HPV infection. Thus, in mucosal melanomas HPV16 strain was
found predominant while in skin melanoma HPV22 prevailed,
the authors pointing out that HPV strains can be detected in
some melanoma sub-groups (6). Similar results have shown that
mucosal high-risk HPV genotypes are present in a quarter of
precursor lesions acquired dysplastic melanocytic naevi and over
a quarter in primary melanomas (7), or other HPV strains in
melanomas (8). Other groups reported the lack of identifying the
HPV inmelanomas. Therefore, in primarymalignantmelanomas
of non-sun exposed sites the lack of HPV detection was
reported (9) as the same lack of HPV was reported in perineal
melanomas (10).

The role of HPV infection in melanomagenesis is still a
matter of debate and definitely needs further clinical and
experimental investigations.

Due to this cellular heterogeneity the overall metabolic pattern
of a solid tumor is per se heterogeneous starting from its
genetic traits and ending with the variable microenvironment
conditions where the tumor is developing. A series of drugs
that target metabolism pathways has shown clear clinical benefits
in trials (11). For example, L-asparaginase targeting aminoacid
metabolismwas already approved in acute lymphocytic leukemia;
metformin alone or in combination for stage III-IV head and
neck squamous cell cancer is in the clinical evaluation trials (12).

Intense preclinical studies performed on cell lines, primary
tumor cells and in vivo models have shown that metabolic
enzymes can be depicted as cancer therapy targets. Current
concentrated studies efforts gather to understand tumor cell
metabolism and all the factors that are conjoining to tumor’s
overall biological behavior. There is a common flow of events
in tumorigenesis, and the most commonly accepted stages are
the genetic events that activate signaling pathways for various
deregulated cellular functions, including metabolic pathways.
The fact that at molecular level deregulated cell’s functions in
tumorigenesis are linked with deregulated metabolic functions
has open new therapeutic doors in cancer (13).

Another important point to be taken into account when
investigating tumor cell metabolism is the fact that cancerous
cells are in intimate contact with non-tumor cells, with various
microenvironment structures and molecules (14) that will lead
to the overall metabolic out-line of a tumor. Out of all non-
tumor cells, immune cells that infiltrate the tumor are one
of the most important cellular populations. In solid tumors,
including melanoma and non-melanoma tumors, the tumor
microenvironment (TME) is in the 5.7–7.0 pH range, therefore
within the tumors, immune cells that infiltrate them will be
subjected to this acidosis. Actually, innate and adaptive immune
cells are regulated by acidic pH that is found generally in
inflammation. Therefore, when immune cells infiltrate the tumor,
they will be subjected to this acidic—inflammatory milieu. When
immune cells are subjected to this acidic—inflammatory milieu
they will trigger a series of events. Neutrophils will trigger
anti-apoptosis events and differentiation process toward pro-
angiogenic cellular patterns. Monocytes and macrophages will
have their inflammasome activated inducing IL-1β synthesis.
Conventional dendritic cells (cDC) will turn into a mature
phenotype. All these cellular profiles indicate that innate immune

cells recognize low pH as a danger-associated molecular pattern
(DAMP). Adaptive immune cells will be as well-altered by low
pH. T lymphocytes, with cytotoxic function will be repressed
by low pH and IFN-γ production performed by T helper 1
(Th1) cells will be hindered. The mere raise in pH in the
tumor microenvironment can reverse T lymphocyte anergy and
enhance the antitumor immune response triggered by checkpoint
inhibitors (15).

Therefore, in the attempt to review the metabolic profile of
cutaneous melanoma, besides the actual metabolic profile of
the tumor cell per se, immune cells that comprise the tumor
microenvironment should be considered from the metabolic
pathways point of view.

TUMOR CELL METABOLISM IN
MELANOMA

As already mentioned, the intense proliferation of a cancer cell
can be sustained only partially by aerobic glycolysis, pathway
that fuel macromolecules biosynthesis (16). In melanoma cells,
in normal oxygen conditions, high glycolysis rate is encountered;
60–80% of the total glucose uptake is converted to lactate
while in hypoxic conditions more than 90% will be converted
in lactate (17). As generally recognized, oxygen accessibility
is regulating metabolic outline of all cells. When the oxygen
is low, hypoxia inducible factors (HIFs) will trigger molecular
pathway that would adapt the cell to hypoxic stress (18). When
HIF1 accumulates, the glycolytic rates increases, mitochondrial
respiration decreases, while up-regulation of genes that enhance
glucose uptake takes place. Transformed cells, like melanoma
cells, have a constitutive HIF1 activation in both normoxia and
hypoxia status (19). The increased glucose up-take in melanoma
is sustained by the increased expression of transporter protein
GLUT1 (SLC2A1) (20). The increased aerobic glycolysis augment
lactate production mediated by lactate dehydrogenase A (LDHA)
(21) one isoform converting lactate from pyruvate (22) while the
gene encoding for LDHA is target for HIF1α. In the hypoxia
status of tumor cells, glucose entering TCA cycle (tricarboxilic
acid cycle) decreases and glutamine becomes the main carbon
source (23).

Epigenetic metabolic studies in melanoma have shown that 5-
hydroxymethylcytosine loss is linked with TET 5-methlycytosine
hydroxylases family inhibition, this epigenetic deregulation
is probably due to IDH2 (isocitrate dehydrogenase) down-
regulation. Around 10% of melanoma tumor tissues have a
mutant IDH1 or 2 (24). Melanoma cells harbor an amplified
gene that encodes phosphoglycerate dehydrogenase (PHGDH),
the first enzyme in the serine biosynthetic pathway andmoreover
one of the few acknowledged metabolic oncogenes (25). When
PHGDH gene was silenced in cells, serine biosynthesis decreased,
and tumor cells reduced their proliferation (26). If melanoma
cell cultures are supplemented with exogenous serine, cellular
proliferation continues to stay reduced in PHGDH silenced
cells. Therefore, the mechanisms are linked with other pathways,
such as cytosolic redox balance, amino acid transamination
and probably many more still to be discovered. For example,
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serine leads to the formation of 5, 10-methylene-tetrahydrofolate,
contributing to purine and pyrimidine biosynthesis, while
glycine is essential for glutathione biosynthesis. Melanoma cells
can redirect glucose toward serine and glycerol-3-phosphate
pathways by enhancing phosphoenol pyruvate carboxykinase
expression that is a cytosolic gluconeogenic enzyme. This process
favors tumor cell proliferation, increasing glucose uptake and
hence lactate production. If inducing in melanoma cells the
silencing of phosphoenolpyruvate carboxykinase, tumorigenesis
is reduced both in in vitro and in vivo models (27). Guanosine
monophosphate reductase is involved in de novo purine
biosynthesis and if the expression of guanosine monophosphate
reductase is reduced, melanoma aggressiveness is enhanced.
Decreasing intracellular GTP pools can limit melanoma cell’s
invasiveness as it was confirmed in invasive melanomas that
guanosine monophosphate reductase is down-regulated (28).

Although new immune therapies have been approved for
cutaneous melanoma (29, 30) the lack / poor clinical responses
sustain the necessity to add new targets, such as altered metabolic
enzymes / pathways that can aid or even can personalize therapy
in melanoma.

In melanoma cells, as stated above, cytosolic serine pathway
is upregulated. Inhibition of this metabolic pathway in other
cancers (31) can be also extended to melanoma. Thus, if
inhibiting serine biosynthetic pathway, oxidative stress can be
induced in tumor cells. Higher ROS (reactive oxygen species)
generation, reduces invasiveness because RHOA/GTP activity
is decreased. Hypoxia drives glutamine pathways for fatty
acid biosynthesis. Down-regulation of glycolysis upregulates
oxidative phosphorylation to reinstate ATP levels needed
for proliferation. Therefore, if BRAF (v-Raf murine sarcoma
viral oncogene homolog B1) inhibitors can be combined with
mitochondrial function inhibitors melanoma cell proliferation
can be blocked at both levels. For example, introducing
biguanides (metformin or phenformin) or glutaminase
inhibitor BPTES the resistance to BRAF inhibitors will be
clinically delayed (32).

Melanoma cells have a metabolic outline that gives the
tumor cell advantages in an acidic—hypoxic milieu. However,
a tumor complex architecture consists also of non-tumor
cells, the main population being tumor infiltrating immune
cells (TILs).

IMMUNE CELL INFILTRATING MELANOMA
TUMORS AND METABOLIC TRAITS

In developing melanomas, the immune cells that are the key anti-
tumoral effectors would be summoned to the tumor site through
a concert of molecules (33) and all these immune cells will have
an important metabolic role (34). For example, in various cancers
has been demonstrated that aldehyde dehydrogenase 7 family,
member A1 (ALDH7A1) and lipase C, hepatic type (LIPC)
expression is associated with negative and positive prognostic
potency, respectively. In melanoma it was shown that the level of
metabolic enzyme ALDH7A1 is correlated with low infiltrating
immune cells. The metabolism of tumor cells impacts immune

cells, microenvironmental inflammatory processes proving that
“oncometabolism and immunometabolism” intersect (35).

When tumors have low immune cell infiltrates, more
specifically low CD8+ CTLs the tumor can be resistant
to therapy. In contrast tumors, with increased immune cell
infiltrate, immunologically “hot” tumors, have an increased
susceptibility to immune therapies (36). Immune cells and
tumor cells within TME will race for resources, including
glucose and amino acids, nutrients that sustain similar metabolic
requirements (37). Moreover, due to their high metabolic rate,
tumor cells will create a highly acidic, hypoxic, and rich in
immunosuppressive metabolites TME, challenging the anti-
tumoral action of immune cells. Therefore, immunotherapies
that combinemetabolic approaches that would favor immune cell
infiltration, activate effector processes and enhance the life span
of antitumor T cells would have increased clinical efficacy (38).

Main anti-tumoral effector immune cells, like cytotoxic T
lymphocytes, NK cells, have metabolic outlines during their
immune activity within TME.

Cytotoxic T Cells Metabolism
Activation of T cells by T cell receptor (TCR) triggers also
important metabolic changes. Un-stimulated T cells consume
low levels of glucose and the metabolic energy is furnished
by mitochondrial oxidative phosphorylation (OXPHOS). When
T cells are activated and their functions demand there is a
raise in the nutrient uptake, cells metabolism relying on aerobic
glycolysis, glutaminolysis and lipid synthesis. Aerobic glycolysis
enables T cells to use glucose to stimulate the pentose phosphate
pathway (PPP). PPP produces NADPH, a molecule that is rate-
limiting for the biosynthesis of amino acids, nucleic acids and
fatty acids (37, 39, 40).

Tumor cells have an alike glycolytic metabolic pattern with
activated T cells. TME will have a low concentration of
nutrients, glucose, lipids and amino acids, thus lymphocytes
will be suppressed by a lack of energetic molecules (41–43). T
lymphocytes and other immune cells are inhibited by lactate or
kynurenine, molecules secreted by tumor cells and additionally
are subjected to low oxygen levels (41). In effector T cells,
immune therapy with immune checkpoint blockade turns back
the cell’s metabolism to glycolysis (44, 45). PD-1 signals increase
fatty acid oxidation (FAO), a pathway necessary for long-term
survival of chronically activated T cells (44, 46).

Glycolytic metabolism is characteristic for active and efficient
T lymphocyte, but in TME there are low levels of glucose (42, 43).
Besides glucose deprivation, TILs have reduced enolase-1 activity,
and this deficit can be overridden if downstream pyruvate
can be supplied (47). Moreover, phosphoenolpyruvate (PEP),
generated by enolase-1, has metabolically antitumor functions,
it regulates the cytoplasmic Ca2+ and NFAT1 activation in T
cells. When enhancing the expression of gluconeogenesis enzyme
PEP carboxykinase 1, the intracellular PEP concentration leads to
CD4+ or CD8+ T cells antitumor responses (43, 48). Glycolysis
sustains in T cells cytokine production, cytolytic proteins
and non-durable anti-tumor immune responses. Adoptive cell
transfer (ACT) with memory T cells would sustain long-term
antitumor responses (49). Therefore, in metabolic studies on

Frontiers in Oncology | www.frontiersin.org 3 May 2020 | Volume 10 | Article 851

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Neagu Metabolism in Melanoma

memory immune cells approaches have focused on decreasing
glycolysis in order to drive T cells toward thememory phenotype.
Indeed, the glycolysis inhibitor 2-deoxyglucose differentiated T
cells toward long-livedmemory cells and enhanced the antitumor
function. Therefore, memory T cells display low glycolytic
metabolism and augmented OXPHOS characterizing a cell with
medium cytotoxic function, self-renewal capacity and long lived
cell (50). Inmelanoma, whenACT usingmelanoma-specific pmel
T cells pretreated with the serine/threonine Pim kinases inhibitor
(e.g., AZD1208) was applied an improved anti-tumoral response
was obtained. Inmousemelanomamodel it was shown that when
combining AZD1208 and PD-1 blockade, T cell ACT had an
increased anti-tumoral effect (51).

Intra-tumoral Tregs are metabolically dependent on glycolytic
pathway and recently it was demonstrated that TLR8 ligation
would inhibit glucose uptake and glycolytic pathways (52).
Furthermore, enhanced tumor glycolysis would lead to low
therapeutic responses to ACT (53). Modulating in vivo glycolytic
metabolism is a complex endeavor because targeting tumor cell
metabolism would also impede TILs action.

One scope of an immune response is to develop memory
cells, aim that is important in oncology where one would need
the immune surveillance of metastasis. Memory T cells with
anti-tumoral activity have metabolic particularities. When CD28
is co-stimulated in T cell priming, memory cell appears, and
FAO pathways are enhanced, and morphological mitochondrial
remodeling takes place. When CD28 co-stimulation does not
take place, an active anti-tumoral response rapidly appears
after ACT without generation of memory T cells for a durable
response (54, 55). Inside TME, exhausted TILs are reported
as being endowed with low or absent CD28 expression. In
melanoma a costimulatory TNF receptor family member 4-1BB
was found elevated on TILs with CD8+PD-1+Tim3+LAG3+
phenotype. In mouse melanoma 4-1BB co-stimulation increased
mitochondrial function in CD8+ T cells and enhanced the
efficacy of anti-check-point inhibitor (PD-1) therapy and T cell
ACT (56).

Studies performed on other types of cancer (57, 58) show
that targeting ROS has additional in antitumor effects. Targeting
tumor cell mitochondrial metabolism in melanoma would
enhance immunotherapies effect (59). Therefore, melanoma
cell lines characterized by dysregulated oxidative metabolism
triggered intratumoral hypoxia in mice while knockdown of
mitochondrial complex 1 subunit Ndufs4 inverted the effect (59).

Briefly, anti-PD-1 therapy induces CD8+ T cell infiltration
in melanoma tumors and tumor cell-intrinsic oxidative
activity, while non-glycolytic tumor metabolism hinders
anti-PD-1 efficacy.

An outline of the metabolic traits of T cells upon
differentiation in activated states is depicted in Figure 1.

NK Cells Metabolism
NK cells are involved in melanoma anti-tumoral response
and their role is lately acknowledged as steadily increasing in
melanoma (60). NK cells use glucose and upon activation they
will up-regulate GLUT1 receptor increasing thus the fuel uptake.
Activated NK would consequently increase the expression of

transferrin receptor (CD71), receptors for large neutral amino
acids (SLC7a5), glutamine (SLC1A5) and for free fatty acid
(CD36). Glucose can be subjected in NK cells to two pathways,
one leading to pyruvate and further to lactate that is accumulated
in the cytosol; the second pathways is the conversion of pyruvate
to acetyl-Co-A for uptake into the mitochondria. Acetyl-Co-
A from the cytosol can enter lipid synthesis and many other
acetylation reactions. The oxaloacetate (OAA) that is generated
can further generate malate, re-entering the mitochondria, in the
cycle Citrate Malate Shuttle (CMS). This cycle provides reducing
equivalents for electron transport chain in OXPHOS (61). In
the transition to effector cells NK nutrients uptake is increased
(62) glycolysis and OXPHOS is increased in licensed NK cells
in comparison to unlicensed NK that depend only on OXPHOS
(63). Actually, licensed NK cells can be activated by MHC-I
molecules to become functional (64).

Dendritic Cells Metabolism
Dendritic cells (DC) are seminally involved in the anti-tumoral
immune responses, but as in the other TILs, TME would hinder
active DC function and dampen their anti-tumoral immune
responses. DCs switch from immature (tolerogenic state) to the
mature phenotype that would gain immunostimulatory activity
upon sensing PAMPs and/or DAMPS via PRRs. The molecular
flow of recognition is essential as further DCs activate through
MHC-restriction effector lymphocytes CD8+ or CD4+ T cells.
This activation takes place by the specific membrane complex of
antigen-loaded MHC class I or II molecules, expressed on the
DCs (65).

There are distinct DCs with specific metabolic requirements.
Bone-marrow-derived DCs (BMDCs) in immature/resting state
have fatty acid oxidation (FAO) as the basal pathway and
OXPHOS in the mitochondrial electron transport chain (ETC)
that supply the cells energetic necessities (66). In their resting
state their functionality is low and would not activate T cells
(67), but if PRR are activated, BMDCs rapidly switches to a pro-
inflammatory state. This state is characterized by an increased
expression of MHC molecules, cytokines and the costimulatory
ligands (CD80 and CD86), so that antigen presentation would
activate T cell mediated immune responses. Immediately upon
activation, BMDCs would induce glycolysis pathways, this
process being dependent on hexokinase II activation (68, 69).
Stimulation via TLR2, TLR6, TLR9, Dectin-1 and Dectin-2,
would reprogram as well DCs toward glycolytic pathways (70,
71). cDC in the early activation state will rely upon glycolytic
metabolism from pre-stored glycogen. Glycolysis, TCA cycle and
pentose phosphate pathway activation would ensure increased
secretion of pro-inflammatory cytokines and T cell stimulatory
molecules expression. After PRR activation, BMDCs would
increase glucose transporter GLUT1 expression and increase
glycolysis through the mTOR-HIF-1α/iNOS axis, inhibiting the
electron transport chain. Upon these events, expression of MHC
and co-stimulatory molecules would be decreased. In cDC,
autocrine type-I IFN signaling would enhance HIF-1α-mediated
glycolytic rewiring for further CD8+ T cell activation. There are
still unknown mechanisms like the drivers for Mst1/2 activation
and if cDCs use pyruvate for mitochondrial respiration (72).
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FIGURE 1 | Metabolic traits of T cells upon differentiation in activated states. Naïve T cells are characterized by low levels of glucose uptake and cellular energetics is

sustained by mitochondrial oxidative phosphorylation (OXPHOS). When cells are activated into effector CD8+ T lymphocytes, mTOR signaling is activated and cells

switch to aerobic glycolysis characterizing a short lived cell with high cytotoxic function. When cells are activated into memory cell low glycolytic metabolism and

augmented OXPHOS characterizing a cell with medium cytotoxic function, self-renewal capacity and long-lived cell.

An outline of the metabolic traits of NK and dendritic cells
upon activation is depicted in Figure 2.

Other Innate Immune Cells Infiltrating
Tumors
Neutrophil effector functions are induced by PAMPs, DAMPs
and several inflammatory cytokines. Their classical functions
consist in phagocytosis and ROS generation. However, when the
microenvironmental pH is lowered and hyperthermia installs
anti-apoptotic processes are induced and other functions emerge,
like a low phagocytosis, low ROS production, high expression
of β2 integrins (CD11b/CD18), suppressive effects upon T cell
responses and increased production of pro-angiogenic molecules
(IL-8, VEGF, MMP-9) (73). Tumor acidosis would induce also
in innate immune cells, like neutrophils, phenotypes that are
similar with tumor-associated neutrophils (TANs), as described
in various infiltrated tumors (74) and the existence of TANs is
associated with a poor clinical prognosis in other cancers (75).
TANs, influenced by the overall metabolic outline of the tumor
would fav our pro-tumoral processes, metastasis, suppression
of T cell effectors and neoangiogenesis (73, 74). Recent work
of Holl et al. has shown that PDL1 expression on neutrophils
in melanoma patients went up to almost 50% suggesting
that PDL1+ neutrophils can have an immunosuppressive
function (76).

Infiltrating immune cells sustain a major metabolic trait
of melanoma being subjected to TME nutrients and oxygen
restrictions that is similar to an inflammatory milieu.

THERAPY RELATED METABOLIC OUT
LINE IN MELANOMA

As stated in previous sections, the metabolic outline of
cancer cells is represented by a metabolic reprogramming
switching from oxidative phosphorylation to glycolysis.
This switch favors cancer cell adaptation to a nutrient-poor
microenvironment, favoring hence an aggressive cancer type.
The possible therapeutic action on metabolic nodes was
investigated for the already approved therapies in melanoma,
namely upon targeted therapy (e.g., BRAF inhibitors) and on
check-point inhibitors (anti—cytotoxic T-lymphocyte-associated
protein-4—CTLA-4 and anti-programmed cell death-1 -PD-1
monoclonal antibodies) (see Table 1).

Targeted Therapy in Melanoma and
Metabolic Pathways
BRAF targeted therapy resistance phenomenon appears early
during therapy and influences patient’s clinical outcome. The
topic of therapy resistance in melanoma is still a matter of intense
study. Several years ago, it was shown that there is an association
between BRAF inhibitors and glycolitic pathways. A recent study
has shown more specific in melanoma cell lines presenting BRAF
mutation that their metabolic profiles influences the resistance to
a BRAF inhibitor, Vemurafenib. Hence, clones of resistant cells
are dependent on inflammatory lipid and EGFR signaling or have
increased anaplerotic mitochondrial metabolism (77). In BRAF-
mutant melanoma cells inhibition of BRAF induces concomitant
glucose uptake reduction. Additionally, in melanoma cells
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FIGURE 2 | Metabolic traits of NK cells and dendritic cells upon differentiation in activated states. (A) NK cells in the resting state have low levels of glucose uptake

and OXPHOS metabolism and upon activation there is an increased expression of Glut1R increasing thus the fuel uptake, would increase the expression of transferrin

receptor (CD71), receptors for large neutral amino acids (SLC7a5), glutamine (SLC1A5) and for free fatty acid (CD36); all these changes sustain a high cytotoxic

activity; (B) Dendritic cells in the resting state rely on pre-stored glycogen, use glycolysis, TCA cycle, when differentiating upon activation in Bone-marrow-derived DCs

(BMDCs) increased expression of Glut1R mTOR-HIF-1alpha/NOS leads to aerobic glycolysis that will increase expression of MHC molecules, cytokines and the

costimulatory ligands (CD80 and CD86); classical dendritic cells (cDC) would use the autocrine IFN activation to enhance HIF-1α-mediated glycolytic metabolism that

would sustain CD8+ T cell activation.

various transcription factors regulate in parallel BRAF and
glycolysis pathway. These transcription factors (e.g., HIF-1a,
MYC, MLXIP) regulate glycolysis downstream of BRAFV600,
and if concomitant inhibition is done, apoptosis is induced in
cells that otherwise are resistant to BRAF inhibitor alone. This
was the first proof-of-concept study that showed the therapeutic
possibility to combine BRAF inhibitors with glycolysis inhibitor
(78). The persistence of transcription factor HIF-1a at nuclear
level in metastatic melanoma has opened other therapeutic
possibility. If HIF-1a pathway can be blocked, glycolysis would
decrease, and mitochondrial respiration could be enhanced

through pyruvate dehydrogenase kinase-3 (PDK3) reduction. If
PDK3 activity is inhibited (e.g., using dichloroacetate or specific
siRNA) several molecular events tend to normalize. The study of
Kluza et al. showed the preclinical validation that HIF-1/PDK3
bioenergetic route can be a new target for therapy in metastatic
melanoma and can be used in patients that achieve BRAF-
therapy resistance (79); further drugs aiming these targets (e.g.,
dichloroacetate, elesclomol) entered clinical trials (80).

There was reported a crosstalk between the AMPK (AMP-
activated protein kinase) and BRAF signaling pathways. In
cellular systems with BRAF-mutated melanoma cell lines
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TABLE 1 | Summarizes main metabolic points/pathways that can aid targeted/immune-therapy in melanoma and emphasizes that data obtained in in vitro and in vivo

models prove that tumor’s oxidative metabolism can be a future target to improve immunotherapeutic outcome for patients.

Approved therapy Targeted metabolic

points

Drug Effect Reference

Targeted therapy

—BRAF inhibitor

HIFa/PDK3 pathway - dichloroacetate, elesclomol Glycolysis decrease, mitochondrial respiration

enhanced through pyruvate dehydrogenase kinase-3

(PDK3) reduction

(79, 80)

Ferroptosis Agents inducing ferroptosis Increase in targeted and immune therapy efficacy (82–84)

AMPK pathway Phenformin Inhibit mTOR signaling and induce apoptosis (81)

Check-point inhibitors

anti-PD-1

LDH pathway Knockdown of LDH Increase in tumor pH (88–90)

Mitochondrial pathway UCP2 induction Activation of DC and CD8+ T (91)

Tumor hypoxia Metformin Lowering tumor hypoxia (94)

Adenosine signaling Antagonizing A2AR Activation of T, NK and DC (95)

Check-point inhibitors

anti-CTLA4

Acetyl-CoA

acetyltransferase-1

pathway

ACAT-1 inhibitor (avasimibe) Abolishes CD8+ inhibition (96)

Essential amino acid

pathway

IDO inhibitor Abolishes tolerogenicity of immune cells in TME (98–101)

when co-treated with phenformin (diabetes drug) and BRAF
inhibitor (PLX4720) a decreased cell viability was registered.
Moreover, phenformin treatment delayed resistance installment
to BRAF inhibitor. It was shown that both drugs inhibit mTOR
signaling and induce apoptosis. Furthermore, phenformin targets
melanoma cells with slow cell cycling while PLX4720 targets
increased cell cycling. Tumor regression was achieved in in vivo
mouse models when using both drugs. Combining an AMPK
activator with BRAF inhibitor can be a good therapeutical option
in melanoma (81).

Another metabolic molecular event depicted in BRAF therapy
resistance is the relation of aggressiveness and the specific
sensitivity to iron-dependent oxidative stress, to ferroptosis, a
specific cell death type. Therefore, drugs that induce ferroptosis
can also increase targeted and immune therapy efficacy. Drugs
that target dedifferentiation of melanoma cells in distinct stages
through iron-dependent oxidative stress would better orient
patient therapy (82). Using drugs that can induce ferroptosis
is limited by bioavailable compounds. In GPX4 knockout
melanoma cells it was demonstrated that increased ferroptosis
sensitivity can be seen when combining ferroptosis-inducing
drugs with BRAF inhibition (83, 84).

Anti-Check-Point Inhibitors in Melanoma
and Metabolic Pathways
Checkpoint inhibitors, anti-CTLA-4 and anti-PD-1 are approved
in most of the European countries as therapies for melanoma,
but still prediction markers for efficacy lack. A metabolic enzyme
that is involved in the glycolytic activity of the tumor cells, LDH is
the most important predictive marker for checkpoint inhibition
efficacy. In fact, this enzyme reflects the acidity of TME, therefore
in the metabolic therapeutical approaches this target should be
followed (85). In a recently published report, it was shown that
RNAi nanoparticle can neutralize tumor acidic environment and
restore T cells action in the checkpoint blockade therapy. Within

the study a knockdown of LDHA in tumor cells was induced,
a reprogramming of pyruvate metabolism was induced, LDH
was reduced and tumor pH increased. In an animal model, this
proof-of-concept was verified. When tumor acidity was reduced,
tumors had an increased infiltration of CD8+T andNK cells, and
reduced tumors growth.Moreover, PD-1 therapy was potentiated
by this acidic TME neutralization (86). In another recent elegant

study, it was shown that in patients tumors CTLs concentrate

around peripheral blood vessels, especially in tumors with low
TILs. In vitro, when subjected to low oxygen concentration and
oxidative phosphorylation blockade it was shown that CTLs
have reduced motility. This study highlights that hypoxia would
limit effector immune cells migration favoring tumor cells to
survive. Immunotherapy can be aided by normalizing pH and the
intra-tumoral oxidative status (87).

As high LDHA expression is associated with poor prognosis
(88) because acidic TME will block T cell cytokine production,
hinder cytolytic function (88) and would induce NK cell

apoptosis (89). In melanoma mouse model it was shown that

raising tumor pH with sodium bicarbonate would slow the
growth of Yumm1.1 melanoma and it enhanced anti-PD-1 or
anti-CTLA-4 therapy efficacy (90).

In patients’ tumors it was reported that metabolic
deregulations are diverse in both degree and type. Therefore,
some tumor cells have just deregulated oxidative or glycolytic
metabolism, others have deregulated oxidative, but not glycolytic,
metabolism that is associated to hypoxia. In single-cell melanoma
models it was known that increased tumor oxygen consumption
was associated with decreased T cell immune activity. In
addition, melanoma cells without oxidative metabolism were
responsive to anti-PD-1 therapy. Melanoma progression on PD-
1 blockade is associated with an oxidative metabolism (59). The
lack of T cells infiltrating the tumor resides also on the reduced
expression of mitochondrial uncoupling protein 2 (UCP2) on
tumor cells. It was shown that UCP2 reprograms TME inducing

Frontiers in Oncology | www.frontiersin.org 7 May 2020 | Volume 10 | Article 851

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Neagu Metabolism in Melanoma

interferon regulatory factor 5 boosting type 1 DCs and CD8+
T cell action. Induction of UCP2 sensitizes melanomas to PD-1
therapy, alleviating primary therapy resistance (91).

In other cancers, it was shown that hypoxic non-vascularized
areas that appear when tumor grow, are lacking infiltrating T
cells (92) accordingly when reversing tumor hypoxia, the process
of increasing T cell infiltration would aid immunotherapy. In
2018 it was shown that evofosfamide (TH-302), in an in vivo
model restored normoxia, induced T cell infiltration in prostate
tumors and enhanced the efficiency of PD-1/CTLA-4 checkpoint
blockade (92). In a fibrosarcoma pulmonary mouse model,
hyperoxia (60% O2) increased infiltration of antitumor CD8+T
cells and increased CTLA-4/PD-1 efficacy (93). As in other types
of cancers, this metabolic therapeutical approach can be applied
as well in melanoma. Tumor hypoxia can be overridden by
metformin potentiating PD-1 blockade in B16 melanoma mouse
model (94). Adenosine signaling is another type of metabolic
targeting that can modulate anti-check-point inhibitors therapy
in melanoma. In hypoxic tumors A2A adenosine receptor
(A2AR) is cross-linked it decreases the inflammatory process
sustained by T lymphocytes, NK cells, DCs, and macrophages.
Antagonizing A2AR a synergistic anti-tumoral effect with anti-
PD-1 therapy can be induced (95).

It is known that cholesterol facilitates T cell receptor
formation in CTLs, but an activation of CD8+ T cells increases
acetyl-CoA acetyltransferase-1 (ACAT-1) and subsequently
increases cholesterol esterification. In a melanoma animal
model, an ACAT-1 inhibitor (avasimibe) was combined with
immunotherapy and paclitaxel. The combination with avasimibe
increased free cholesterol and abolished CD8+ T cells inhibition.
The combination of avasimibe with immuno-therapy enhanced
the antitumor action of CD8+ T cells (96).

Indoleamine 2,3-dioxygenase (IDO), is an enzyme that
characterizes TME, this enzyme being produced by tumor cells,
Tregs, stromal cells, and DCs. This enzyme turns the essential
amino acid tryptophan (Trp) to kynurenine (Kyn). Low levels
of Trp induces decreased mTORC1 signaling, but activation
of GCN2 (stress kinase), drives cell cycle arrest and apoptosis
in effector T cells (97). It was shown that high levels of IDO
expression in the TME correlates with clinical outcome of the
patients, increased resistance to PD-1 (98), increased resistance to
CTLA-4 blockade (99) and to CD19-CAR-T cells (100). In mouse
melanoma models an improved tumor control was obtained if
anti-PD-L1 or anti-CTLA-4 was combined with IDO inhibitor
INCB23843 (101).

New Therapies Associated With Metabolic
Pathways
A metabolic enzyme that gained tremendous attention in
melanoma therapy is IDO1 as phase 1–2 clinical trials were
developed to use IDO1 inhibitors in combination to anti-PD1
therapy. In spite of the high optimism, ECHO-301, phase 3
trial, was halted because IDO1- enzyme inhibitor (epacadostat)
combined with anti-PD1 antibody (pembrolizumab) did not
prove clinical benefits for patients. The failure of significant
clinical results can come from several possible explanations.

It is possible that in this trial insufficient drug exposure was
done, hence the lack of effective inhibition. The preclinical data
that sustain this trial show that DNA damaging drugs prove
higher efficacy then IDO inhibitors (102). Therefore, studies are
still needed to find dose/inhibitors types that target IDO and
tryptophan 2, 3-dioxygenase in order to induce an improved
blockade that can be associated to an improved clinical outcome.

Newly approved in melanoma, ACT can be inefficient in
most tumors due to their molecular resistance mechanisms.
Acknowledging that tumor glycolysis is associated with immune
resistance in melanoma it was shown that over-expression of
molecules from the glycolysis pathways impair T cell killing of
tumor cells, while this anti-tumor action is enhanced by glycolysis
inhibition in both in vitro and in vivo models. Genes that
are involved in glycolysis pathways were found over-expressed
in ACT-refractory melanoma patients. In enhanced glycolytic
activity, melanoma cells have reduced levels of IRF1 and
CXCL10, molecules that are involved in the immunostimulatory
pathways and thus an association between tumor glycolysis and
ACT efficacy was reported (53).

Virotherapy in melanoma is a newly opened field in clinical
management of metastatic melanoma. Recently, a novel platform
was reported for viruses that can induce an immune response
targeted against tumor antigens. Hence, by attaching specific
peptides on a Vaccinia virus and herpes simplex virus 1 (HSV-
1) viral envelope a strong T cell-specific immune response
was generated directed toward tumor antigens. Moreover,
using HIV viral infection tactique, peptides can be enriched
with Tat N-terminal peptide or conjugated with cholesterol.
In mouse melanoma models it was demonstrated that by
coating the viral envelope with peptides, the number of tumor-
specific CD8+ T cells was enhanced (103). In the same
immunotherapy domain, oncolytic viruses, can induce both
tumor cell lysis and immune priming. The principle is clear,
but adverse effects are still unclear. Recently it was shown
that the oncolytic Vaccinia virus remodelates TME, that is
dominated by effector T cells. In this milieu, leptin was identified
as a potent metabolic reprogramming factor for an effective
antitumor action. In vitro it was shown that leptin metabolically
reprogrammed T lymphocytes, while melanoma tumor cells that
expressed leptin were more efficiently attacked by effector cells.
Using these experimental results authors engineered oncolytic
viruses to induce leptin expression in melanoma cells and
in mouse experimental model where completely regressed
tumors were achieved and T memory populations was induced.
This report from 2019 brings proofs that leptin provides
metabolic support for anti-tumoral immunity using oncolytic
viruses therapy (104). However, the molecular mechanisms are
still to be clarified. In a recent mouse model using ob/ob
and db/db strains the roles of leptin and resistin in the
dacarbazine (DTIC) therapy in melanoma was reported. Leptin
and resistin enhance proliferation of melanoma cell lines and
hinder DTIC efficacy. Upon leptin and resistin treatment using
A375 melanoma cell line, fatty acid synthase (FASN) and
caveolin 1 (Cav-1), respectively, were found increased. Cell lines
became more resistant to DTIC via upregulation of heat shock
protein 90 (Hsp90) and P-glycoprotein (P-gp). These in vitro
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results pinpointed the adipokines involvement in melanoma
progression, and other therapy resistance explanation (105).

New therapies that explore drugs modulating metabolic
deregulations are still in their infancy and information is still to
be gathered from preclinical and clinical studies.

CONCLUSION

Tumor microenvironment is a network of complex cellular and
molecular systems where cells will gain specific phenotypes
/ specific functions that would drive tumorigenesis. In skin
cancers, tumor microenvironment is characterized by tumor
infiltrating immune cells that sustain immune suppression,
mainly regulatory T lymphocytes (106). Melanoma cellular
heterogeneity is expressed on various levels, genetics (107),
proteomics (108), transcriptomic (109), and metabolomic
(110) and all these levels should be evaluated as closely
interconnected. Besides several characteristics, melanoma cells
display a metabolic reprogramming triggered by both genetic
alterations and adaptation to a microenvironment that starts
to lack nutrients and oxygen supply. Tumor cells have
cytosolic and mitochondrial compartments that present clear
metabolic adaptations to a demanding microenvironment and
identifying deregulated glycolysis pathway could offer new
therapy targets.

Moreover, the immune cells that infiltrate melanoma tumors
have metabolic specificities that upon interaction within tumor
microenvironment would favor tumorigenesis. In the last
years implementing new immune therapies in melanoma has
brought also an important clinical issue: resistance overcoming.
Antibody-mediated blockade of immune checkpoint molecules

implemented in melanoma therapy has shown that not all
patients respond, that resistance is installed at one point
and last, but not least immune-related adverse effects can be
life threatening. Molecular mechanisms by which tumor cell
becomes resistant are still to be uncovered (111, 112). Amidst
these mechanisms, tumor and immune cell metabolism are
gaining importance.

Analyzing both tumor cell metabolism and the metabolic
outline of immune cells can offer innovative insights in new
therapy targets and cancer therapeutical approaches. In addition
to already approved immune- and targeted therapy inmelanoma,
approaching metabolic points could improve therapy efficacy
and hinder resistance to therapy. In melanoma BRAF inhibition
combined with drugs that target oxidative metabolism can lead
to improvement in disease outcomes. In check-point inhibitors
therapy targeting metabolic pathways can enhance anti-tumoral
immune response and dampen therapy resistance.

Exploitation of tumor cell metabolism, tumor
microenvironment and infiltrating immune cell metabolism
could develop approaches that can aid current immunotherapies
in melanoma.
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