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Deep learning-based hologram 
generation using a white light 
source
Taesik Go1, Sangseung Lee2, Donghyun You2 ✉ & Sang Joon Lee1 ✉

Digital holographic microscopy enables the recording of sample holograms which contain 3D volumetric 
information. However, additional optical elements, such as partially or fully coherent light source and 
a pinhole, are required to induce diffraction and interference. Here, we present a deep neural network 
based on generative adversarial network (GAN) to perform image transformation from a defocused 
bright-field (BF) image acquired from a general white light source to a holographic image. Training 
image pairs of 11,050 for image conversion were gathered by using a hybrid BF and hologram imaging 
technique. The performance of the trained network was evaluated by comparing generated and ground 
truth holograms of microspheres and erythrocytes distributed in 3D. Holograms generated from BF 
images through the trained GAN showed enhanced image contrast with 3–5 times increased signal-
to-noise ratio compared to ground truth holograms and provided 3D positional information and light 
scattering patterns of the samples. The developed GAN-based method is a promising mean for dynamic 
analysis of microscale objects with providing detailed 3D positional information and monitoring 
biological samples precisely even though conventional BF microscopic setting is utilized.

Conventional bright-field (BF) microscopy using a white light source is a widespread imaging technique used in 
various areas, including industrial, biological, and medical fields. BF images have been commonly used to observe 
microscale objects, such as emulsions, microorganisms, and biological samples1–5. Detection or diagnostic sensi-
tivity is not high (usually less than 90% accuracy), and 3D monitoring of samples in a large volume is especially 
limited because BF images only provide two-dimensional (2D) amplitude information within the shallow depth 
of focus (DOF).

Digital holographic microscopy (DHM) is a powerful imaging technique that encrypts the 3D information of 
a test sample into a single shot of 2D interference patterns (i.e., hologram). DHM has a deep observation depth 
that can overcome the technical limitations of BF microscopy by using a coherent light source. Therefore, DHM 
has been used in various fields including accurate biological sample monitoring6–14, environmental monitor-
ing15–17, and particle or cell dynamic analysis18–20, because amplitude and phase information can be noninvasively 
obtained from the hologram without any labeling and mechanical scanning procedures. DHM systems with 
off-axis configuration can directly obtain phase information related to 3D morphological, mechanical, and bio-
chemical properties21. However, a complicated interferometric experimental setup, such as common-path and 
Mach-Zhender setups, is required in such systems. Digital in-line holographic microscopy (DIHM) has a rela-
tively simple optical setup, that is, it only requires a single beam path. DIHM has been widely used in investigating 
various microscale flows and 3D dynamic motions of particles or cells by extracting 3D positional information 
from numerically reconstructed holographic images22–25. Both types of DHM provide several valuable features. 
However, the holographic image can not be acquired with conventional BF imaging setting because partially 
coherent light source and a pinhole are at least required15–17.

Recently, deep learning has received considerable interest because of its usefulness and effectiveness in various 
research areas26. This artificial neural network is a multilayered one and has been successfully applied to vari-
ous fields where numerous data are available. Previous studies on DHM were incorporated with deep learning 
and addressed on various fields, including the enhancement of the spatial resolution of holographic images27,28, 
improvement of hologram reconstruction29–32, phase retrieval33, compensation of phase aberration34, noise 
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reduction in tomograms35, autofocusing and depth location prediction36,37, and classification and monitoring of 
various bio-samples12,17,38,39.

In the present study, a new deep learning-based framework is proposed to overcome the technical limitations 
of conventional BF microscopy (i.e., insufficient information about the test sample) and DHM (i.e., necessity of 
additional optical elements). Generative adversarial network (GAN)31,40,41 is applied to convert a BF image of a 
sample located at a certain depth into an equivalent holographic image of the sample. To the best of our knowl-
edge, there is no previous study for converting BF images to holographic images using other approaches including 
machine or deep learning based methods. The hybrid BF and hologram imaging technique was combined with 
a microfluidic device to gather the training and test sets of polystyrene microspheres and erythrocytes located at 
diverse depth positions (z). The quality of the generated hologram transformed from the BF image via GAN was 
examined by comparing the generated and ground truth holograms. As a result, the trained network was formed 
to effectively generate holograms with reduced background noise. After the image conversion through GAN, two 
parameters were extracted from the generated holograms to validate how useful this methodology is. The gener-
ated holograms demonstrate that the 3D positional information and light scattering patterns of microparticles, 
which cannot be obtained from original BF images, can be precisely obtained. Thus, it is possible to analyze test 
samples in a 3D volume in more detail, even with the use of a white light source.

Results and discussion
Training network.  The hybrid imaging system was used to simultaneously record BF images and the correspond-
ing holographic images42 [Fig. 1a]. The dichroic mirror only reflected green light and passed all other lights. The beam 
was divided into two beams for BF and hologram imaging. Only BF images were captured using the first high-speed 
CCD camera [Fig. 1b]. Holographic images were recorded by using the second high-speed CCD camera at the same 
frame rate used for recording BF images [Fig. 1c]. These two CCD cameras were connected to a delay generator to 
synchronizing their exposures for obtaining BF and corresponding hologram images at the same time. Suspensions of 
PS particles and erythrocytes were infused into a rectangular microchannel to gather numerous BF-hologram image 
pairs (n = 10,000 for PS particles, n = 1,050 for erythrocytes) that will be used for the training network [Fig. 1a]. The 
Reynolds number was maintained at 10−2 by adjusting the flow rate. The focal plane of the objective lens was adjusted 
using the z-axis translation stage of a microscope. Finally, lots of image pairs of microparticles located at various depth 
positions (z) were captured by using the simple microfluidic device.

Figure 1.  Hybrid BF and hologram imaging system. (a) Schematic of the experimental setup used in this study. 
The white light beam and green laser beam illuminated the test samples in a microchannel. The beam passing 
through the samples was magnified by an objective lens and tube lens. Dichroic mirror divided the beam into 
two separated beams. Only green light used for capturing holograms of microparticles reached the second 
CCD. The other light used for BF images of microparticles reached the first CCD. Defocused BF images (b) and 
corresponding holograms (c) of test samples were simultaneously recorded as training datasets by using the 
hybrid imaging system. Scale bars are 100 μm. The schematic was illustrated by the authors using SolidWorks 
software (Dassault Systèmes SolidWorks Corp., USA).
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A GAN was employed to transform a BF image into a holographic image. The GAN is composed of a generator and 
discriminator network [Fig. 2a]. In the generator, a variation network of the original multiscale CNNs43 was used to 
transform BF images into holographic images. These multiscale CNNs can learn the structures that contain multirange 
spatial dependencies44. A variation structure of a discriminator proposed by the previous research31 was used for the 
discriminator of the present GAN. The utilized GAN was trained up to 500,000 iterations [Fig. 2b].

Figure 2.  GAN structure and training process. (a) GAN architecture is composed of a generator and a 
discriminator. The numbers of feature maps or neurons are indicated on the left sides of the generator and 
discriminator. The sizes of feature maps are indicated on the right side of the discriminator. Different colors 
of arrows represent various types of connections. The merging of two blocks with different colors indicate the 
concatenation of feature maps. (b) Variation of L2 error of test data according to training iterations.
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Generated hologram quality.  The performance of the trained GAN was evaluated by checking the image 
transformation results of PS particles (BF images → holographic images). BF and holographic images have intrin-
sic differences. Conventional optical microscopy with an incoherent light source has a DOF. DOF depends on 
the magnification of an objective lens. Typically, DOF is very short and usually measured in units of microns. 
Therefore, the BF images of PS particles located out of DOF became defocused and blurred [Fig. 3a]. The light 
signal of PS particles in a BF image weakened, and image blurring increased with the depth position of particles 
(z) [Fig. 4a]. Unlike conventional BF microscopy, DHM can record particle signals as interference patterns with 
a large observable depth by using a coherent laser beam [Fig. 3b]. The concentric interference fringes were gen-
erated for PS spherical particles [Figs. 3b and 4b]. The interference fringe spacing increased with the depth of the 
PS particle [Fig. 4b]. The degree of defocusing in BF images is closely associated with the interference patterns in 
holographic images. In the training stage, the GAN statistically learned this relationship by using several training 
image pairs (104 for PS particles, 103 for erythrocytes) to effectively convert BF images into holographic images.

Figure 3a shows a schematic of the proposed deep learning-based image conversion approach. After the train-
ing stage, real-like fake holographic PS particle images were generated from arbitrary defocused BF images by 
using the trained GAN [Fig. 3a]. The GAN was tested for samples that had no overlapping with the training sets. 
Figures 3a,b show the full field of views (FOV, 600 × 600 pixels) of typical generated holographic image and its 
ground truth image, respectively. Compared with the ground truth holographic image in Fig. 3, the background 
noise was largely reduced in the generated image. This kind of noise frequently appears in coherent imaging 
techniques, including DHM. The quality of hologram images can be degraded by such background noise. Noises 
can be induced by many resources, such as dust particles on the beam path, imperfections of various surfaces, 
multiple reflections from optical components, or misalignment of optical elements, etc. Thus, unexpected noises 
are formed in interference fringe patterns and speckle grains35. To quantitatively examine the background noise, 
the noise level was defined as the standard deviation (S.D., σ) of intensities of background, except for the particle 
signal. The background noise level σ was diminished from 5.0–7.0 × 10−2 in the ground truth to 1.0–1.6 × 10−2 
in the generated hologram. The signal-to-noise ratios (SNRs) of the generated and ground truth holograms were 
also compared. In the present study, SNR is defined as follows45:

σ
=SNR

I
(1)

signal

where Isignal is the mean light intensity of holographic signals of particles and σ is the background noise level. 
Figure 3c shows variations of SNR values of generated hologram and ground truth hologram according to depth 
location (z) of particles. The range of SNR values of ground truth hologram was 5 to 10 [blue circles in Fig. 3c]. In 
contrast, the SNR values of generated hologram showed 3–5 times higher than those of ground truth hologram 
[red squares in Fig. 3c]. Since input BF images can not capture the signals induced by any imperfection out of 

Figure 3.  Performance of the deep learning-based image transformation. (a) GAN-based holographic image 
generated from a defocused BF image. (b) Ground truth holographic image of PS particles that correspond to 
the input BF image of PS particles. (c) Comparison of SNR values between the generated holographic image 
(output, GH) and the ground truth holographic image (GTH) as a function of the depth location (z) of particles. 
(d) Comparison of SNR values between the in-focus holograms reconstructed by the GHs and GTHs according 
to the depth location (z) of particles. Scale bars are 100 μm.
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DOF, fringe artifacts caused by any elements were not appeared in the holographic converted by trained GAN 
[Fig. 3a]. As a result, the background noise level σ and SNR were significantly improved in the generated holo-
graphic image. The improvement of SNR in the generated holograms gave rise to the increase of SNR of the 
reconstructed in-focus holograms from the generated holograms [Fig. 3d]. This noise reduction is especially 
important for the holographic imaging technique because various unwanted particles and features form interfer-
ence fringes on the image plane and superimpose on the hologram of the sample [Fig. 4b] and degrade recon-
structed image quality [Fig. 4c].

The generated and ground truth holograms of single particle at various depths were also compared to evaluate 
the generated hologram quality in more detail [Fig. 4]. As shown in Fig. 4b, the background noises of gener-
ated holograms were decreased, compared with those of ground truth holograms in all depths (z = 0–200 μm). 
However, the signal of input BF image became weak and unclear when the z positions of the particles were 
increased. Therefore, fine and high-order interference fringes, which are closely related to the quality of the hol-
ogram and the detailed 3D information of the particle, were not perfectly generated as z was increased. As a 
result, distorted hologram of particle was generated when z = 200 μm [Fig. 4b]. The numerically reconstructed 
holograms were also investigated [Fig. 4c and Supplementary Fig. S1]. The numerical reconstruction of the 2D 
holograms provides the in-focus images of particles in the full sample volume. The overall trends of in-focused 
images were the same with the raw hologram results Compared with the in-focus particle images reconstructed 
from the ground truth holograms, the in-focus images reconstructed from the generated holograms showed 
reduced background noise and increased SNR values [Fig. 3d and Supplementary Fig. S1]. Although SNR values 
were increased, the in-focus images reconstructed from the generated holograms exhibited less sharp bounda-
ries of particles, compared to the in-focus images reconstructed from the ground truth holograms due to loss of 
high-order interference fringes in the generated holograms [Fig. 4c and Supplementary Fig. S1]. The structural 
similarity (SSIM) values of generated holograms (GAN output images) against the ground truth holograms with 
respect to depth (z) were compared in order to quantitatively evaluate the performance of the trained GAN. SSIM 
index is defined as follows:

σ
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where IGH and IGTH are the mean intensity values of the images IGH and IGTH, respectively. σGH and σGTH are the 
standard deviation of IGH and IGTH, respectively and σGH,GTH is the covariance between the two images. C1 and C2 
are constants used to prevent division by a small denominator. Based on these definitions, Fig. 4d shows the var-
iations of SSIM values of raw holograms and in-focus images as a function of depth (z). As a result, SSIM values 
of raw holograms and in-focus images decreased with increasing depths (z). When particle depth position is 
greater than 150 μm, SSIM values are less than 0.5. These SSIM results also reflect the imperfect hologram gener-
ations of the particles located at deep depths.

3D positioning using generated holograms.  A single particle hologram encrypts the 3D volumetric 
field information. An important feature extracted from the hologram is the 3D positional information of individ-
ual particles from the amplitude image of the numerically reconstructed image. We can acquire the 3D positional 
information of individual particles and evaluate how precise this information can be obtained from the holo-
grams converted from BF images by the trained GAN.

Figure 4.  Comparison of particle holograms generated by the GAN and ground truth holograms as a function 
of depthwise location (z). BF images (input) of particles (a), generated (GH) and ground truth hologram (GTH) 
images of particles (b) positioned at three different particle depths (z) were compared. (c) Comparison of 
focused particle images from the generated and ground truth hologram images after numerical reconstruction. 
(d) Variations of the SSIM indexes of the raw holograms and focused images at various depth locations (z). An 
orange dotted line indicates the line passing through the center of each sample. Scale bars are 20 μm.

https://doi.org/10.1038/s41598-020-65716-4


6Scientific Reports |         (2020) 10:8977  | https://doi.org/10.1038/s41598-020-65716-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

To determine the in-plane (x, y) positions of particles, the numerically reconstructed images were projected 
onto a 2D single plane after a holographic image was numerically reconstructed [Fig. 5a,b]. In the projection 
image, the local intensity peaks appeared at the centers of the microparticles. Therefore, the in-plane (x, y) posi-
tions of particles were determined by locating the points of local maximum intensities in the projection image. 
Figures 5a,b show the projection images of the reconstructed particle images from a generated holographic image 
and the ground truth holographic image, respectively. The local intensity peaks of particles (blue circles) and 
unexpected signals (yellow circles) in the ground truth hologram are shown simultaneously in Fig. 5b. However, 
only particle signals (red circles) were detected in the projection image of the generated hologram due to the 
increase of SNR values [Fig. 5a]. The errors in the in-plane (x, y) position measurement from the real in-plane 
positions extracted from the ground truth hologram were analyzed. Figure 5c and Table 1 show the error varia-
tions according to the depth location (z) of particles. As the SSIM values decreased with the increase in particle 
location z [Fig. 4d], the in-plane position (x, y) errors and the corresponding RMS errors also gradually increased 
[Fig. 5c and Table 1]. The maximum RMS position error within this range of particle depth (0–200 μm) is 0.89 
μm. Considering the spatial resolution in the image plane (20×, 0.53 μm/pixel), the accuracy of in-plane posi-
tioning from the generated hologram is sufficiently high.

After extracting the in-plane positions of individual particles, segmented images were generated around the 
in-plane positions of each particle. The segmentation process was conducted for all the reconstructed images 
along the depth direction. The depth (z) positions of microparticles were determined by applying an autofocus 
function to the segmented images19,46,47. Autofocus functions quantify the degree of image sharpness (i.e., focus 
value) in the segmented area by scanning a series of segmented reconstructed images of each particle. As the 
autofocus function, we adopted the 2D image variance (VAR), which is defined as follows:

VAR z
N N

I x y z I z( ) 1 { ( , , ) ( )} ,
(3)x y x y,

2∑= −

Figure 5.  Acquisition of 3D positional information of microparticles. Projection images of the reconstructed 
particle images from (a) the generated holographic image (GH) and (b) the ground truth holographic 
image (GTH). (c) Variations in coplanar (x, y) position errors as a function of particle depth location (z). (d) 
Comparison of the depth positions (z) obtained from the generated and the ground truth holograms. (e) Spatial 
distributions of particles at two different z planes. (f) Spatial distribution of particles arbitrarily dispersed in a 
3D volume. Scale bars are 100 μm.

xerror (μm) yerror (μm)

Mean ± S.D. RMS error Mean ± S.D. RMS error

Depth (μm)

0 0.28 ± 0.38 0.41 0.22 ± 0.15 0.27

50 0.32 ± 0.37 0.47 0.30 ± 0.16 0.33

100 0.46 ± 0.31 0.55 0.39 ± 0.24 0.41

150 0.45 ± 0.44 0.62 0.44 ± 0.35 0.55

200 0.58 ± 0.68 0.89 0.54 ± 0.46 0.70

Table 1.  Measurement errors of in-plane (x, y) positions according to the depth location (z) of particles.
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where I and I  denote the intensity distribution and its average, respectively. Nx and Nx are the image pixel dimensions. 
The reconstruction depth, which has the maximum focus value, was determined as the actual z position of each par-
ticle [Supplementary Fig. S2]. The performance of the depth positioning in the generated holograms was evaluated by 
using a planar test target. 5 μL of a diluted particle suspension was placed between two flat plates. The planar test target 
comprises a bottom slide glass (26 × 76 × 1 mm3) and a top cover slip (24 × 24 × 0.15 mm3). Microparticles dis-
persed in the solution nearly constituted a monolayer. The test target was precisely positioned at four different depths 
(e.g., 50, 100, 150, and 200 μm) away from the focal plane by adjusting a z-axis translation stage with 1 μm precision. 
The uncertainty in the measurement of depth positions was examined by using a planar target19,22.

Figure 5e shows the spatial distributions of particles located between two planar glasses positioned at two 
different z planes. The particles are clearly positioned at the targeted locations. Table 2 summarizes the meas-
ured depth positions and their RMS errors acquired from the generated and ground truth holograms. Although 
the maximum image sharpness (focus value) of the generated holograms was smaller than that of the ground 
truth holograms, the peak reconstruction depth positions (i.e., particle depth positions) were maintained 
[Supplementary Fig. S2]. The S.D. in the measured depth positions, the corresponding RMS errors obtained from 
the generated holograms, and the difference in RMS errors between the generated hologram and ground truth 
hologram gradually increased with the depth z [Fig. 5d and Table 2], because high-order interference patterns 
were lost in the generated holograms and SSIM values steadily decreased with the increase of depth z [Fig. 4b,d]. 
Although the performance of depth position measurements using the generated holograms was poorer than 
that using the ground truth holograms, the depth locations (z) acquired from the generated holograms matched 
well with the actual target depth positions [Fig. 5d,e, and Table 2]. The spatial distribution of particles arbitrarily 
dispersed in a 3D volume was also acquired from the holograms converted from BF images of particles [Fig. 5f 
and Supplementary Fig. S3].

Light scattering pattern acquisition from generated hologram.  Light scattering characteristics 
can also be extracted from the captured holograms. The light scattering patterns contain the morphological and 
optical features, such as shape, size, refractive index distributions, and orientation with respect to the incident 
beam6,7,48–51. When a planar monochromatic beam propagates through a sample, the beam is refracted at the 
edges of the sample, because the sample behaves as an optical microlens. The beam is diverged or focused at cer-
tain spots. The locations of the focused points depend on the morphology and optical properties of the sample. 
Therefore, light scattering patterns can be used as a valuable feature to characterize individual samples.

The light scattering patterns were derived from the numerically reconstructed images of test samples at var-
ious depths (z). The intensity profiles along a line that passed through the center of each reconstructed sample 
image [orange dotted line in Fig. 4b] were stacked along the z-axis. Finally, the light intensity distribution maps of 
the samples in the x-z plane were obtained [Fig. 6].

The light scattering patterns of PS particle and erythrocytes were acquired from the generated and ground 
truth holograms and compared in Fig. 6. For PS particles, strong intensity peaks appeared at real foci (fr) in 
both light scattering patterns because the PS particle functioned as a spherical lens [Fig. 6a]. The light scattering 
patterns obtained from the generated hologram were almost similar to those obtained from the ground truth 
hologram; the SSIM value was 0.89.

The light scattering patterns of erythrocytes acquired from the generated and ground truth holograms are 
shown in Fig. 6b. The prolonged period of blood storage has altered the structural morphology of erythrocytes. 
During the 14-day storage of erythrocytes, two types of erythrocytes, namely discocyte (DC) and echinocyte 
(EC), were investigated. In the light scattering patterns of DC acquired from the generated and ground truth hol-
ograms, two bright spots are appeared at the real focus (fr) and virtual focus (fv) [Fig. 6b]. Virtual focus was gener-
ated because of the central dimpled shape of DC. Real focus was created because of the toroidal shape at its edge. 
Although the light intensity at the virtual focus acquired from the generated hologram was slightly decreased, the 
location of virtual focus was almost similar to that acquired from the generated hologram. As the preservation 
period increases, DC undergoes morphological change to EC. EC has an irregular shape with bumpy and spicular 
structures on its surface. As DC is changed to EC, its concavity at the center disappears with the increase in overall 
sphericity. As a result, a bright spot is formed only at the real focus in the light scattering pattern of EC [Fig. 6b]. 
The real focus of EC is shown in all light scattering patterns acquired from the two holograms. The SSIM values 
for erythrocytes are above 0.75. Although the SSIM values for erythrocytes are not as high as the value for PS 
particle, it has little effect on the extraction of important features for characterizing erythrocytes in the present 
study. The real focal lengths acquired from the generated holograms are 36.5 ± 5.7, 18.3 ± 4.9 μm for DC (n = 10), 
and EC (n = 10). The virtual focal length (fv,) of DC (n = 10) is 28.9 ± 4.8 μm. These values are in good agreement 
with our previous result6.

zGH (μm) zGTH (μm)

Mean ± S.D. RMS error Mean ± S.D. RMS error

Actual depth (μm)

50 49.39 ± 1.59 1.59 49.23 ± 0.59 0.95

100 101.47 ± 2.68 2.95 101.11 ± 1.75 2.00

150 154.46 ± 2.22 4.94 152.91 ± 3.62 2.93

200 206.00 ± 2.69 6.53 203.11 ± 2.07 3.70

Table 2.  Comparison of the depth positions and their RMS errors obtained from the generated and ground 
truth holograms of particles.
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The present GAN-based image conversion technique would extend the application of conventional BF (i.e., 
optical) microscopy to various fields, such as the analysis of particle dynamics and detection of abnormal cells. 
Several information of the hologram transformed from a BF image, which cannot be obtained from original BF 
microscopy, can be acquired. For example, the 3D positional information of particles and spatial distribution of 
particles in a 3D volume can be extracted from the converted hologram [Figs. 5e,f]. If the 3D positions of indi-
vidual samples were tracked as a function of time by applying a particle tracking velocimetry (PTV) algorithm, 
the 3D velocity field or 3D trajectories of test samples can also be acquired without the need of depthwise scan-
ning procedures18,22,24,25,42. The light scattering patterns extracted from the converted hologram make the precise 
prediction of the 3D positions of transparent microspheres and the orientations of transparent non-spherical 
particles48,49 as well as the accurate diagnosis of erythrocyte alterations due to long period of blood storage for 
transfusion and malaria with more than 95% precision, possible6,7,50,51. Although we extracted 3D positional 
information and light scattering pattern from the amplitude images of the numerically reconstructed images in 
this study, valuable biophysical features can be additionally extracted from the phase image acquired by training 
off-axis holograms or adopting phase retrieval algorithms21,52,53. In addition, a coherent or partially incoher-
ent light source and additional optical components are not necessary to generate holograms of particles, if the 
trained GAN is utilized. Therefore, the experimental setup for conventional DHM can be more inexpensive and 
simplified. In general, the trained network can generate holograms from which 3D particle distribution can be 
extracted [Fig. 3a and Supplementary Fig. S3]. However, the network might be difficult to generate holographic 
images effectively, when particles are overlapped too much [Supplementary Fig. S5]. The data diversity in the 
training data set may solve this problem by improving generalization ability and performance of the deep learning 
network.

We proposed and experimentally validated a GAN-based framework that can convert BF images into holo-
graphic ones and its usefulness. The GAN was trained with numerous BF and holographic image pairs acquired 
using the hybrid imaging system incorporated with a simple microfluidic device. It also learned the statistical 
image transformation. The performance of the developed GAN-based framework was demonstrated for PS par-
ticles and biological erythrocyte samples. The image conversion results were quantified using SNR and SSIM 
values. As a result, the hologram converted from a BF image using the trained GAN successfully provided the 
3D positional information and light scattering pattern. The proposed GAN-based methodology has two major 
advantages of (1) extracting valuable features from BF images for identification of particles in a volume and (2) 
creating holograms with a conventional BF imaging setting. Therefore, the technique could be applied to analyze 
the 3D dynamics of particles or cells and accurately detect or diagnose abnormal cells by using a general white 
light source.

Methods
Sample preparation.  Transparent spherical polystyrene (PS) microparticles with an average diameter of 
14.92 ± 0.03 μm were tested. The density of the polystyrene particle is ρ = 1.05 g/mL. The particles were mixed 
with NaCl solution, which had the same density as the PS particle. The volume fraction of PS particles was 1%. 
A 20× water immersion objective lens was utilized to record the magnified BF and hologram images of the PS 
particles.

Blood was extracted from male Sprague–Dawley rats (11 weeks old, 350–400 g) through abdominal aor-
tic puncture. The blood was initially collected in an ethylenediaminetetraacetic acid (EDTA) vacuum tube 

Figure 6.  Acquisition of light scattering patterns of microparticles. Light scattering patterns of (a) a PS particle 
and; (b) erythrocytes (DC: discocyte, EC: echinocyte) derived from the generated holograms (GHs) and the 
ground truth holograms (GTHs). fr and fv represent the real and virtual foci, respectively. Scale bars are 5 μm.
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(Vacutainer K3 EDTA, BD, USA). Then, citrate phosphate dextrose adenine-1 (CPDA-1, C4431, Sigma-Aldrich, 
USA) was added to the EDTA-treated blood at a 1:7 v/v ratio to prevent blood coagulation and variations in 
biophysical properties. The resultant mixture was stored in the dart at 4 °C for 2 weeks. For each experiment, 
3 µL of blood was collected from the blood solution. The collected blood sample was diluted with phosphate 
buffer saline (PBS) solution to a hematocrit of 1%. The condition of low volume fraction (1%) was tested in this 
study to minimize the unexpected noise caused by particle-to-particle interferences. A 60× water immersion 
objective lens was used to capture the magnified BF and hologram images of erythrocytes. All experimental pro-
tocols and procedures were approved by the Animal Care and Ethics Committee of Pohang University of Science 
and Technology (POSTECH), and all experiments were conducted in accordance with the approved guidelines 
(POSTECH-2019–0026). Each experiment was carried out at 25 °C within 30 min.

Suspensions of PS particles and erythrocytes were infused into a 100-mm long transparent rectangular micro-
channel (width: 500 µm, height: 50 µm, VictroCom, USA) to gather considerable number of BF-hologram image 
pairs that will be used for the training network [Fig. 1a]. The channel was made of borosilicate glass. The Reynolds 
number was maintained at 10−2 by adjusting the flow rate (approximately 0.2 µl/min). The focal plane of the 
objective lens was adjusted using the z-axis translation stage of a microscope. Finally, numerous BF images and 
corresponding holographic microparticle images located at various depth positions (z) were captured by using 
this simple microfluidic device.

Hybrid bright-field and holographic imaging system.  The hybrid imaging system was used to simul-
taneously record BF images and the corresponding holographic particle images42. Figure 1a shows the experimen-
tal setup of the hybrid BF-hologram imaging system. A halogen lamp (white beam) and a continuous Nd:Yag laser 
(λ = 532 nm, 60 mW, Crystal Laser, USA) were used as the light sources for BF and hologram imaging, respec-
tively. The laser beam was spatially filtered and collimated. The white and collimated laser beams illuminated the 
microparticles that flowed in the rectangular microchannel. Water immersion objective lenses (20×, 60×, Nikon, 
Japan) magnified the BF and holographic images of spherical particles and erythrocytes. The tube lens inside a 
microscope (Eclipse 50i, Nikon, Japan) made the beam less divergent. A dichroic mirror was located behind the 
tube lens. The mirror only reflected green light and passed all other lights. As a result, the beam was split into 
two beams for BF and hologram imaging. Only BF images were recorded using the first high-speed CCD camera 
(pco. 1200 hs, PCO, Germany) [Fig. 1b]. BF images were consecutively acquired at a frame rate of 10 fps with an 
exposure time of 1 ms, which correspond to the minimal value available for the present optical setup to clearly 
record the microparticle holograms without the blurring effect caused by particle motion. Holographic images 
were captured by using second high-speed CCD camera (FASTCAM Mini UX100, Photron, Japan) at the same 
frame rate used for recording BF images with an exposure time of 25 μs [Fig. 1c]. These two CCD cameras were 
connected to a delay generator to trig their exposures for obtaining BF and corresponding hologram images at the 
same time. The pixel resolution of the CCD cameras was 1280 × 1024 pixels. The spatial resolutions in the image 
plane of both imaging techniques were 0.53 μm/pixel (20×) and 0.18 μm/pixel (60×). Linear translation stages 
installed with a micrometer were attached to both of the CCD cameras to carefully adjust the distance between 
the tube lens and each CCD camera. These CCD cameras were located 215 mm away from the tube lens.

GAN for converting BF image to holographic image.  A GAN was implemented to convert a BF image 
into a holographic image in the present study. The adversarial training of GAN architectures are reported to gen-
erate more realistic ouput data, compared to the architecture without adversarial training40,43,44. The GAN is com-
posed of a generator and discriminator network as shown in Fig. 2a. In the generator, a variation network of the 
original multiscale CNNs43 was used to transform BF images into holographic images. Input images (I0, I1, I2, I3) 
with different pixel resolutions are provided to the generator, by interpolating the input BF image (I0) having the 
largest pixel size (nx × ny) to images (I1, I2, I3) with smaller pixel resolutions (nx × ny/22, nx × ny/24, nx × ny/28). By 
providing the input images with different pixel resolutions, the multiscale CNNs can learn structures containing 
multirange spatial dependencies44. Therefore, the multiscale CNNs are expected to be capable for learning map-
pings that contain multirange spatial dependencies such as interference patterns of particles. A variation structure 
of a discriminator proposed by the previous research31 was used for the discriminator of the present GAN. The 
discriminator extracted features of holographic images using CNNs and classified them by giving scores between 
0 to 1 in fully connected layers, where the values close to 0 and 1 indicate generated holograms and ground truth 
holograms, respectively.

Let G(I) and GT(I) be the generated and ground truth holograms from BF images (I), and let D(G(I)) and 
D(GT(I)) be the corresponding scores from the discriminator for the hologram images. Then, the generator loss 
is calculated as follows:

= +L MSE G I GT I BCE D G I( ( ), ( )) ( ( ( )), 1) (4)G

and the discriminator loss is expressed as follows:

= +L BCE D G I BCE D GT I( ( ( )), 0) ( ( ( )), 1) (5)D

where MSE and BCE correspond to the mean squared error and binary cross-entropy loss functions, which are 
calculated as follows:

∑= − ×MSE x y y x n n( , ) ( )/( )
(6)i j

n n

i j i j x y
,

,

, ,
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= − − − −BCE x y y x y x( , ) log( ) (1 )log(1 ) (7)

The generator was trained with an Adam optimizer54 to minimize generator loss with a learning rate of 4 × 
10−6. Furthermore, the discriminator was trained with a stochastic gradient descent method to minimize dis-
criminator loss with a learning rate of 2 × 10−2, momentum of 9 × 10−1, and weight decay of 5 × 10−5. The 
network was trained and tested by using a PC with a Nvidia GTX 1070 Ti GPU, a Core i7–5960K CPU running 
at 3.0 GHz, and 32 GB of RAM. The network was programmed by using Python (version 3.6.0) with the Pytorch 
library (version 1.0).

The network’s training dataset was made up of images of PS particles and erythrocytes that flow in a micro-
channel. A total of 10,000 image pairs of BF and holographic images of PS particles at depths (z) ranging from 0 
μm to 200 μm were used as training datasets. In addition, 1,050 image pairs of blood samples were also utilized 
for training. The erythrocytes tested in this study were located at 0 < z < 50. All the obtained image pairs show 
different particle distributions without overlapping one another. The pixel resolution of all images used for train-
ing was 800 × 800 pixels. Four pairs of BF and holographic images, which corresponds to the number of batches 
with 256 × 256 pixels, were randomly cropped from a random selection of image pairs from the training data sets 
in each iteration of training. During testing, images with a large size can be generated because the discriminator 
network that contains fully-connected layers is not used during testing. Test data sets consisted of 2,000 and 150 
image pairs for PS particles and erythrocytes, respectively. The utilized GAN was trained up to 500,000 iterations. 
L2 errors of test data, which are the square root of MSE, converged as the training iteration increased [Fig. 2b]. 
After the training stage, realistic fake holographic images were generated from arbitrary BF images by using the 
trained GAN. Compared to the multiscale CNNs, the GAN produced holograms more similar to the ground 
truth holograms [Supplementary Fig. S4].

Hologram reconstruction.  Diffraction occurs when a coherent laser beam irradiates a microparticle 
located in the pathway of the beam. The interference between the diffracted object wave and unaffected reference 
wave creates a microparticle hologram in the image plane [Fig. 1c].

Afterwards, the holographic images were numerically reconstructed by adopting the angular spectrum 
method along the depth direction (z)55. The complex wavefield at any plane perpendicular to the optical axis (z) 
can be expressed as follows:

Γ ξ η π
λ

λ λ=













− −













ξ η
− ( ) ( )z F F h x y iz f f( , , ) { ( , )}exp 2 1

(8)
1 2 2

where F and F−1 denote the fast Fourier transform and its inverse, respectively. (x, y) and (ξ, η) correspond to the 
spatial coordinates in the holographic and reconstructed image planes, respectively. fξ and fη represent the corre-
sponding spectral coordinates. Function h (x, y) represents the hologram at the image plane, z is the distance 
between the hologram and reconstruction planes, and λ is the wavelength of the laser beam. The convolution 
magnitude Γ ξ η z( , , )  was evaluated to obtain an amplitude image of the reconstructed image. A total of 301 
reconstructed images were generated from a single holographic image because the reconstruction volume cov-
ered from 0 μm to 300 μm along the z direction with intervals of 1 μm.
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