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Using multiple antimicrobials in food animals may incubate genetically-linked multidrug-

resistance (MDR) in enteric bacteria, which can contaminate meat at slaughter. The U.S.

National Antimicrobial Resistance Monitoring System tested 14,418 chicken-associated

Escherichia coli between 2004 and 2012 for resistance to 15 antimicrobials, resulting

in >32,000 possible MDR patterns. We analyzed MDR patterns in this dataset with

association rule mining, also called market-basket analysis. The association rules were

pruned with four quality measures resulting in a <1% false-discovery rate. MDR rules

were more stable across consecutive years than between slaughter and retail. Rules

were decomposed into networks with antimicrobials as nodes and rules as edges. A

strong subnetwork of beta-lactam resistance existed in each year and the beta-lactam

resistances also had strong associations with sulfisoxazole, gentamicin, streptomycin

and tetracycline resistances. The association rules concur with previously identified E. coli

resistance patterns but provide significant flexibility for studying MDR in large datasets.

Keywords: association rule mining, antimicrobial resistance, Escherichia coli, machine learning, multidrug

resistance, foodborne bacteria

INTRODUCTION

Although bacteria had antimicrobial resistance genes prior to the discovery and clinical use of
antimicrobials in the 1940s, antimicrobial use (AMU) selects for antimicrobial resistance (AMR)
in both pathogenic and non-pathogenic bacteria (Knapp et al., 2010). Increased AMR can emerge
and persist in food-borne pathogens through the use of antimicrobials in food-producing animals
(Marshall and Levy, 2011). AMU in food-producing animals is projected to increase by 67% from
2010 to 2030 due to increasing demands for meat products and human population growth (Van
Boeckel et al., 2015). Each instance of AMU selects for AMR directly by favoring the growth or
persistence of phenotypically resistant bacteria in treated individuals (Lipsitch and Samore, 2002).
AMU also indirectly selects for AMR by increasing the prevalence of resistant phenotypes in a
population, thereby increasing the risk of future resistant infections (Lipsitch and Samore, 2002).
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Resistant pathogens can spread from colonized food-producing
animals to a limited number of humans through direct contact
and to broader human populations via the food chain if meat is
contaminated with pathogens at slaughter (Marshall and Levy,
2011; Klous et al., 2016).

Pathogens with multi-drug resistance (MDR) are a larger
public health threat than pathogens with one drug or class
resistance because it can be difficult or impossible to find an
antimicrobial effective against MDR infections. MDR is not
just a consequence of individual drug resistances occurring
together by chance. Chang et al. (2015) found that MDR
often occurs at higher rates than expected by chance and
describe several mechanisms that contribute to the emergence
of MDR. Some biological mechanisms or alterations (e.g.,
efflux pumps) protect against several antimicrobial drugs
or classes, creating cross-resistance. Additionally, resistance
genes can be genetically linked by occurring on the same
mobile element or chromosome region and therefore tend
to be inherited or transferred together (co-resistance) (Chang
et al., 2015). MDR occurs naturally in bacteria that have
never been exposed to anthropogenic antimicrobials (Brown
and Balkwill, 2009), however AMU can select for MDR in
two key ways. Changes in AMU or the use of multiple
antimicrobials together can lead to MDR emergence through
genetic capitalism, whereby bacteria that are already resistant
to one antimicrobial have a fitness advantage and are therefore
more likely to acquire additional resistances via mutation,
recombination or horizontal gene transfer (Chang et al., 2015).
Knowledge of common MDR patterns in specific bacteria-host-
environment situations can help guide antimicrobial therapy and
stewardship (Pitout and Laupland, 2008).

The National Antimicrobial Resistance Monitoring System
(NARMS) was established in 1996 as a national surveillance
system in the United States to monitor AMR in zoonotic, food-
borne bacteria (including Salmonella enterica, Campylobacter
species, and Escherichia coli). It includes samples from clinically
ill humans, hazard-based samples of food-animal carcasses
at slaughter plants, and systematic samples of retail meats
(Karp et al., 2017). NARMS began monitoring E. coli isolated
from chicken carcasses in 2000 and from retail chicken in
2002 as an indicator organism for AMR in gram negative
bacteria (Karp et al., 2017). NARMS reports the prevalences
and trends of individual drug resistances, MDR patterns, and
MDR prevalence but also makes the isolate-level minimum
inhibitory concentration (MIC) data available to the public (Food
and Drug Administration, 2016). Biologic and genetic linkages
between resistances can be inferred from this isolate-level data. In
general, AMR data can be analyzed as continuous (disk diffusion
zone diameters), ordinal (MIC) or dichotomous (susceptible or
resistant) data. However, it is challenging to analyze associations

Abbreviations: AMR, antimicrobial resistance; MDR, multidrug resistance;
AMP, ampicillin; AMC, amoxicillin-clavulanic acid; AXO, ceftriaxone; FOX,
cefoxitin; TIO, ceftiofur; AMI, amikacin; GEN, gentamicin; KAN, kanamycin;
STR, streptomycin; COT, trimethoprim-sulfamethoxazole; FIS, sulfisoxazole; CIP,
ciprofloxacin; NAL, nalidixic acid; TET, tetracycline; CHL, chloramphenicol; AZI,
azithromycin.

within AMR data because the data often violate assumptions for
classical statistical tests and models. For example, MIC and disk
diffusion distributions tend to be non-Gaussian (Wagner et al.,
2003) and dichotomous interpretations tend to be sparse and
over dispersed (Zawack et al., 2016, 2018). Several techniques and
statistical models have been applied to NARMS data and similar
AMR datasets in order to understand relationships between
drug resistances. Graphical Markov networks have revealed
pairwise associations between drug resistances (Love et al., 2016,
2018). Log-linear models have been used to understand higher-
order associations between drug resistances but these models
violate key assumptions when there are fewer than 5 isolates
expected in each combination of resistances or susceptibilities
(i.e., sparsity) (Zawack et al., 2018). Finally, Bayesian approaches
can estimate interactions between drug resistances (Ludwig
et al., 2013; Zawack et al., 2018), and have identified three-
way and four-way interactions between resistances in NARMS
data (Zawack et al., 2018).

Association rule mining is an unsupervised machine learning
method that is commonly used to identify patterns in customer
purchasing at retail stores in order to improve marketing and to
make better business decisions (Tan et al., 2018). Rule mining
can efficiently discover associations between binary or categorical
variables in large, sparse datasets (Agrawal et al., 1993; Tan et al.,
2018). Although the definition of “large dataset” or “big data”
varies, the Apriori algorithm commonly used for association rule
mining was developed for datasets with tens of thousands of
retail transactions (Agrawal et al., 1993). Sparse data refers to
situations where very few observations have non-zero values.
When AMR data is dichotomized into susceptible (e.g., “0”)
and resistant (e.g., “1”) interpretations, the data may be sparse
when the prevalence of resistance is low. Therefore, association
rule mining is well-suited to analyzing AMR surveillance data,
which often contains thousands of isolates with low resistance
prevalence for some drugs (Love et al., 2016; MacKinnon, 2017).
In addition, association rule mining does not make assumptions
of Gaussian data or expected count values. It has been suggested
that association rule mining is more sensitive than regression
techniques or chi-square tests for finding relationships between
exposures and disease outcomes in clinical data (Cleophas and
Zwinderman, 2015). Association rules have been used in studies
of nosocomial infection trends (Ma et al., 2003; Tsymbal, 2005;
Giannopoulou et al., 2007), antibiogram analyses (Ma et al.,
2003; Tsymbal, 2005; Gerontini et al., 2011), and susceptibility
testing validation (Lamma et al., 2001). Since antimicrobial
susceptibility results can be interpreted as binary variables (e.g.,
susceptible or resistant to a given antimicrobial), association
rules can identify multi-way relationships between individual
antimicrobial susceptibilities that result from cross-resistance
or co-resistance.

The objective of the current study is to uncover significant
MDR patterns in antimicrobial susceptibility testing data with
association rule mining. Multi-drug resistance commonly refers
to resistance to three or more drug classes (Magiorakos et al.,
2012); we refer to MDR as resistance to two or more drug
classes (Table 1) since association rules involve two or more
antimicrobials. MDR is difficult to study with regression model
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TABLE 1 | Antimicrobial classes and resistance breakpoints of drugs used

between 2004 and 2012 in the antimicrobial susceptibility testing of Escherichia

coli isolated from chicken carcasses and chicken retail meat by the National

Antimicrobial Resistance Monitoring System.

Class Drug Abbreviation Years

Tested

Resistance

Breakpoint

β-lactams Ampicillin AMP 2004–2012 ≥32

Amoxicillin–

Clavulanic

Acid

AMC 2004–2012 ≥32

Ceftriaxone AXO 2004–2012 ≥4

Cefoxitin FOX 2004–2012 ≥32

Ceftiofur TIO 2004–2012 ≥8

Aminoglycosides Amikacin AMI 2004–2010 ≥64

Gentamicin GEN 2004–2012 ≥16

Kanamycin KAN 2004–2012 ≥64

Streptomycin STR 2004–2012 ≥64

Sulfonamides Trimethoprim–

Sulfamethoxazole

COT 2004–2012 ≥4

Sulfisoxazole FIS 2004–2012* ≥512

Quinolones Ciprofloxacin CIP 2004–2012 ≥1

Nalidixic Acid NAL 2004–2012 ≥32

Tetracyclines Tetracycline TET 2004–2012 ≥16

Phenicols Chloramphenicol CHL 2004–2012 ≥32

Macrolides Azithromycin AZI 2011–2012 ≥32

*Except 2007 slaughter isolates.

techniques because there are many potential outcomes (i.e.,
MDR patterns). However, association rule mining efficiently
identifies the strongest patterns in a dataset and analysis of
the association rules can provide insight into the strength of
relationships between individual antimicrobial susceptibilities.
We apply association rule mining to NARMS resistance data
of Escherichia coli isolated from chicken carcasses and retail
meat in order to identify important associations between two or
more antimicrobial drugs and investigate temporal trends and
differences between slaughter and retail MDR patterns.

METHODS

Data Sources
Antimicrobial susceptibility testing data from Escherichia coli
isolated from chicken carcasses since 2000 and from retail
chicken meat since 2002 as part of NARMS surveillance is
publicly available (Food and Drug Administration, 2016). Data
from 2004 to 2012 (14,418 isolates) were used for this study
because of changes in NARMS sampling strategies (Karp et al.,
2017) and for consistency with previous studies of AMR
associations in NARMS isolates (Love et al., 2016). Each isolate
was tested against 12 to 25 antimicrobial drugs using the
Sensititre system (National Antimicrobial Resistance Monitoring
System, 2016a). The MIC results of the 15 most commonly
tested antimicrobials plus azithromycin were used for this study
(Table 1). Each isolate was classified as resistant or susceptible
based on published MIC breakpoints (Love et al., 2016; National

Antimicrobial Resistance Monitoring System, 2017). Resistance
data were separated by year and source (slaughter and retail)
into 18 datasets for association rule mining. The prevalence of
resistance against the 16 included antimicrobials in each year-
source dataset is given in Table 2.

Association Rule Mining
Background
Association rule mining is an unsupervised machine learning
technique for identifying patterns and relationships in large,
binary datasets (Tan et al., 2018). Rule mining terminology
reflects its classical application to market basket data (i.e.,
purchase records). The binary data is arranged as transactions
and items, with one transaction in each row and one item in
each column. An example antimicrobial susceptibility dataset is
given in Table 3; each isolate is considered a transaction and
each antimicrobial is an item. Resistance to an antimicrobial is
recorded as “1” and susceptibility as “0.”

An itemset is a combination of zero or more items (e.g.,
antimicrobial resistances). A transaction contains an itemset if all
the items in the itemset appear in the transaction. For example,
in Table 3 the itemset [B] is contained in isolates 1 and 3; the
itemset [A, D] is contained in isolates 2, 4 and 6; and the itemset
[A, B, C] is contained in isolate 1. The number of possible
itemsets, excluding the null set of zero items, is 2k − 1, where
k is the number of items in a dataset. The example dataset in
Table 3 has five items (antimicrobials) and 31 potential itemsets.
The NARMS datasets used in this study include at most 15
antimicrobials and 32,767 potential combinations of resistances.

The support count of an itemset is the number of transactions
that contain that itemset and the support of an itemset is the
proportion of transactions that contain that itemset. For example,
itemset [B] is contained in two out of six isolates in Table 3 so its
support count is two and its support is 0.33; itemset [A,D] has a
support count of three and a support of 0.5. A frequent itemset
is an itemset with a support greater than or equal to a user-
definedminimum support (minsup). If the minimum support for
the example in Table 3 is 0.4, then [B] is an infrequent itemset
and [A,D] is a frequent itemset. The support (i.e., prevalence of
resistance) for each single-antimicrobial itemset (e.g., [AMP]) in
the NARMS datasets is given in Table 2.

Rules are expressed as X → Y, where X and Y are disjoint
itemsets containing one or more items. Y is referred to as the
consequent or right-hand side; X is referred to as the antecedent
or the left-hand side. In classical market basket analysis, this
rule implies that customers who purchase all the items in X also
buy all the items in Y. With respect to antimicrobial resistance,
this rule implies that isolates resistant to the antimicrobials in
X are also resistant to the antimicrobials in Y. A dataset can
contain 3k − 2k+1 + 1potential rules; the example dataset in
Table 3 has 180 possible rules and the NARMS datasets inTable 2
have at most 14,283,372 rules when 15 antimicrobials are tested.
Note that there are more potential rules than potential itemsets
and that both grow exponentially with the number of items in
the dataset. Rules can be described by many quality measures
(Hahsler, 2015; Hahsler et al., 2018) but are commonly evaluated
with support and confidence, which is the conditional probability
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TABLE 2 | Number (N) of Escherichia coli isolates from chicken carcasses (slaughter) and chicken meat (retail) between 2004 and 2012 and the prevalence of resistance

to 16 antimicrobials.

Prevalence of resistance (%)*

Source Year N AMC AMP AXO FOX TIO AMI GEN KAN STR COT FIS CIP NAL TET AZI CHL

Slaughter 2004 1697 8.8 17.6 7.2 8.2 4.9 0 39.1 11.5 64.1 10.7 53.2 0.2 6.8 50.3 NT 1

2005 2232 10.6 22 9 9.9 6.5 0 36.7 10.3 58.1 10.4 51.9 0.5 7.5 48.9 NT 1

2006 1357 16 25.6 14.7 15 10.2 0 33.1 9.1 49.5 8.4 48.6 0.1 5.4 49 NT 1.9

2007 1510 11.2 18.7 10.3 10.3 7 0 38 7.7 47 7.9 NT 0.1 4.2 40.2 NT 2.3

2008 986 13.7 23.5 13.5 13.8 10.4 0 44.5 10.2 54.6 9.1 52.7 0.6 6 47.4 NT 1

2009 876 12.4 19.9 11.5 11.4 9.5 0 43.4 7.9 49.9 7 52.6 0.5 3.2 49.2 NT 1.1

2010 941 12.4 22.2 12.3 12.5 10 0 43 6.4 49.1 6.3 51.8 0.2 3.4 42.8 NT 0.7

2011 614 9.4 16 9.3 9.1 6.8 NT 42.8 5.7 50.8 4.2 54.7 0.3 2.3 46.6 0.2 2.1

2012 990 9 17.7 8.8 9.2 7.6 NT 42.1 7.3 42.8 6.5 47.6 0.5 2.4 45.4 0.5 1.9

Retail 2004 400 10 17 6.5 8.2 5.8 0 30 6.8 56.8 4.2 41.2 0 7 48 NT 1.8

2005 393 12.2 24.7 10.2 11.2 8.7 0 37.7 7.1 50.6 7.4 48.1 0 6.6 46.6 NT 0.5

2006 418 11.5 20.1 9.1 11.2 8.6 0 37.3 11.5 48.1 8.9 46.9 0 5 50.5 NT 2.6

2007 299 7.4 18.1 6.4 7.4 6 0 34.4 9 46.8 5 42.1 0 3 40.5 NT 2

2008 306 11.8 23.5 11.1 11.8 10.8 0 34 6.9 43.8 3.6 39.2 0 2.9 43.8 NT 1

2009 315 13.3 22.3 12.4 13.3 11.7 0 34.3 5.4 38.1 2.2 40.6 0.3 2.9 41.6 NT 0.6

2010 357 6.7 16.5 6.4 6.7 5.6 0 31.9 6.2 39.2 4.2 38.9 0.6 3.6 38.9 NT 1.4

2011 341 14.1 26.4 12.6 13.2 12.3 NT 38.4 5.6 43.4 2.3 44.3 0 2.3 40.8 0 1.2

2012 386 7.8 15.8 7.8 7.8 7.5 NT 30.6 5.7 39.6 2.6 37.8 0 1.8 39.4 0 0.3

Drug name abbreviations are given in Table 1. *NT indicates that the antimicrobial was not tested in that year and/or source.

TABLE 3 | Example binary antimicrobial susceptibility testing dataset for six

isolates (transactions) and five antimicrobials (items) with resistance indicated as 1

and susceptibility as 0.

Isolate ID Antimicrobial

A B C D E

1 1 1 1 0 1

2 1 0 1 1 1

3 0 1 1 0 1

4 1 0 1 1 1

5 0 0 1 1 1

6 1 0 0 1 1

Support count 4 2 5 4 6

Support 0.67 0.33 0.83 0.67 1

The support count and support (prevalence of resistance) for each individual antimicrobial

is also given. Itemsets are combinations of items present in the transactions. For example,

the itemset [A,B,C] is in transaction 1.

of the consequent given the antecedent. Whereas, support is a
symmetric quality measure (the support of X→ Y is the same as
Y → X), confidence is asymmetric. In Table 3, the rule A → C
has a confidence of 0.75 but the rule C → A has a confidence of
0.6. The user-defined minimum confidence (minconf ) is used to
select reliable rules from all possible rules.

Frequent Itemset and Rule Generation
The discovery of association rules requires, first, frequent
itemset generation and, second, rule generation. The Apriori
algorithm (Agrawal et al., 1993; Hahsler et al., 2018) efficiently

finds frequent itemsets by pruning candidate itemsets based
on the minimum support. Since the support of an itemset
must be less than or equal to the support of its subsets,
the algorithm looks first at the smallest itemsets (with one
item) and eliminates any that do not meet the minimum
support requirement. Subsequently, all candidate itemsets that
include an infrequent item can be eliminated because they
will not meet the minimum support. This is illustrated in
Figure 1 using data from Table 3. If the minimum support is
0.4, then [B] is an infrequent itemset because its support is
0.33. The algorithm then generates possible two-item itemsets
and eliminates itemsets that include B because they must also
have a support less than or equal to 0.33. The supports of
the remaining two-item itemsets are calculated and compared
to the minimum support. This process continues until all
itemsets of a given size are determined to be infrequent or the
algorithm reaches the largest candidate itemset. This method
efficiently identifies the frequent itemsets without having to
calculate the support of each possible itemset (Agrawal et al.,
1993). In Figure 1, 16 of the 31 possible frequent itemsets have
been eliminated after examining the support of just five one-
item itemsets.

Rules are generated from the frequent itemsets, which
guarantees that the support of the rule is greater than or equal
to the minimum support. Frequent itemsets are partitioned into
two non-overlapping subsets, the antecedent and consequent.
Although the antecedent and consequent can both contain more
than one item (Tan et al., 2018), the “arules” package in R (version
3.4.3, R Core Team, 2017) restricts the consequent to just one
item (Hahsler et al., 2009). For example, itemset [A, C, E] can be
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FIGURE 1 | Frequent itemset generation from the Table 3 dataset using the

Apriori algorithm. Each candidate itemset is represented by a black circle. The

itemsets with a red slash are eliminated after examining the top row of

itemsets and comparing the support of each itemset to the minimum support

of 0.4. [B] has a support of 0.33 and therefore all of its supersets must have a

support less than or equal to 0.33. All remaining itemsets in the second row

are frequent with a support >0.4. Itemsets with a blue slash are eliminated

after calculating the support for three-item itemsets.

partitioned into rules [A, E] → C, [A, C] → E, and [C, E] → A.
Rules with a confidence smaller than the minimum confidence
are eliminated.

Implementation
Association rule mining of the NARMS data was implemented
in R using the package “arules” (Hahsler et al., 2018).
The minimum support and minimum confidence were both
set to 1/

(

Number of Isolates
)

in order to avoid excluding
antimicrobials with rare resistance (i.e., CIP). Rules including
at least two antimicrobials were extracted from each of
the 18 year-source datasets. Forty-six quality measures are
available in “arules” (Hahsler et al., 2018) for evaluating
rules (Table S1). Many quality measures are correlated and
will produce similar rankings of rules (Tan et al., 2018).
Therefore, principal component analysis (PCA) was used to
select a small number of quality measures that capture the
most variation in rule quality across the 46 quality measures
evaluated (Martínez-Ballesteros et al., 2014).

For each rule in the 18 year-source datasets, the 46 quality
measures were calculated; rules were deleted listwise if a measure
could not be calculated or had an infinite value. The function
“prcomp” in R (package “stats”) was used to calculate the
first four principal components (PC) in each dataset and the
five quality measures with the greatest loadings in each PC
were identified (Table S2). One quality measure with a high
loading in all or almost all datasets was selected from each PC,
resulting in four measures (confidence, lift, phi, ralambrodrainy)
that captured a large proportion of the information contained
in all the rule quality measures (Martínez-Ballesteros et al.,
2014). The distributions of these four quality measures within
each year-source dataset were examined (Figure 2) and cut-off
values for confidence, lift, phi and support were selected to
prune the number of rules in each dataset to 1,000 or fewer.

Ralambrodrainy measure was not used for pruning because the
distribution was narrow (Figure 2) and even a very small cut-
off (0.005) resulted in fewer than 100 rules in many datasets.
The pruned rule-sets are referred to as the best-rules and were
used to compare patterns of antimicrobial resistance across years
and sources.

Comparison of Rule-Sets
The best-rules from each year-source dataset were compared
with graphical and numerical methods. Temporal trends inMDR
patterns were analyzed with the rule overlap ratio and cumulative
rule stability. The rule overlap ratio (Dudek, 2010) gives the
proportion of rules shared between two rule-sets out of all rules
present in the rule-sets. Cumulative rule stability (CRS) (Dudek,
2010) averages the rule overlap over time for consecutive rule-
sets. Rules that are shared between two rule-sets are compared by
averaging the absolute difference in support or confidence of the
shared rules (modified support difference, modified confidence
difference) (Dudek, 2010).

rule_overlap (R1,R2) =
|R1 ∩ R2|

|R1 ∪ R2|
(1)

CRSi =

{

rule_overlap (Ri,Ri+1) , if i = 1
1
i

[

(i− 1)CRSi−1 + rule_overlap (Ri,Ri+1)
]

, if i > 1
i = year index

(2)

sup_diff =

∑

r∈R1∩R2

∣

∣sup (r,D1) − sup (r,D2)
∣

∣

|R1 ∩ R2|
(3)

conf _diff =

∑

r∈R1∩R2

∣

∣conf (r,D1) − conf (r,D2)
∣

∣

|R1 ∩ R2|
(4)

R1: rule-set 1 R2: rule-set 2 D1: dataset 1 D2: dataset 2 r: rule

Rules were decomposed into antimicrobial nodes and undirected
edges for graphical visualization with Gephi (Bastian et al., 2009).
For example, the rule [A, E] → C decomposes into nodes (A, E,
C) and undirected edges (A – C, E – C). Redundant edges were
removed, and edges were weighted by the number of times each
edge appeared in the best-ruleset. The nodes (antimicrobials)
were assigned groups based on antimicrobial classes (Table 1).
The modularity (Newman and Girvan, 2004) of each best-
ruleset was calculated using unweighted and weighted edges.
When nodes of the same class are connected more frequently
than would be expected by chance, the modularity is positive;
similarly, if nodes of different classes are connected more
frequently than expected by chance, the modularity is negative.
Graph density (Coleman and Moré, 1983) is the proportion of
edges present out of all possible edges and was calculated for each
year-source graph and subgraphs of only within-class edges (e.g.,
aminoglycoside – aminoglycoside) and only between-class edges
(e.g., aminoglycoside – macrolide). For a given node, the node
degree is the number of other nodes connected to it by edges.

False Discovery Rate
Some rules discovered with association rule mining may be
false discoveries that occur by chance and do not represent
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FIGURE 2 | Number of association rules and distribution of rule quality measures. Five rule quality measures were calculated: confidence (A), lift (B), phi (C),

ralambrodrainy (D), and support (E). Frequency polygons for each year-source dataset are shown R: retail; S: slaughter. The number of rules before (all rules) and after

(best rules) pruning with confidence >0.75, support >0.01, lift >2, and absolute value of phi >0.5 are shown in (F). Ralambrodrainy was not used for pruning rules

because a very small cut-off (>0.005) resulted in too few rules for analysis.

true associations. Megiddo and Srikant (1998) demonstrated a
resampling procedure to determine the statistical significance of
association rules and minimize false discoveries (type I errors).

We applied this procedure to determine the expected number
of false discoveries in the pruned best-rulesets. Briefly, 100 null
datasets were created for each year-source dataset by treating
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each antimicrobial resistance as an independent binomial
random variable with parameters n (number of transactions in
the year-source dataset) and p (prevalence of resistance in the
year-source dataset). Association rules were mined, the rules
were ranked in each null dataset by a given quality measure
(confidence, lift, and the absolute value of phi), and the quality
measure values at each rank were averaged across the 100 null
datasets. The expected number of false discoveries for a given
quality measure cut-off is the rank of the quality measure cut-
off in the ranked averages. This can be expressed as a false
discovery rate or percentage by dividing by the number of rules in
the NARMS datasets that meet the quality measure cut-off (and
multiplied by 100 if expressed as a percent). We also calculated
the rules’ P-values associated with each quality measure in a
similar manner. Association rules were mined from the null
datasets, the percentiles of confidence, lift and the absolute value
of phi were calculated for each null dataset and averaged across
the 100 null datasets. Association rules discovered in the NARMS
datasets that meet a given quality measure cut-off have a P-value
equal to or less than the percent of rules from the random null
datasets that meet the same quality measure cut-off.

RESULTS

Each year-source dataset generated between 7331 and 43070
rules (Figure 2F), with larger datasets resulting in more rules.
The distributions of rule quality measures (confidence, lift, phi,
support) were similar across the datasets (Figure 2). Most rules
had high confidence (Figure 2A), indicating that the antecedent
nearly perfectly predicted the consequent. The confidence cut-
off for pruning the rules was set at >0.75 to include rules with
a reliability of at least 75%. The support of most rules was
small (Figure 2E), which is consistent with the low frequency
of resistance to most antimicrobials (Table 2). To avoid pruning
interesting rules that involve rare resistances, the support cut-
off was >0.01. Lift compares the support of a rule in a dataset
to the support expected if the antecedent and consequent were
independent. A lift of 1 indicates that the antecedent and
consequent are independent; a lift <1 indicates a negative
association and a lift > 1 is a positive association. Only 3.5%
of rules across all datasets had a negative association between
the antecedent and consequent (lift <1). A cut-off of lift >2 was
chosen because it selects MDR patterns that occur at least twice
as often as expected under independence. The phi correlation
coefficient measures the strength of the association between the
antecedent and consequent of the rule. The cut-off of >0.5
selects rules with a moderate to strong positive association
between antimicrobial resistances. Pruning with confidence
>0.75, support >0.01, lift > 2, and phi >0.5 results in 179 to 849
best-rules in each dataset (Figure 2F).

The best-rule sets can be compared across years and sources
(retail vs. slaughter). A high rule overlap ratio indicates a high
degree of similarity between two datasets; in the context of AMR
it indicates that the same MDR patterns are found in two year-
source datasets. In general, approximately one quarter of the best-
rules in a given year were found in both the retail and slaughter
isolates (Figure 3B). There was significantly more variability in
rule overlap between consecutive years (Figure 3C). Between 36

and 75% of the best-rules from retail isolates overlapped with the
next year; the proportion of rules shared between consecutive
years in slaughter data varied from 90 to 25%. When the
proportion of rules shared is averaged across all previous years,
both the retail and slaughter datasets had∼50% rule overlap after
four years (Figure 3A).

The average difference in support of the best-rules in retail
and slaughter datasets ranged from 0.007 to 0.03 (Figure S1A),
similar to the average support difference between consecutive
years for both retail and slaughter data (Figure S1B). This
difference is 14 to 60% of the average best-rule support
(0.05). The average confidence difference for best-rules between
sources (Figure S1A) and consecutive years (Figure S1B) ranges
from ∼0.01 to 0.04, which is only 1 to 4% of the average
confidence (0.97).

If rules are decomposed into edges and nodes, with an
edge connecting each antimicrobial in the antecedent to the
consequent antimicrobial, then network diagnostics can be used
to evaluate the MDR patterns. Fifteen antimicrobial resistances
were evaluated in each year, with the exception of 2007 slaughter
isolates which were not tested against FIS. Graph density, the
proportion of the 105 possible edges (pairs of antimicrobial
resistances) that are found in each best-ruleset, ranged from
25 to 50% (Figure S2A). Out of the 15 possible within-
class resistance edges (connecting beta-lactams, aminoglycosides,
sulfonamides, or fluoroquinolones), nearly 75%were consistently
found in the best rules (Figure S2A). All 10 within-beta-lactam
resistance edges are typically identified with the best-rules with
an occasional edge between GEN and STR (Figures 4, 5). The
within-beta-lactam resistance edges occur repeatedly in the best-
rulesets (high edge weight in Figures 4, 5) and also usually have
the largest correlation coefficients (edge darkness in Figures 4, 5)
in each best-ruleset. Only∼20 to 40% of the 90 possible between-
class edges are found in a given year and source (Figure S2A).
Almost all of the between-class rules connect a beta-lactam to
TET, FIS, STR or GEN, with rare connections between FIS,
GEN, STR, and TET (Figures 4, 5). The between-class resistance
edges appear with varied frequency (edge weight) and correlation
coefficients (edge darkness) in each best-ruleset (Figures 4, 5) but
are always less frequent than the within-beta-lactam resistance
edges. Both the weighted and unweighted modularity of each
best-rule network are close to 0 (Figures S2B,C), indicating that
the edges are approximately randomly distributed among the
nodes (if node degree is kept constant).

The false discovery rate among the best-rulesets and the
expected rule P-values were calculated by creating 100 datasets
from each year and source, maintaining the prevalence of each
resistance but allowing each resistance to be an independent
random variable. The rank and distribution of rule quality
measures in the null datasets were used to determine the expected
false discovery rate and expected rule P-values, respectively,
at each quality measure value that could be used for pruning
rulesets. Rule confidence (i.e., conditional probability) is not a
useful quality measure for determining whether rules are true
associations or false discoveries because 12 to 20% of rules under
the null hypothesis of no association have a confidence >0.95
(Figure 6A). We used confidence >0.75 to prune each ruleset to
the best-ruleset; 16 to 26% of rules under the null hypothesis meet
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FIGURE 3 | Rule overlap and cumulative rule stability. Rule overlap is the proportion of rules shared between two datasets (the number of rules that are in both

datasets divided by the total number of rules within the datasets). When calculated for consecutive years, rule overlap is plotted on the earlier year. Cumulative rule

stability (A) averages the proportion of rules shared across all previous years. (B) is rule overlap between slaughter and retail isolates for a given year and (C) is rule

overlap between consecutive years, calculated separately for slaughter and retail isolates.

this cut-off.We also removed rules with lift≤2; 27 to 44% of rules
under the null hypothesis meet this cut-off. Lift >10 is required
to achieve a P-value of ≤0.05 (Figure 6C). The absolute value
of phi can be as small as 0.2 and still result in a P-value ≤0.05
(Figure 6B). Our best-rules had phi >0.5, which was associated
with an expected P-value of <0.01. Accounting for the number
of rules in the NARMS datasets that meet each of these quality-
measure cut-offs, the maximum expected false discovery rate
associated with confidence >0.75 is 11%, with lift >2 is 13%, and
with phi >0.5 is 0.4%. Therefore, the combination of confidence
>0.75, lift >2, and phi >0.5 that was used to create the best
rule-sets is expected to result in <1% false discoveries, under the
assumption of independent drug resistances.

DISCUSSION

The patterns of multidrug resistance in NARMS isolates have
been explored with several statistical techniques, including log-
linear models (Zawack et al., 2018), Bayesian networks (Zawack
et al., 2018), and Markov networks (Love et al., 2016, 2018).

Although other machine learning techniques (e.g., decision
trees, hierarchical clustering) have been applied to resistance
datasets (Coelho et al., 2013), association rule mining has
not been investigated as a method for identifying patterns
and trends of multiple antimicrobial resistances. Traditional
statistical techniques may be limited by the non-Gaussian and
sparse nature of AMR surveillance data; rule mining overcomes
these limitations because it does not make assumptions about
the data distribution. In addition, rule mining identifies
complex high-order associations (up to eight-way interactions
in this data, Table S3) because it searches the entire MDR
pattern space. In contrast, Markov networks examine pairwise
interactions (Love et al., 2016) and Bayesian networks identified
up to four-way interactions in the NARMS chicken E. coli
data (Zawack et al., 2018).

The Apriori algorithm can efficiently process datasets with
many isolates and tested antimicrobials. However, thousands
of associations can be identified from relatively small datasets
and must be appropriately pruned in order to find interesting
patterns that represent true associations in the data (Tan et al.,
2018). By implementing a quality measure selection pipeline
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FIGURE 4 | Decomposed rule graphs for Escherichia coli isolated from chicken carcasses at slaughter. The best-rules identified in each year (confidence >0.75,

support >0.01, lift >2, phi >0.5) were decomposed into nodes (antimicrobials) and edges connecting the antecedents to the consequent. Nodes are colored based

on antimicrobial class (bright green = beta-lactams; purple = aminoglycosides; yellow = sulfonamides; red = tetracycline; blue = fluoroquinolones; dark green =

phenicols; pink = macrolides). Node size is proportional to node degree (number of other connected nodes). Edge thickness is proportional to the number of rules

involving each pair of antimicrobials and edge darkness is proportional to the average phi for those rules.

(Martínez-Ballesteros et al., 2014) using PCA, we identified the
rule quality measures that had the greatest orthogonal variability
in the NARMS datasets. Confidence, lift, phi and support
measure distinct aspects of associations: conditional probability,
independence, correlation, and frequency, respectively. However,
they should be interpreted in tandem because individual

quality measures can be adversely affected by skewed resistance
distributions (Hahsler, 2015; Tan et al., 2018). The E. coli
isolated from chicken at slaughter and retail meats between
2004 and 2012 are infrequently resistant to many of the tested
antimicrobials (Table 2). This limits the utility of support as a
pruning quality measure and reduces the efficiency of the Apriori
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FIGURE 5 | Decomposed rule graphs for Escherichia coli isolated from chicken retail meat. The best-rules identified in each year (confidence >0.75, support >0.01,

lift >2, phi >0.5) were decomposed into nodes (antimicrobials) and edges connecting the antecedents to the consequent. Nodes are colored based on antimicrobial

class (bright green = beta-lactams; purple = aminoglycosides; yellow = sulfonamides; red = tetracycline; blue = fluoroquinolones; dark green = phenicols). Node

size is proportional to node degree (number of other connected nodes). Edge thickness is proportional to the number of rules involving each pair of antimicrobials and

edge darkness is proportional to the average phi for those rules.

algorithm for finding association rules (Agrawal et al., 1993; Tan
et al., 2018). When some resistances are rare and others are
frequent, rule confidence can be high even when the resistances
are independent (Tan et al., 2018). Hence a skewed resistance
distribution also impacts the ability to evaluate rules using
conditional probability. This is reflected in the poor performance

of confidence in the false discovery rate resampling procedure. By
pairing confidence and support with lift and phi, we were able to
identify patterns of antimicrobial resistance that were dependent
(lift and phi), common (support), and reliable (confidence).

The resampling procedure demonstrated that the expected
false discovery rate was <1% in the NARMS datasets when
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FIGURE 6 | Distribution of association rule quality measures under the null

hypothesis (H0) of no associations. The percent of rules under the null

hypothesis (H0) that exceed a given quality measure cut-off was calculated for

each year-source dataset and at 20 different cut-off values for confidence (A),

phi (B), and lift (C). Boxes are the interquartile ranges among the year-source

datasets; solid line is the median, whiskers extend up to 1.5 times the

interquartile range and any outliers are marked with points.

examining rules with confidence>0.75, lift>2, and phi>0.5; this
is specific to the tested datasets because rule quality measures can
be affected by changes in resistance prevalence and sample size
(e.g., phi is sensitive to scaling within the antecedent-consequent
contingency table) (Tan et al., 2004). Therefore, we are confident
that the patterns of antimicrobial resistance uncovered after
rule pruning likely represent true associations present in these
datasets. However, these associations may not be present in
other datasets and may not reflect the patterns of antimicrobial
resistance in the broader population of E. coli associated
with chicken. NARMS sampling strategies for slaughter and
processing plants changed in 2006 from combined random
(non-targeted) and targeted sampling to risk-based sampling
and then changed again in 2013 to random cecal samples
(National Antimicrobial Resistance Monitoring System, 2016b).
Retail samples have been randomly selected since 2002 although

not all states are represented in the retail sampling network
(National Antimicrobial Resistance Monitoring System, 2016b).
Hence the NARMS datasets used in this study are likely a biased
representation of all E. coli-contaminated chicken and latent
variables maymask or confound patterns of multidrug resistance.
This is supported by the significant over dispersion found in
antimicrobial resistance contingency tables from the same E. coli
isolates (Zawack et al., 2019).

The over dispersion and latent variables likely contribute
to the variable rule overlap and moderate cumulative rule
stability (Figure 3) in the NARMS datasets. If sufficient metadata
is published with isolate susceptibility results, then potential
confounding variables can be included in the association rules
and rule overlap may have greater potential for detecting true
temporal changes in MDR patterns. Since we used the best-
rulesets with a <1% false discovery rate to calculate rule overlap,
type II errors (false negatives) may also contribute to the
variability in overlap between consecutive years and the low
overlap between slaughter and retail. Relaxing the false discovery
rate will increase the power to find all significant associations at
the expense of having some false discoveries. The low rule overlap
between slaughter and retail isolates is not due to differences
in dataset size (Figure S3). The low rule overlap may be driven
by the associations between GEN—STR, TET—FIS, and FIS—
GEN, which are frequently present in retail isolate best-rules
and mostly absent in slaughter isolate best-rules (Figures 4, 5).
These edges are present in the slaughter rules before pruning and
often have a moderate phi (>0.2) but are lower than the lift and
confidence pruning cut-offs. Therefore, these rules may be false
negatives in the pruning procedure and adjusted cut-offs may
increase the rule overlap between slaughter and retail. The cause
of increased rule overlap between slaughter and retail in 2010
(Figure 3B; Figure S3) is uncertain.We are not aware of a change
in NARMS sampling strategy in 2010 that may have resulted
in greater similarity between the slaughter and retail sampled
populations (Karp et al., 2017). One possibility is an outbreak
of E. coli that originated in chicken carcasses, resulting in a high
prevalence of clonally-related isolates on retail chicken. However,
there was not a reported chicken-associated E. coli outbreak in
2010 (Centers for Disease Control and Prevention, 2015).

If the strength of a MDR pattern (caused by genetic linkage or
a common mechanism) does not change significantly over-time,
then the confidence of a MDR association rule should remain
relatively stable and the support of the rule may change over
time as the MDR pattern becomes more prevalent. Examining
differences in rule quality between the datasets demonstrates
that the best-rules have consistent reliability (Figure S1), with
very small changes in confidence year to year and between
slaughter and retail. However, the support of the best-rules
changes significantly (Figure S1) as a percentage of average
support. The large changes in rule support could reflect true
differences in the prevalence of MDR patterns year to year and
between slaughter and retail sources. More likely, high variance
of multidrug resistance patterns in the target population of E.
coli and relatively small sample sizes results in large variations
in MDR pattern prevalence in the datasets. The relatively small
changes in confidence suggest that the shared MDR patterns are
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not changing substantially in the target population. The overall
prevalence of MDR in E. coli has increased significantly over
the last 70 years (Tadesse et al., 2012); applying association rule
mining to surveillance data over a long time-periodmay elucidate
the emergence and spread of specific MDR patterns.

Multidrug resistance pattern stability is also supported by the
consistent resistance subnetworks of beta-lactams, tetracycline,
sulfisoxazole, and aminoglycosides (Figures 4, 5). Associations
between beta-lactam resistances have been identified from
NARMS chicken E. coli MIC data using Markov networks
(Love et al., 2016) and from binary resistance data using
Bayesian networks (Zawack et al., 2018). Resistance to AMP,
AMC, FOX, TIO, and AXO was one of the most common
MDR patterns found in chicken-associated E. coli in Canada
(MacKinnon et al., 2018). Resistance to multiple beta-lactams
is frequently mediated through cross-resistance (e.g., efflux
pumps or beta-lactamase production) but isolates may also
have multiple beta-lactam resistance genes (co-resistance) (King
et al., 2017). The relatively low number of edges and low-
weight of edges connected to AMP compared to the other
beta-lactams (Figures 4, 5) suggests that at least two different
mechanisms or beta-lactam resistance genes are present in
this population of E. coli because genes that confer resistance
against newer beta-lactams should also confer resistance to AMP.
For example, many E. coli may carry a broad-spectrum beta-
lactamase (e.g., TEM-1, SHV-1) that hydrolyzes penicillin and
ampicillin but not cephalosporins (FOX, TIO, AXO) and is
inhibited by clavulanic acid (AMC) (Paterson and Bonomo,
2005; Paterson and Doi, 2017). Other isolates may have AmpC
beta-lactamases, which confer resistance to almost all beta-
lactams and beta-lactamase inhibitors (Paterson and Bonomo,
2005; Paterson and Doi, 2017). The circulation of different beta-
lactam resistance genes is also supported by the higher prevalence
of resistance to AMP than resistance to other beta-lactams
(Table 2). The consistent beta-lactam edges in the slaughter and
retail rule networks suggest the continuous presence of beta-
lactam resistance genes in E. coli on chicken carcasses and
retail meats.

The relationships observed between beta-lactams,
aminoglycosides, sulfisoxazole and tetracycline resistances
could occur with multi-drug resistance efflux pumps (cross-
resistance), although few resistance pumps confer resistance to
all of those antimicrobial classes (Li, 2017). Resistance genes to
these drugs may be genetically linked if they are incorporated
into the same mobile genetic element or an association may
develop through the sequential or simultaneous use of different
antimicrobials (Chang et al., 2015). In Canada, distinct MDR
patterns involving one or more of TET, STR, and FIS, plus
either just AMP or all five beta-lactams, have been recorded in
chicken-associated E. coli (MacKinnon et al., 2018). Both human-
and animal-associated E. coli isolated in the U.S. between 1950
and 2002 also have MDR patterns containing TET, STR, and
FIS plus just AMP or AMP, AMC, and cephalosporins (Tadesse
et al., 2012). The association rules involving AMP and FIS,
TET, STR or GEN are relatively weak and infrequent compared
to the rules with cephalosporins and other antimicrobial
classes (Figures 4, 5). This suggests that the co-resistance

between AmpC or extended-spectrum beta-lactamases and other
antimicrobial class resistance genes may be more substantial
than co-resistance between beta-lactamase genes like TEM-1 and
other resistance genes.

Markov networks identified a subnetwork involving
aminoglycosides, sulfonamides, and tetracycline resistances
and pairwise associations between beta-lactam resistances and
these drug classes were revealed with small LASSO penalties
(Love et al., 2016). Bayesian networks revealed a similar pattern,
with ampicillin connecting a beta-lactam resistance network
to an aminoglycoside-sulfonamide-tetracycline resistance
network (Zawack et al., 2018). MDR patterns involving GEN,
FIS, STR, and/or TET (without beta-lactams) were identified
in Canadian chicken-associated Escherichia coli (MacKinnon
et al., 2018) and in older U.S. E. coli isolated from animals
and humans (Tadesse et al., 2012). The association rule
decomposed graphs do not contain a separate aminoglycoside-
sulfonamide-tetracycline resistance subnetwork but rather
connect FIS, GEN, STR and TET resistances individually
to the beta-lactam resistance subnetwork. Many individual
best-rules do contain those antimicrobials within the same
antecedent (Table S3), however the decomposed graphs only
connect each individual antecedent to the consequent in
order to reduce graph density. Since these drugs only appear
with beta-lactams in the best-rules, the prevalence of GEN-
STR-TET-FIS MDR patterns in other datasets (Tadesse et al.,
2012; MacKinnon et al., 2018) may reflect random chance
with high individual resistance prevalences rather than a
strong co-resistance.

In the United States, several antimicrobial classes
are approved for use in broiler chickens (Food Animal
Residual Avoidance and Depletion Program, 2018):
macrolides, aminoglycosides, aminocoumarins, orthosomycins,
polypeptides, bambermycins, tetracyclines, lincosamides,
sulfonamides, and streptogramins. Aminoglycosides and
macrolides are considered critically important for human
health, and lincosamides, sulfonamides, streptogramins, and
tetracyclines are highly important (World Health Organization,
2016). Orthosomycins, aminocoumarins, and bambermycins are
not currently used in human health (World Health Organization,
2016). Even though beta-lactams are not approved for use in
broilers, the association rules involving beta-lactam resistances
and sulfonamide, tetracycline and aminoglycoside resistances
demonstrate that the prevalence of beta-lactam resistance could
increase in chicken-associated E. coli through the use of other
approved drugs.

Association rule mining can be applied to any antimicrobial
susceptibility dataset with more than a few hundred isolates;
the smallest dataset in this analysis had 299 isolates (Table 2).
This technique is particularly useful when a large number
of antimicrobials are tested because the number of possible
MDR patterns increases exponentially with the number of
tested drugs. Association rule mining has been previously
applied to antimicrobial resistance as a means for detecting
infection outbreaks in hospitals (Ma et al., 2003; Tsymbal,
2005; Giannopoulou et al., 2007; Gerontini et al., 2011).
Rules for this task contain significant amounts of metadata
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on the hospital, clinical department, and patient with a
drug resistance or bacterial organism in the consequent.
These studies examined leverage (Giannopoulou et al., 2007;
Gerontini et al., 2011), confidence (Gerontini et al., 2011),
and expert opinion (Ma et al., 2003; Tsymbal, 2005) to
determine which rules were interesting and when outbreaks
may have occurred. In contrast, our approach focuses on
including only drug resistances in the rules in order to
detect MDR patterns. We used principal component analysis
to identify the rule quality measures that explain the largest
amount of variability in the rules and therefore we were
able to select the strongest, most interesting rules. The same
approach can be applied to clinical data to detect MDR
patterns in nosocomial or community infections. Metadata
associated with clinical isolates can be incorporated into
the MDR rules as either an antecedent or consequent to
identify local resistance trends or outbreaks within hospitals.
Recommendations for antimicrobial stewardship or infection
control could be developed from such association rules
(Ma et al., 2003; Giannopoulou et al., 2007).

In conclusion, association rule mining is an effective
tool for identifying patterns of multidrug resistance within
antimicrobial susceptibility testing data and evaluating the
statistical and biological significance of the patterns. Rule
quality measures used to sort and differentiate rules should
be tested using resampling procedures to minimize the false
discovery rate. Rule mining identified consistent multidrug
resistance patterns involving beta-lactams, sulfisoxazole,
tetracycline, gentamicin, and streptomycin in E. coli isolated
from chicken carcasses and meat between 2004 and 2012.
The generally low rule overlap suggests that over dispersion
or latent variables result in considerable variability in rule
composition. In contrast, the stable density and common
edges in the decomposed graphs imply that the underlying
associations between drug resistances in the chicken-
associated E. coli population did not change significantly
over time.
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