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Background: Homocysteine (Hcy) is a toxic amino acid and hyperhomocysteinemia 
(HHcy) was reported to be  associated with both cerebrovascular disease and 
neurodegenerative disease. Our aim was to assess the causal link between plasma Hcy 
level and cerebrovascular and neurodegenerative diseases through a Mendelian 
randomization (MR) study.

Methods: A two-sample MR study was performed to infer the causal link. We extracted 
the genetic variants (SNPs) associated with plasma Hcy level from a large genome-wide 
association study (GWAS) meta-analysis. The main MR analysis was performed using the 
inverse variance-weighted method. Additional analyses were further performed using 
MR-Egger intercept and Cochran’s Q statistic to detect the heterogeneity or pleiotropy 
of our findings.

Results: Thirteen Hcy-associated SNPs were selected as instrumental variables. The 
results showed evidence of a causal link between plasma Hcy level and ischemic stroke 
(IS) caused by small artery occlusion (SAS, OR = 1.329, 95% CI 1.047–1.612, p = 0.048). 
Meanwhile, there was no evidence of association between plasma Hcy level and other 
types of IS, transient ischemic attack (TIA), or neurodegenerative disease. The MR-Egger 
intercept test indicated no evidence of directional pleiotropy. Results of additional MR 
analysis indicated that blood pressure (BP) and type 2 diabetes mellitus (T2DM) serve as 
influencers in the association.

Conclusion: The MR study found a little causal link between plasma Hcy level and SAS. 
The link is likely to be influenced by other risk factors like BP and T2DM.

Keywords: Mendelian randomization, homocysteine, cerebrovascular disease, neurodegenerative disease, small 
artery occlusion, blood pressure, diabetes mellitus
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INTRODUCTION

Homocysteine (Hcy) is a sulfur-containing toxic amino acid 
that is harmful to the body or cells (Eikelboom et  al., 1999; 
Faraci and Lentz, 2004). Hcy has been shown to induce 
endothelial dysfunction by DNA damage, oxidative stress, 
and promotion of coagulation (Hankey and Eikelboom, 2001). 
In addition, hyperhomocysteinemia (HHcy) also adversely 
affects vascular smooth muscle cells, leading to their 
proliferation (Mujumdar et al., 2000). Therefore, the toxicity 
of Hcy is considered a cause of vascular alterations and 
atherosclerosis. Hcy has been regarded as a risk factor for 
cardiovascular disease since 1969 (McCully, 1969; Eikelboom 
et  al., 1999). However, lowering Hcy medications, including 
folate and B vitamin supplementation, remains limited as 
most clinical trials have shown conflicting results (Huang 
et  al., 2012). Although studies have reported that lowering 
Hcy may reduce the risk of stroke (Martí-Carvajal et  al., 
2017), the utilization of lowering Hcy medication is not 
well determined based on the subtypes of ischemic stroke 
(IS), as demonstrated by The Trial of Org 10,172  in Acute 
Stroke Treatment (TOAST), including large artery 
atherosclerosis (LAS), cardioembolism (CES), and small artery 
occlusion (SAS; Adams et  al., 1993).

In addition to cerebrovascular disease, HHcy was reported 
to be  associated with other neurological disorders, especially 
neurodegenerative disease (Mattson and Shea, 2003; Dubchenko 
et  al., 2020). Neurodegeneration is characterized by neuronal 
degeneration and apoptosis. Previous studies have reported the 
association of HHcy and Alzheimer’s disease (AD), Parkinson’s 
disease (PD), and amyotrophic lateral sclerosis (ALS; Seshadri 
et al., 2002; Wang and Fan, 2012; Fan et al., 2020). In addition, 
vascular origin was mentioned as a potential mechanism of 
neurodegeneration and demyelination (Kalaria et  al., 2012; 
Zivadinov et  al., 2012; Yamazaki and Kanekiyo, 2017). It is 
still unclear whether HHcy is the cause or merely a phenomenon 
accompanying cardiovascular disease.

Because of sampling errors, causal links between plasma 
Hcy level and risk of cerebrovascular or neurodegenerative 
disease cannot be  found by observational studies. Mendelian 
randomization (MR) is a powerful tool for analyzing the causality 
of exposure factors and certain disorder, which utilizes genetic 
variations (i.e., SNPs, single nucleotide polymorphisms) as 
instrumental variables (IVs; Lawlor et  al., 2008; Sekula et  al., 
2016). Thus, an MR study can overcome the limitations of 
observational studies such as confounding and reverse causation 
(Latvala and Ollikainen, 2016). Previous studies have investigated 
the causal link between Hcy and cardiovascular disease or 
AD, but few focused on the subtypes of IS or other 
neurodegenerative disorders (Casas et al., 2005; Larsson et al., 2017; 
Miao et  al., 2019).

The aim of our study was to evaluate the causal association 
between plasma Hcy level and cerebrovascular disease, including 
IS (LAS, CES, SAS, and nonsubtyped) and transient ischemic 
attack (TIA), or neurodegenerative disease, including MS, AD, 
PD, ALS, and frontotemporal dementia (FTD) through a 
two-sample MR study.

MATERIALS AND METHODS

Data Sources
All the genetic variants associated with plasma Hcy level were 
acquired from a large genome-wide association study (GWAS) 
meta-analysis with 44,147 subjects of European ancestry (van 
Meurs et  al., 2013). For the cerebrovascular disease dataset, 
we  obtained the corresponding genetic variants from the 
MEGASTROKE consortium (Malik et  al., 2018). Their dataset 
included 440,328 subjects and 34,217 cases, which could 
be  further divided into LAA (n  =  4,373), CE (n  =  7,193), 
small artery occlusion (SAO; n  =  5,386), and nonsubtyped 
cases (n = 17,265; Malik et al., 2018). We obtained corresponding 
genetic variants with TIA from the UK Biobank, including 
1,364 cases with TIA and 461,646 controls (Sudlow et  al., 
2015). For datasets of neurodegenerative disease, we  obtained 
the corresponding genetic variants from the International 
Multiple Sclerosis Genetics Consortium (IMSGC) including 
14,498 cases with MS and 24,091 controls [International Multiple 
Sclerosis Genetics Consortium (IMSGC) et  al., 2013], the 
International Genomics of Alzheimer’s Project including 21,982 
cases with AD and 41,944 controls (Kunkle et  al., 2019), the 
International Parkinson’s Disease Genomics Consortium 
including 33,674 cases with PD and 449,056 controls (Nalls 
et  al., 2019), the International Amyotrophic Lateral Sclerosis 
Genomics Consortium including 20,806 cases with ALS and 
59,804 controls (Nicolas et  al., 2018), and the International 
Frontotemporal Lobar Degeneration Collaboration including 
515 cases with FTD and 2,509 controls (Van Deerlin et  al., 
2010). The subjects from both exposure and outcome datasets 
included in our study were of European ancestry. Ethics approval 
was not required as it was a secondary analysis of previously 
published data.

Study Design
A two-sample MR study was performed to investigate  
the potential causal impact of plasma Hcy level on the risk 
of cerebrovascular and neurodegenerative diseases. The MR 
study is established by three major assumptions (Emdin et  al., 
2017; Figure  1). First, the IVs are directly associated with the 
exposure (plasma Hcy level) with genome-wide significance. 
Second, there is no link between the IVs and the confounding 
factors. Lastly, the IVs affect the outcome merely through  
exposure.

SNP Selection and Validation
We have selected genome-wide significant (p < 5 × 10−8) genetic 
variants (SNPs) associated with plasma Hcy level from a large 
GWAS meta-analysis as IVs (van Meurs et  al., 2013). There 
were 18 SNPs in total, after testing for linkage disequilibrium: 
5 SNPs (rs7422339, rs12134663, rs957140, rs12921383, and 
rs2851391) with r2 greater than 0.01  in the European samples 
of 1,000 Genomes were excluded and finally 13 SNPs remained 
(Supplementary Table S1). The 13 unique SNPs explained 
5.9% of the variation in plasma Hcy level (van Meurs et  al., 2013). 
Then, we  have assessed the F-statistic of the selected IVs that 
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was approximately 212.85, indicating strong instruments for 
our following MR study (Burgess et  al., 2011). If the specified 
SNP was not available in the outcome dataset, we  used a 
proxy SNP in linkage disequilibrium (r2 > 0.9) with the specified 
SNP. For the outcome dataset of TIA, MS, and FTD, there 
were no corresponding SNPs from the dataset, and thus, 
we  would select a proxy variant with the existence of high 
linkage disequilibrium for further MR analysis.

Statistical Analysis
MR analysis was conducted in R (version 4.0.2) by the 
TwoSampleMR package (Hemani et al., 2018). The main analysis 
was performed by random-effects inverse variance-weighted 
(IVW) analysis (Hemani et  al., 2018). We  also performed 
fixed-effects IVW analysis, maximum likelihood analysis, simple 
median analysis, MR-Egger analysis, weighted median analysis, 
simple mode analysis, and weighted mode analysis as additional 
analyses (Bowden et  al., 2015, 2016; Hartwig et  al., 2017). 
Then, sensitivity tests were conducted using the heterogeneity 
test, pleiotropy test, and leave-one-out sensitivity test. Cochran’s 
Q test was calculated to assess the degree of heterogeneity 
across the individual effect estimates derived from every genetic 
variant. The MR-Egger intercept test was conducted to assess 
the horizontal pleiotropy and a funnel plot was plotted to 
provide a visual inspection (Bowden et al., 2015). Leave-one-out 
sensitivity analysis was performed to measure if the pooled 
estimate is being disproportionately influenced by each genetic 
variant. We used a Bonferroni correction [corrected p = 0.05/1 
(traits considered)/10 (exposures)  =  0.005] to account for 
multiple comparisons.

In the leave-one-out analysis of SAS (Supplementary Figure S1),  
we  found six IVs (rs154657, rs7130284, rs234709, rs42648, 
rs1801222, and rs2275565) which had a greater impact on the 
result. In addition, by the forest plot (Supplementary Figure S2), 
we  found three potential risk SNPs (rs9369898, rs548987, and 
rs1801133) for SAS through the impact on plasma Hcy level. 

Therefore, we  performed an additional MR analysis for the 
three and seven SNPs (in addition to the six SNPs mentioned 
above) and SAS.

The other additional MR analysis was first performed to 
find the 13 SNPs which showed significant differences for the 
known risk factors of IS (here considered as potential pleiotropic 
SNPs), including body mass index (BMI; Hoffmann et  al., 
2018), years of schooling (Lee et al., 2018), numbers of moderate 
physical activity, alcohol consumption (Clarke et  al., 2017), 
current smoking, high-density lipoprotein cholesterol (HDL; 
Willer et  al., 2013), low-density lipoprotein cholesterol (LDL; 
Willer et al., 2013), total cholesterol (TC; Kettunen et al., 2016), 
triglycerides (TG; Willer et  al., 2013), pulse rate (PR), systolic 
blood pressure (SBP; Evangelou et  al., 2018), diastolic blood 
pressure (DBP; Evangelou et  al., 2018), atrial fibrillation (AF; 
Nielsen et  al., 2018), coronary heart disease (CHD; Nikpay 
et al., 2015), fasting blood glucose (FBG; Manning et al., 2012), 
and type 2 diabetes mellitus (T2DM; Bonàs-Guarch et  al., 
2018), respectively. Then we  excluded the potential pleiotropic 
SNPs we  found in the last step in each analysis, and the 
respective SNPs with no significant differences were included 
in the further additional MR analysis between plasma Hcy 
level and SAS. The methods of all additional MR analysis 
were random-effects IVW method.

RESULTS

Plasma Hcy Level Was Associated With 
Ischemic Stroke Caused by Small Artery 
Occlusion
For cerebrovascular disease, we have included 13 genetic variants 
in most studies in addition to TIA (10 SNPs in addition to 
rs7422339, rs7130284, and rs548987). The result of the main 
MR analysis is shown in Table  1 and Figure  2. We  found a 
causal link between plasma Hcy level and SAS (OR = 1.329, 95%  

FIGURE 1 | Design and main assumptions of our Mendelian randomization study. SNPs, single nucleotide polymorphisms; Hcy, homocysteine.
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CI 1.002–1.763, p  =  0.048) but no causal link on TIA 
(OR = 1.000, 95% CI 0.999–1.001, p = 0.858) or LAS (OR = 1.093, 
95% CI 0.878–1.312, p  =  0.424), CES (OR  =  0.920, 95% CI 
0.785–1.080, p  =  0.308), and nonsubtyped (OR  =  1.098, 95% 
CI 0.980–1.229, p  =  0.107). However, the causal link was not 
strong after multiple comparisons (corrected p  =  0.005).

In the sensitivity analysis (Supplementary Table S2), our 
result indicated strong heterogeneities of the genetic variants 
for SAS (p  =  0.011) and nonsubtyped IS (p  =  0.042). We  have 
not found any heterogeneities of plasma Hcy level and LAS 
(p  =  0.291), CES (p  =  0.301), and TIA (p  =  0.416). By leave-
one-out analysis (Supplementary Figure S1), we  found that 
six SNPs (rs154657, rs7130284, rs234709, rs42648, rs1801222, 
and rs2275565) may affect the link.

Through the MR-Egger analysis (Supplementary Table S2), 
there was no evidence of pleiotropy SAS (MR-Egger 
intercept  =  0.007, 95% CI 0.038–0.053, p  =  0.758). Also, there 
was no evidence of pleiotropy for LAS (MR-Egger 
intercept  =  0.001, 95% CI 0.034–0.037, p  =  0.953), CES 
(MR-Egger intercept = −0.020, 95% CI 0.043–0.003, p = 0.110), 
and nonsubtyped IS (MR-Egger intercept  =  −0.004, 95% CI 
−0.022 to 0.022, p  =  0.680) and TIA (MR-Egger 
intercept  =  0.0001, 95% CI −3.91  ×  10−5 to 2.65  ×  10−4, 
p  =  0.183).

As shown in Figure  3, the additional analysis indicated 
that a causal link between plasma Hcy level and SAS was 
observed using 3-SNPs (OR  =  1.849, 95% CI 1.364–2.506, 
p = 7.48 × 10−5) and 7-SNPs (OR = 1.774, 95% CI 1.426–2.206, 
p  =  2.59  ×  10−7). Moreover, the causal link was still strong 
after multiple comparisons by Bonferroni correction (corrected 
value of p for 3-SNPs: 0.017 and corrected value of p  
for 7-SNPs: 0.007). In the sensitivity analyses 
(Supplementary Table S2), there was no evidence of significant 
associations observed for both 3-SNPs (p  =  0.127) and 7-SNPs 
(p  =  0.224), and there was no evidence of pleiotropy for IS 
caused by SAS (3-SNPs: MR-Egger intercept  =  0.044, 95% CI 
0.002–0.086, p  =  0.291; 7-SNPs: MR-Egger intercept  =  0.012, 
95% CI −0.022 to 0.045, p  =  0.529). Leave-one-out analysis 

showed that the causal link between plasma Hcy level and 
SAS was not substantially driven by any individual SNP 
(Supplementary Figure S3).

To analyze the causal link between Hcy and SAS deeply, 
first, we  performed two-sample MR analysis of plasma Hcy 
level and the known risk factors for IS (including BMI, years 
of schooling, etc.), respectively, to find out the SNP with 
significant differences, which were considered as potential 
pleiotropic SNP (Supplementary Table S3). We  then excluded 
potential pleiotropic SNPs and included SNPs with no significant 
differences. The results indicated that after the multipotent 
SNPs were excluded, SBP (OR  =  1.218, 95% CI 0.685–1.750, 
p = 0.469), DBP (OR = 0.949, 95% CI 0.675–1.223, p = 0.706), 
and T2DM (OR  =  1.071, 95% CI 0.748–1.395, p  =  0.677) 
were potential influencers of the link between Hcy and SAS 
(Figure  4).

Plasma Hcy Level Was Not Associated 
With Neurodegenerative Disease
For neurodegenerative disease, 13 genetic variants were included 
in most studies in addition to MS (6 SNPs, namely rs2275565, 
rs548987, rs7130284, rs154657, rs22251468, and rs12780845) 
and FTD (6 SNPs, namely rs9369898, rs154657, rs42648, 
rs12780845, rs4660306, and rs7130284). The outcomes of the 
main MR analysis are shown in Table 2 and Figure 2. We have 
not identified a significant causal link between plasma Hcy 
level and MS (OR  =  1.154, 95% CI 0.888–1.500, p  =  0.283), 
AD (OR  =  1.081, 95% CI 0.960–1.217, p  =  0.198), PD 
(OR = 0.985, 95% CI 0.853–1.137, p = 0.837), ALS (OR = 1.085, 
95% CI 0.948–1.241, p  =  0.235), and FTD (OR  =  1.268, 95% 
CI 0.416–3.863, p  =  0.676). By forest plot (Supplementary 
Figure S2), we  neither have not found any SNP as a risk 
factor for neurodegenerative disease.

As shown in Supplementary Table S2, the sensitivity analysis 
indicated no heterogeneities among individual SNPs (MS: 
p  =  0.236; AD: p  =  0.857; PD: p  =  0.856; ALS: p  =  0.129; 
FTD: p  =  0.213), and there was no evidence of pleiotropy for 

TABLE 1 | Main MR results of the effect of Hcy on cerebrovascular disease.

SNP Nearby 
gene

Nonsubtyped IS LAA SAO CE TIA

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

rs1801133 MTHFR 1.02 (1.00–1.04) 0.352 1.00 (0.95–1.06) 0.945 1.09 (1.05–1.13) 8.37 × 10−6 1.00 (0.96–1.04) 0.928 1.00 (1.00–1.00) 0.930
rs2275565 MTR 1.01 (0.99–1.04) 0.211 1.02 (0.96–1.08) 0.508 1.00 (0.96–1.04) 0.990 1.05 (1.01–1.09) 0.018 NA NA
rs9369898 MUT 1.03 (1.01–1.05) 0.001 1.02 (0.97–1.07) 0.400 1.06 (1.02–1.09) 8.32 × 10−4 1.01 (0.98–1.05) 0.419 1.00 (1.00–1.00) 0.056
rs7130284 NOX4 1.02 (0.99–1.06) 0.237 1.00 (0.91–1.10) 0.941 1.02 (0.97–1.07) 0.483 0.99 (0.94–1.05) 0.839 NA NA
rs154657 DPEP1 1.01 (0.99–1.02) 0.604 1.06 (1.00–1.12) 0.043 0.98 (0.94–1.03) 0.381 1.00 (0.96–1.04) 0.894 1.00 (1.00–1.00) 0.230
rs234709 CBS 1.00 (0.98–1.02) 0.782 1.02 (0.96–1.07) 0.582 1.00 (0.96–1.04) 0.939 0.98 (0.94–1.02) 0.305 1.00 (1.00–1.00) 1.000
rs4660306 MMACHC 0.99 (0.97–1.01) 0.315 1.00 (0.95–1.05) 0.889 0.99 (0.96–1.04) 0.790 1.02 (0.98–1.05) 0.409 1.00 (1.00–1.00) 0.140
rs548987 SLC17A3 1.01 (0.98–1.03) 0.670 1.08 (1.01–1.17) 0.034 1.06 (1.01–1.11) 0.020 0.96 (0.91–1.01) 0.134 NA NA
rs42648 GTPB10 0.98 (0.97–1.00) 0.076 1.00 (0.95–1.05) 0.972 0.99 (0.95–1.02) 0.443 1.00 (0.97–1.04) 0.984 1.00 (1.00–1.00) 0.900
rs1801222 CUBN 1.02 (1.00–1.04) 0.051 1.01 (0.96–1.07) 0.628 1.04 (1.00–1.08) 0.031 1.03 (0.99–1.07) 0.667 1.00 (1.00–1.00) 0.430
rs2251468 HNF1A 1.01 (0.99–1.03) 0.423 1.01 (0.96–1.06) 0.728 0.97 (0.94–1.01) 0.120 1.01 (0.97–1.04) 0.682 1.00 (1.00–1.00) 0.840
rs838133 FUT2 0.99 (0.97–1.01) 0.398 0.96 (0.91–1.02) 0.180 0.95 (0.91–0.99) 0.022 1.03 (0.99–1.07) 0.147 1.00 (1.00–1.00) 0.260
rs12780845 CUBN 0.99 (0.97–1.01) 0.460 1.03 (0.98–1.09) 0.219 0.99 (0.96–1.03) 0.675 1.01 (0.97–1.05) 0.560 1.00 (1.00–1.00) 1.000

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidential interval; IS, ischemic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion;  
CE, cardioembolism; TIA, transient ischemic attack; NA, not applicable.
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the outcomes of neurodegenerative disease (MS: MR-Egger 
intercept  =  −0.0002, 95% CI −0.065 to 0.065, p  =  0.996; AD: 
MR-Egger intercept = −0.005, 95% CI −0.024 to 0.013, p = 0.593; 
PD: MR-Egger intercept  =  −0.016, 95% CI −0.038 to 0.007, 
p  =  0.206; ALS: MR-Egger intercept  =  −0.021, 95% CI −0.040 
to −0.002, p  =  0.053; FTD: MR-Egger intercept  =  0.014, 95% 
CI −0.188 to 0.217, p  =  0.897). The leave-one-out sensitivity 
analysis suggested that all MR analysis results for 
neurodegenerative disease were not driven dramatically by any 
single SNP (Supplementary Figure S1).

DISCUSSION

In our two-sample MR study, there was little evidence of the 
causal link between high plasma Hcy and high risk of SAS. 
However, after multiple comparisons, no statistically significant 
impact was found. Additional analysis showed strong evidence 
by both 3-SNP and 7-SNP methods. We  also found that SBP, 
DBP, and T2DM were potential influencers in the link between 
Hcy and SAS. For other types of IS, genetically higher plasma 
Hcy level was not associated with higher risk of LAS, CES, 
and nonsubtyped. In addition, our results showed no causal 
links between plasma Hcy level and neurodegenerative disease.

Previous studies have reported the link between HHcy and 
atherosclerotic vascular disease and neurodegenerative disease 
(Hankey and Eikelboom, 2001; Morris, 2003; Zhang et  al., 
2018). Some studies demonstrated that Hcy contributed to 
endothelial dysfunction by oxidative stress, DNA damage, and 
apoptosis (Currò et al., 2014). Hcy could induce an inflammatory 
environment by upregulating inflammatory factors, including 

C-reactive protein and intracellular adhesion molecule-1 (Durga 
et  al., 2005). Because of the high susceptibility to disease of 
cerebral small vessels, the harmful effect of Hcy can be  more 
obvious (Wardlaw et  al., 2019).

Epidemiologic observational studies have demonstrated Hcy 
as a risk factor for cardiovascular disease. A meta-analysis 
including 10 studies detected a significant dose–response 
association of Hcy with the risk of IS (Wu et al., 2020). Previous 
studies also reported that HHcy was associated with microbleeds 
and leukoaraiosis (Feng et  al., 2013; Yoo et  al., 2020). By 
profiling the genetic variant MTHFR C677T among IS with 
different origins, Rutten-Jacobs et  al. (2016) reported that 
MTHFR C677T was associated with lacune and higher white 
hyperintensity, but not LAS or CES, which partly explained 
the uncertainty about the efficacy of lowering Hcy treatment 
for stroke patients. A meta-analysis including 13 case–control 
studies of Chinese patients reported that all subtypes of IS 
had higher plasma Hcy than healthy controls (Zhang et  al., 
2020). Previous MR studies have reported the association 
between Hcy and cardiovascular disease. Casas et  al. found a 
causal link between Hcy and IS by profiling MTHFR C677T 
polymorphism (Casas et  al., 2005). MTHFR gene mutations 
were associated with lacunes and cerebral atrophy, too (Cao 
et  al., 2020). An MR study investigating the level of Hcy, 
folate, and B vitamins and IS or CHD reported a similar 
result (Larsson et al., 2019). Our main analysis had a consistent 
result. A possible mechanism of the link between Hcy and 
SAS was the small vessels’ higher sensitivity to stimulus like 
high pressure and oxidative stress (Wardlaw et  al., 2019). In 
addition, HHcy was associated with endothelial dysfunction, 
thus leading to blood–brain barrier (BBB) dysfunction and 

FIGURE 2 | Mendelian randomization analysis of the association between plasma Hcy level and cerebrovascular and neurodegenerative diseases. OR, odds ratio; 
CI, confidential interval; IS, ischemic stroke; LAS, large artery atherosclerosis stroke; CES, cardioembolism stroke; SAS, small artery occlusion stroke; TIA, transient 
ischemic attack; MS, multiple sclerosis; AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia.
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even disruption (Nam et  al., 2019). The disruption of the BBB 
and chronic hypoperfusion finally cause the development of 
white matter hyperintensity, cerebral microbleeds, and enlarged 
perivascular space (Nam et  al., 2019). We  found that, after 
multiple comparisons, the effect was not strong. But through 
an additional analysis using 3-SNP and 7-SNP methods, even 
after the correction, the effect was still strong. Thus, some 
candidate risk genes, like MTHFR, which provided a novel 
monogenic cause of SAS, still require further investigation, 
and the mechanism needs to be  further clarified.

Another main concern is the use of lowering Hcy medication. 
HHcy was relatively common in atherosclerotic cardiovascular 
disease patients. A meta-analysis demonstrated a linear inverse 
link between dietary intake of Hcy metabolism-related  
B vitamins (Chen et  al., 2020). However, the rate of use of 
folate or B vitamin supplementation for lowering Hcy was 

not as high as expected partly due to the controversial results 
of previous clinical trials. The VITAmins TO Prevent Stroke 
(VITATOPS) trial indicated that B vitamin supplementation 
was a protective factor for SAS but not for other subtypes 
(VITATOPS Trial Study Group, 2010), and a substudy of 
VITATOPS showed that a 2-year B vitamin medication could 
significantly reduce the volume of white matter hyperintensities 
(Cavalieri et  al., 2012). Besides, the China Stroke Primary 
Prevention Trial concluded that folic acid supplementation 
could significantly reduce the risk of first stroke among subjects 
with hypertension (Huo et al., 2015). Therefore, lowering Hcy 
treatment may benefit individuals with specific origins of 
cardiovascular disease. For neurodegeneration, most clinical 
trials obtained negative results of lowering Hcy treatment 
(Chen et  al., 2016; Kwok et  al., 2020). Here, we  performed 
an additional analysis by excluding the potential pleiotropic 

FIGURE 3 | Mendelian randomization analysis of plasma Hcy level on the risk of ischemic stroke caused by small artery occlusion. OR, odds ratio; CI, confidential 
interval; MR, Mendelian randomization; SNPs, single nucleotide polymorphisms; IVW, inverse variance-weighted. 3-SNPs: rs1801133, rs9369898, and rs548987. 
7-SNPs: rs1801133, rs9369898, rs548987, rs4660306, rs2251468, rs838133, and rs12780845. 13-SNPs: rs1801133, rs9369898, rs548987, rs4660306, 
rs2251468, rs838133, rs12780845, rs2275565, rs7130284, rs154657, rs234709, rs42648, and rs1801222.
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SNPs, and our results indicated that the link between genetically 
high Hcy and SAS could be  influenced by the multipotent 
capacity of the Hcy-related genetic variants, particularly by 
the effect on blood pressure and T2DM for the first time 
by the MR method. The effect may originate from both 
horizontal and vertical pleiotropy of the genetic variants. 
Perhaps the genetic variants associated with Hcy influence 
blood pressure and T2DM or Hcy affects the risk of SAS 
through blood pressure and T2DM. This effect can affect the 
occurrence of SAS and the therapeutic efficacy of lowering 
Hcy. SAS, T2DM, and hypertension all show small vessel 
lesions and the long-term metabolic disturbance is associated 
with dysfunction of the endothelium and activation and 
irritation of the inflammatory environment, which were potential 
mechanisms of SAS. Therefore, lowering Hcy treatments could 
be considered for subjects with HHcy and metabolic syndrome 
including hypertension and T2DM. Moreover, clinical trials 
will focus on the diversity and accuracy of lowering Hcy 
treatment and find out the population who benefit from it.

In addition to the adverse effect on vasculature, previous 
studies have shown that HHcy was associated with 
neurodegeneration, so we  tried to find the link between 
Hcy and neurodegeneration. The toxicity of Hcy on neurons 
may contribute to the accumulation of β-amyloid, calcium 

influx, and apoptosis of neurons, making subjects more 
prone to develop dementia (Obeid and Herrmann, 2006). 
Despite several studies reporting the links between Hcy and 
neurodegenerative disease (Ostrakhovitch and Tabibzadeh, 
2019), we  have not found any evidence of the link between 
Hcy and AD from our results, which was consistent with 
a previous MR study (Larsson et  al., 2017). We  also found 
no causal link between Hcy and other neurodegenerative 
disease, including PD, ALS, MS, and FTD. Therefore, the 
common pathogenesis of SAS and dementia remains to 
be  validated and investigated.

Our MR study still has some limitations. First of all, one 
major limitation of MR is the bias because of pleiotropy, 
indicating one genetic variant influences various phenotypes. 
Moreover, we  can hardly exclude that all the SNPs in our 
study probably had an impact on the risk of cerebrovascular 
or neurodegenerative disease through other mechanisms except 
for influencing plasma Hcy level. Despite that we  have not 
found any evidence of pleiotropy in the MR-Egger intercept 
analysis, this result may be  hindered by a relatively low 
number of SNPs, and a low number of SNPs may overestimate 
the effect of exposure on the outcome. Therefore, more SNPs 
associated with plasma Hcy level and exposures including IS 
need to be  identified in studies with a larger sample size 

FIGURE 4 | Mendelian randomization analysis of plasma Hcy level on the risk of ischemic stroke caused by small artery occlusion after exclusion for the SNPs with 
significant differences of the known risk factors of ischemic stroke. SNPs, single nucleotide polymorphisms; BMI, body mass index; HDL, high-density lipoprotein 
cholesterol; LDL, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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with higher resolution. Besides, some risk factors for SAS, 
including hypertension, dyslipidemia, diabetes mellitus, 
smoking, and obesity, are risk factors for other subtypes of 
stroke as well. Thus, such risk factors may partially influence 
plasma Hcy level or contribute to the effect of Hcy on SAS 
via other mechanisms. Despite having excluded the SNPs 
with such properties in an additional analysis, fewer SNPs 
were included and a multivariable MR analysis may present 
a more meaningful suggestion. Finally, our MR study was 
originated from subjects with European ancestry, so population 
stratification inevitably existed. As a result, the conclusion 
is not supposed to be  generalized to other ethnicities around 
the globe.

CONCLUSION

Through a two-sample MR study, we  found that there was 
a causal link between plasma Hcy level and SAS. Another 
additional analysis indicated that SBP, DBP, and T2DM serve 
as influencers in this association. However, no causal links 
were identified between Hcy and other subtypes of IS, TIA, 
or neurodegenerative disease. For the prevention of IS, 
patients with T2DM or hypertension may benefit more from 
lowering Hcy treatment. Revealing the underlying common 
pathways of HHcy, hypertension, T2DM, and SAS would 
be  of importance.
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TABLE 2 | Main MR results of the effect of Hcy on neurodegenerative disease.

SNP Nearby 
gene

MS† AD PD ALS FTD‡

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

rs1801133 MTHFR NA NA 1.01 (0.98–1.04) 0.352 1.01 (0.97–1.04) 0.698 1.02 (0.99–1.05) 0.123 NA NA
rs2275565 MTR 0.96 (0.92–1.00) 0.059 1.00 (0.97–1.04) 0.970 1.01 (0.97–1.05) 0.591 0.98 (0.95–1.01) 0.165 NA NA
rs9369898 MUT NA NA 1.02 (0.99–1.05) 0.260 1.00 (0.96–1.03) 0.882 1.00 (0.98–1.03) 0.767 0.94 (0.82–1.08) 0.356
rs7130284 NOX4 0.98 (0.92–1.04) 0.528 0.97 (0.92–1.02) 0.269 0.97 (0.89–1.06) 0.511 0.96 (0.92–1.02) 0.176 1.25 (0.96–1.64) 0.099
rs154657 DPEP1 1.01 (0.98–1.04) 0.616 1.01 (0.98–1.04) 0.550 1.00 (0.97–1.04) 0.987 1.02 (0.99–1.04) 0.263 1.13 (0.99–1.29) 0.080
rs234709 CBS NA NA 1.00 (0.97–1.03) 0.944 1.01 (0.97–1.05) 0.730 1.00 (0.98–1.03) 0.837 NA NA
rs4660306 MMACHC NA NA 1.01 (0.98–1.04) 0.394 1.02 (0.98–1.06) 0.253 1.02 (1.00–1.05) 0.103 1.04 (0.90–1.20) 0.588
rs548987 SLC17A3 1.04 (0.99–1.09) 0.088 0.98 (0.94–1.02) 0.325 1.01 (0.95–1.06) 0.846 1.03 (0.99–1.07) 0.212 NA NA
rs42648 GTPB10 NA NA 0.99 (0.96–1.02) 0.390 0.98 (0.95–1.02) 0.343 0.98 (0.95–1.00) 0.087 1.03 (0.90–1.18) 0.710
rs1801222 CUBN NA NA 1.00 (0.97–1.03) 0.895 1.01 (0.97–1.05) 0.587 1.02 (0.99–1.05) 0.183 NA NA
rs2251468 HNF1A 1.00 (0.96–1.03) 0.870 1.01 (0.98–1.04) 0.606 0.99 (0.96–1.02) 0.526 0.98 (0.95–1.01) 0.189 NA NA
rs838133 FUT2 NA NA 0.98 (0.95–1.01) 0.196 1.02 (0.98–1.06) 0.301 1.02 (0.99–1.05) 0.266 NA NA
rs12780845 CUBN 1.02 (0.98–1.05) 0.303 0.99 (0.96–1.02) 0.377 0.99 (0.96–1.03) 0.765 1.01 (0.98–1.04) 0.616 1.04 (0.90–1.20) 0.595

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidential interval; MS, multiple sclerosis; AD, Alzheimer’s disease; PD, Parkinson’s disease; ALS, amyotrophic 
lateral sclerosis; FTD, frontotemporal dementia; NA, not applicable. 
†Included SNPs: rs2275565 (proxy: rs10158822), rs7130284 (proxy: rs11018628), rs154657 (proxy: rs460879), rs548987 (proxy: rs501220), rs2251468 (proxy: rs2244608), and 
rs12780845 (proxy: rs10490958).
‡Included SNPs: rs9369898 (proxy: rs2501968), rs7130284 (proxy: rs10501705), rs154657 (proxy: rs460879), rs4660306 (proxy: rs2991966), rs42648 (proxy: rs42659), and 
rs12780845 (proxy: rs7095324).
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Clarke et  al. (2017), Nikpay et  al. (2015), the International 
Consortium of Blood Pressure, and Nielsen et  al. (2018) for 
providing statistical data.
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Supplementary Figure S1 | Leave-one-out analysis of the effect of plasma Hcy 
level on cerebrovascular and neurodegenerative disease. IS, ischemic stroke; 
LAS, large artery atherosclerosis stroke; CES, cardio-embolism stroke; SAS, 
small artery occlusion stroke; TIA, transient ischemic attack; MS, multiple 
sclerosis; AD, Alzheimer’s Disease; PD, Parkinson’s disease; ALS, amyotrophic 
lateral sclerosis; FTD, frontotemporal dementia. The dot and the bar indicated the 
estimates and 95% CI when the specific SNP is removed.

Supplementary Figure S2 | Forest plot of the effect of plasma Hcy level on 
cerebrovascular and neurodegenerative disease. IS, ischemic stroke; LAS, large 
artery atherosclerosis stroke; CES, cardio-embolism stroke; SAS, small artery 
occlusion stroke; TIA, transient ischemic attack; MS, multiple sclerosis; AD, 
Alzheimer’s Disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; 
FTD, frontotemporal dementia. The dot and the bar indicated the causal estimate 
of plasma Hcy level on risk of cerebrovascular and neurodegenerative disease.

Supplementary Figure S3 | Scatter plot and leave-one-out analysis of the effect 
of plasma Hcy level on ischemic stroke caused by small artery occlusion. MR, 
Mendelian randomization; SNPs, single nucleotide polymorphisms; Hcy, 
homocysteine; SAS, small artery occlusion stroke. (A) Scatter plot: each black dot 
indicated a SNP, plotted by the estimate of SNP on plasma Hcy level and the 
estimate of SNP on the risk of ischemic stroke caused by small artery occlusion 
with standard error bars. (B) Leave-one-out analysis: the dot and the bar indicated 
the estimates and 95% CI when the specific SNP is removed. 3-SNPs: rs1801133, 
rs9369898, and rs548987. 7-SNPs: rs1801133, rs9369898, rs548987, 
rs4660306, rs2251468, rs838133, and rs12780845. 13-SNPs: rs1801133, 
rs9369898, rs548987, rs4660306, rs2251468, rs838133, rs12780845, 
rs2275565, rs7130284, rs154657, rs234709, rs42648, and rs1801222.
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