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Abstract

Recent genome-wide association studies have identified 78 loci associated with Parkinson’s disease susceptibility but the
underlying mechanisms remain largely unclear. To identify likely causal variants for disease risk, we fine-mapped these
Parkinson’s-associated loci using four different fine-mapping methods. We then integrated multi-assay cell type–specific
epigenomic profiles to pinpoint the likely mechanism of action of each variant, allowing us to identify Consensus single
nucleotide polymorphism (SNPs) that disrupt LRRK2 and FCGR2A regulatory elements in microglia, an MBNL2 enhancer in
oligodendrocytes, and a DYRK1A enhancer in neurons. This genome-wide functional fine-mapping investigation of
Parkinson’s disease substantially advances our understanding of the causal mechanisms underlying this complex disease
while avoiding focus on spurious, non-causal mechanisms. Together, these results provide a robust, comprehensive list of
the likely causal variants, genes and cell-types underlying Parkinson’s disease risk as demonstrated by consistently greater
enrichment of our fine-mapped SNPs relative to lead GWAS SNPs across independent functional impact annotations. In
addition, our approach prioritized an average of 3/85 variants per locus as putatively causal, making downstream
experimental studies both more tractable and more likely to yield disease-relevant, actionable results. Large-scale studies
comparing individuals with Parkinson’s disease to age-matched controls have identified many regions of the genome
associated with the disease. However, there is widespread correlation between different parts of the genome, making it
difficult to tell which genetic variants cause Parkinson’s and which are simply co-inherited with causal variants. We
therefore applied a suite of statistical models to identify the most likely causal genetic variants (i.e. fine-mapping). We then
linked these genetic variants with epigenomic and gene expression signatures across a wide variety of tissues and cell types
to identify how these variants cause disease. Therefore, this study provides a comprehensive and robust list of cellular and
molecular mechanisms that may serve as targets in the development of more effective Parkinson’s therapeutics.
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Introduction
Parkinson’s disease (PD) is the second most prevalent neurode-
generative disease, occurring in 2–3% of individuals 65 years of
age or older (1). Many efforts have been made to better under-
stand the biological mechanisms underpinning this disease in
hopes of developing more effective treatments. Genome-wide
association studies (GWAS) have offered insights into the molec-
ular etiology of this debilitating disease (2–4). The largest PD
GWAS to date recently identified 90 independent PD-associated
variants distributed across 78 loci (3), more than doubling the
number of previously known PD-risk signals (2). However, for
any given locus, the lead or tag single nucleotide polymorphism
(SNP) may merely be correlated with the causal SNP(s) due to
linkage disequilibrium (LD), thus limiting our ability to interpret
the functional consequences of genetic variation through which
they affect complex disease risk (e.g. PD) (5–7).

Fine-mapping is a methodology that aims to prioritize puta-
tive causal variants (8–10). The necessity of fine-mapping has
been effectively demonstrated across a number of conditions,
including diabetes (11,12), rheumatoid arthritis (13,14) and
Alzheimer’s disease (15). Statistical fine-mapping tools, such
as approximate Bayes factor ABF (16) FINEMAP (17,18) (as in a
previous PD fine-mapping study (19)), do not utilize any addi-
tional functional data and instead infer causal SNPs based on
GWAS summary statistics and LD structure alone. Alternatively,
functional fine-mapping tools integrate information genomic
annotations, epigenetic data and quantitative trait loci (QTL) to
improve the accuracy of causal SNP predictions. One such tool,
PolyFun (20) further improves upon functional fine-mapping by
automatically upweighting the most informative annotations
during a training phase, while downweighting less relevant ones.
All existing fine-mapping tools have their respective strengths
and weaknesses, and consequently the 95% probability credible
set (CS95%) SNPs they predict can differ substantially (8,20,21).

Despite this, there is considerable overlap between subsets of
their predictions (8,20).

In order to more robustly identify causal SNPs underlying
PD, we utilized a consensus (i.e. ensemble) approach that
integrates predictions from multiple statistical and functional
fine-mapping tools. We previously developed echolocatoR (21),
an open-access R package that enables automated end-to-end
fine-mapping across many loci, using multiple fine-mapping
tools in a single R function (Fig. 1). Using echolocatoR, we fine-
mapped the majority of the PD loci using four different statistical
and functional fine-mapping tools, which reduced the average
number of candidate SNPs per locus from 4981 (85 of which
are genome-wide significant) to just 3. The resulting fine-
mapped SNPs, especially the multi-tool Consensus SNPs, were
greatly enriched for functional annotations compared with the
lead GWAS SNPs. Furthermore, we identified many Consensus
SNPs that are within cell type–specific regulatory regions (e.g.
active microglia enhancers), providing comprehensive and novel
insights into PD molecular etiology.

Results
Fine-mapping of PD GWAS loci

Loci that fall within the HLA or Tau/17q21.31 regions were
excluded due to the known complexity of their LD architectures
(22). We present here high-confidence fine-mapping results
for 74/78 loci using four complementary fine-mapping tools:
ABF (16), FINEMAP (17,18), SuSiE (23) and PolyFun+SuSiE (20,23).
Several key SNP groups were compared here: 1) GWAS lead: the
SNP with the smallest P-value in each PD GWAS locus (3) after
filtering steps (i.e. removing SNPs with MAF < 0.05 or are absent
in the LD reference panel, and considering all SNPs within ±1 Mb
of the original pre-filtered GWAS lead SNP), 2) [fine-mapping tool
name] CS95%: tool-specific 95% credible sets, generally defined

Figure 1. Outline of the study workflow. echolocatoR (21) enables end-to-end fine-mapping using the following workflow: (1) Nalls et al. (3) GWAS summary statistics

imported, (2) locus-specific subsets are queried and standardized, (3) LD matrices are extracted from a European-ancestry subset of UK Biobank (UKB) (20,69,70), or the

1000 Genomes Project (1KG), (4) statistical and functional fine-mapping are conducted across multiple tools, (5) SNPs are categorized, (6) enrichment for tissue- and

cell type-specific epigenomics, S-LDSC heritability, predictions of functional impact from several machine learning models (IMPACT, Basenji, DeepSEA), (7) all results

are merged into a single table with one row per SNP, (8) high-resolution multi-track plots are generated for each locus.
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as having ≥95% posterior probability (PP) of being causal for the
phenotype (i.e. PD), 3) UCS: Union Credible Set SNPs defined as
the union of all tool-specific CS95% and 4) Consensus: SNPs in the
CS95% of at least two fine-mapping tools.

Using our multi-tool fine-mapping strategy, we identified
UCS and Consensus SNPs in 100% of these 74 loci. In total, there
were 598 UCS SNPs (8.1 per locus on average) and 190 Consensus
SNPs (2.6 per locus on average). In 69/74 (93.2%) loci, the lead
SNP was in the respective UCS. However, the lead SNP was a
Consensus SNP in only 29/74 (39.2%) of loci, highlighting the need
for fine-mapping. The proportion of loci that each tool was able
to identify at least one CS95% SNP varied considerably (Fig. 2).
For example, ABF (a relatively simple fine-mapping model that
can only assume one causal SNP/locus) was only able to iden-
tify a CS95% in eight loci, whereas SuSiE (which can assume
multiple causal SNPs) produced CS95% in all loci. We also note
that the SNP-wise posterior probabilities (PP) of PolyFun+SuSiE
and SuSiE are expectedly much more highly correlated with one
another than those of ABF or FINEMAP (Supplementary Material,
Fig. S1g).

When checking for overlap with cell type–specific epige-
nomic annotations (24,25), we found that 66/74 loci (89.2%) had
at least one overlapping UCS SNP and 54/74 loci (73%) loci had at
least one overlapping Consensus SNP (Fig. 2f). We also checked
for exclusivity among brain cell type–specific epigenomic sig-
natures (astrocytes, microglia, neurons and oligodendrocytes in
any assay) and found that Consensus SNPs overlapped with
annotations in only one cell type in 14 loci, two cell types in 12
loci, three cell types in 10 loci and four cell types in 9 loci. UCS
SNPs overlapped with enhancers in 42 loci and promoters in 20
loci, while Consensus SNPs overlapped with enhancers in 21 loci
and promoters in 11 loci. Of all brain cell types investigated here,
Consensus SNPs most frequently fell within epigenomic peaks
present in microglia (n = 141), followed by those in neurons/neu-
ronal subtypes (n = 122), and oligodendrocytes/OPCs (n = 102).
These peaks were not necessarily mutually exclusive and do not
preclude shared epigenomic signals in cell types not investigated
here. See the Functional enrichment section below for quantitative
enrichment analysis results.

Mismatch between the population compositions of the LD
reference panel and the original GWAS, as well as insufficient
LD reference panel size, can have drastic effects on fine-
mapping results (26). We therefore repeated the fine-mapping
pipeline on all PD loci using the European ancestry subset
of 1000 Genomes Phase 3 (1KG; n = 503 samples) as the LD
reference panel instead of UKB (n = 337 000 samples). Due
to differences between 1KG and UKB, not all SNPs were
present in both panels. Thus, only 62/74 (83.8%) of loci had
the same lead SNP between panels. We next compared fine-
mapping UCS using LD from each panel and found that all
loci had at least one shared UCS SNP between panels. The
multi-tool mean PP was highly correlated between LD panels
(Spearman rho = 0.65, P < 2.2 x 10−16), though see Supplemen-
tary Material, Fig. S1a-g for plots of inter-tool variation. In
46/74 (62.2%) of loci, at least one Consensus SNP overlapped
between LD panel results. Despite this, when we specifically
checked the loci that we show in multi-track plots (LRRK2,
Fig. 3a; MBNL2, Fig. 3b; DYRK1A, Fig. 4a; FCGR2A, Fig. 4b), we
found that all Consensus SNPs using the UKB panel were
also Consensus SNPs using the 1KG panel, affirming that
the Consensus SNPs in these example loci are robust and
reproducible.

To assess reproducibility, we also compared our FINEMAP
results with those from a recent study that performed statistical

fine-mapping (using FINEMAP) on the same PD GWAS meta-
analysis dataset but using a TOPMed (n = 16 257 samples) as the
LD reference panel (19) (Supplementary Material, Fig. S1h-m).
When comparing our UCS SNPs to a subset of the FINEMAP
results provided by Grenn and colleagues (19) (42 CS95% SNPs
across 18 loci), we found 10 overlapping SNPs, 6 of which were
Consensus SNPs and 5 of which were also in our FINEMAP
CS95%, across 9 loci (HIP1R, KRTCAP2, SH3GL2, SLC2A13, FAM47E-
STBD1, TMEM175, TMEM163, CRHR1 and KCNS3). This limited
concordance (10/42 SNPs = 23.8%) likely stems from several key
methodological differences, including different LD panels and
the fact that we specify a maximum of five causal SNPs for all
loci, whereas Grenn et al. (27) first estimated the number of inde-
pendent causal signals in each locus using the stepwise model
selection procedure in GCTA-COJO. Despite this, we observed
moderate correlation between the SNP-wise FINEMAP posterior
inclusion probabilities (PIP) from Grenn et al. and those of our
FINEMAP analyses (Spearman rho = 0.68, P-value < 2.2 x 10−16,
n = 6391 overlapping SNPs; Supplementary Material, Fig. S1k), as
well as with mean. PP in UCS SNPs only (Spearman rho = 0.68, P-
value < 2.2 x 10−16, n = 10). This suggests that despite substantial
methodological differences, there is moderate concordance in
the pattern of results between studies.

Examples of fine-mapped loci: LRRK2, MBNL2, DYRK1A
and FCGR2A

To exemplify the utility of our fine-mapping approach, here we
highlight results from four loci and further provide a web app
for results in all loci: https://rajlab.shinyapps.io/Fine_Mapping_
Shiny. These were selected based on several criterion: 1) Explain-
able: At least one Consensus SNP fell within a regulatory element
identified by the cell type–specific epigenomic signatures. 2)
Interpretable: Consensus SNPs implicated a single cell type, as
opposed to more complex loci that implicated multiple cell types
or had very widespread LD architectures. 3) Visible: Consensus
SNPs could be visualized within a window size that was not so
wide as to prevent readers from seeing the peak-specific details
in a static plot.

Rare mutations within protein-coding domains of the LRRK2
gene are frequently found in familial PD (28,29). However, less
is known about potential common causal variants at this locus
(MAF > 1%). Here, we identified four common Consensus SNPs
(MAF > 10%) within the LRRK2 locus, of which only rs7294619
(not the lead PD GWAS SNP) is within a cell type–specific
(microglia) enhancer (Fig. 3a). This confirms early independent
reports of rs7294619 as a PD risk factor in smaller subpopulations
(30). That said, another Consensus SNP (rs11175620) also falls
within a microglia-specific peak, though this region did not meet
the criterion for a regulatory element in the original publication.
Deeper epigenomic sequencing of this region in microglia will
be needed to resolve whether rs11175620 could also be a causal
variant in this locus. eQTL co-localization tests further implicate
LRRK2 as the most functionally relevant gene in this locus in both
microglia (coloc PP.H4 = 0.65, n = 93 individuals) (31) and peripheral
monocytes, a closely related myeloid cell type, in multiple
more well-powered datasets (BLUEPRINT: PP.H4 = 0.999, n = 197;
Fairfax_2014: PP.H4 = 0.968, n = 424; Quach_2016: PP.H4 = 0.991,
n = 200; Supplementary Material, Fig. S2) (32–34). Specifically, the
PD risk allele of rs7294619 (C→T) significantly increases only
LRRK2 expression in microglia (P = 1.27x10−6, beta = 0.263) (31).
The involvement of LRRK2 in microglia dysregulation aligns with
substantial previous research implicating this gene in systemic

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
(19)
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://rajlab.shinyapps.io/Fine_Mapping_Shiny
https://rajlab.shinyapps.io/Fine_Mapping_Shiny
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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Figure 2. Summary of all fine-mapped loci. (a) The average number of potentially causal SNPs per PD-associated GWAS locus was reduced from 4981 SNPs (85 of which

are genome-wide significant) to just three consensus SNPs. (b) The number of loci in which each fine-mapping tool identified a 95% credible set (CS95%) of a given

size. These counts are also shown for the union credible set (UCS) of all CS95% together. (c) Rows are names of each locus as designated in the Nalls et al. (3) GWAS,

while ‘top co-localized eGene’ displays the gene that showed the highest co-localization probability across all tested eGenes in all eQTL Catalogue datasets (after

filtering spurious RP11-genes). (d) The number of SNPs in each tool-specific CS95%, as well as UCS size. (e) The number of UCS SNPs that were missense mutations. (f)
The number of Consensus SNPs that fell within different cell type–specific epigenomic annotations. Nott et al. (24) data include enhancers or promoters called from

peaks across multiple assays as well as overlap with PLAC-seq co-accessibility anchors (PLAC). Data from Corces et al. (25) include single-cell ATAC-seq peaks (scATAC),

co-accessibility anchors called from the scATAC-seq data using the tool Cicero (Cicero), as well as peaks called from ATAC-seq in bulk brain tissue (bulkATAC) and co-

accessibility anchors from HiChIP-FitHiChIP in bulk brain. (OPCs = oligodendrocyte progenitor cells, neurons (+) = excitatory neurons, neurons (−) = inhibitory neurons,

neurons (nigra) = dopaminergic neurons from the substantia nigra. Enhancers and promoters are highlighted in cyan outlines. (g) The number of assays in which at

least one consensus SNP overlapped with the annotation, aggregated by cell type (or bulk brain). This highlights the most relevant cell type(s) in each locus.
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Figure 3. Fine-mapping of LRRK2 and MBNL2 loci. Multi-track plots within two PD-associated loci. (a) LRRK2 contains Consensus SNPs that are common in the population

and overlap with microglia-specific epigenomic peaks (indicated by green arrows). Specifically, rs7294619 (which is not the lead SNP) falls within a microglia-specific

enhancer, implicating a cell type-specific mechanism of PD risk. (b) MBNL2 contains a single consensus SNP (rs4771268), which happens to also be the lead GWAS SNP

that overlaps with oligodendrocyte-specific epigenomic peaks (indicated by purple arrows). It also falls within an enhancer, with direct interactions (as indicated by

PLAC-seq arches) with the MBNL2 promoter. The following tracks are shown (track labels in gray boxes on the left, sub-track labels in white boxes on the right): GWAS:

–log10(P-value) from the Nalls et al. (3) PD GWAS zoomed out to show the entire locus. Below is the same GWAS data but zoomed into 10x to better show the fine-

mapped SNPs (red diamond = lead GWAS SNP, green label = UCS SNPs, gold label = consensus SNPs). ABF, SUSIE, POLYFUN_SUSIE, FINEMAP: Fine-mapping results from

four different tools, with the posterior probability (PP) that each SNP is causal as the y-axis (red diamond = lead GWAS SNP, green label = tool-specific CS95% SNPs, green

circles = UCS SNPs). Mean: Per-SNP PP averaged across all fine-mapped tools. Gene track: Gene model of one of the LRRK2 transcripts (other transcripts not shown for

simplicity). Nott (2019) Read Densities: Histograms of cell type-specific assays (oligo = oligodendrocytes). Called peaks are indicated by gray bars. Nott (2019) PLAC-seq:

PLAC-seq interactome data as well as enhancers and promoters called by the original authors.

and central nervous system (CNS) inflammation aspects of PD
(28,29,35) and other inflammatory diseases (36–38).

Within the MBNL2 locus, we identified 11 UCS SNPs and just
one Consensus SNP (rs4771268), which was also the lead GWAS
SNP. rs4771268 overlaps with an enhancer exclusively active
in oligodendrocytes, lending further support to recent studies
that have indicated a more important role of oligodendrocytes
in PD than previously suspected (24,39). This oligodendrocyte-
specific enhancer interacts with a downstream promoter of
the gene MBNL2 (see Proximity Ligation-Assisted ChIP (PLAC)
-seq interactome tracks in Fig. 3b), supporting the hypothesis
that MBNL2 is likely to be the causal gene within this locus
(though the eQTL co-localization tests could not identify any
eGene for this region). We also conducted transcription fac-
tor binding motif (TFBM) analyses of the LRRK2 and MBNL2
loci using motifbreakR (40) (Supplementary Material, Fig. S3a-c),
although the proposed TFBMs were less consistent across motif

databases and we therefore advise readers to interpret these
with caution.

At the DYRK1A locus, we identified two Consensus SNPs
(rs11088398 and rs2835757, neither of which were the lead
GWAS SNP) but only rs11088398 falls within a neuron-specific
enhancer and has direct interactions with the upstream
promoter of DYRK1A, as shown by multiple interactome assays
(Fig. 4a). Previously, Grenn et al. (19) used FINEMAP to nominate
rs2248244 (the lead SNP) and rs11701722 as putative causal
variants. Despite the aforementioned methodological differ-
ences, rs2248244 also appeared in our UCS. However, in contrast
to rs11088398, rs2248244 does not fall within any brain cell
type–specific epigenomic peak or regulatory annotation in the
datasets explored here. In further support of this observation,
rs11088398 had considerably greater machine learning model-
derived functional impact scores (max IMPACT score = 0.862,
max Basenji H3K4ME3 Brain score = 3.64 x 10−5), than those of

(40)
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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Figure 4. Fine-mapping of DYRK1A and FCGR2A loci. Multi-track plots within two PD-associated loci. (a) The DYRK1A locus contains common consensus SNPs that

exclusively overlap with neuron-specific epigenomic peaks (indicated by blue arrows). Specifically rs11088398 (which is not the lead SNP) falls within a neuron-specific

enhancer that has direct interactions with an upstream DYRK1A promoter. (c) motifbreakR results indicating that rs11088398 strongly disrupts a PATZ1 TFBM, which

remains highly significant even after accounting for background effects and multiple testing correction (P < 1 x 10−4). (b) The FCGR2A locus contains three consensus

SNPs, all of which exclusively overlap with microglia-specific epigenomic peaks (indicated by green arrows). (d) Specifically, rs665835 falls within a microglia-specific

enhancer that is predicted to strongly disrupt binding in an SPIB TFBM (P < 1 x 10−4). It also falls within an enhancer, with direct interactions (as indicated by PLAC-seq

arches) with the MBNL2 promoter. Within subplots (a) and (b), the following tracks are shown (track labels in gray boxes on the left, sub-track labels in white boxes on the

right):GWAS: –log10(P-value) from the Nalls et al. (3) PD GWAS zoomed out to show the entire locus. Below is the same GWAS data but zoomed into 10x to better show the

fine-mapped SNPs (red diamond = lead GWAS SNP, green label = UCS SNPs, gold label = consensus SNPs). ABF, SUSIE, POLYFUN_SUSIE, FINEMAP: Fine-mapping results

from four different tools, with the PP that each SNP is causal as the y-axis. (red diamond = lead GWAS SNP, green label = tool-specific CS95% SNPs, green circles = UCS

SNPs). ∗∗∗Mean: Per-SNP PP averaged across all fine-mapped tools. Gene Track: Gene model of one of the LRRK2 transcripts (other transcripts not shown for simplicity).

Nott (2019) Read Densities: Histograms of cell type-specific assays (oligo = oligodendrocytes). Called peaks are indicated by gray bars. Nott (2019) PLAC-seq: PLAC-seq

interactome data as well as enhancers and promoters called by the original authors.

rs2248244 (max IMPACT score = 0.512, max Basenji H3K4ME3
Brain score = 8.32 x 10−8). While multiple variants within this
locus may influence PD risk via different mechanisms, we
find the functionally mechanistic explanation for rs11088398
particularly compelling. Furthermore, analysis of this region
using motifbreakR (40), which searches a comprehensive database
of positional weight matrices (PWM) and applies significance-
based background correction, revealed that rs11088398 is within
a PATZ1 TFBM, as well as KLF5 and MAZ TFBM to a lesser
extent (P < 4.15x10−4, allele diff. > −0.785), and that the PD risk

allele (G→T) is predicted to strongly decrease binding affinity
relative to the reference allele (P < 1x10−10, allele diff. = −0.990;
Fig. 4c). This association remained highly significant even after
background correction and stringent Bonferroni multiple-testing
correction (q < 1x10−10). PATZ1 plays an important role in
embryonic development and neurogenesis (e.g. in midbrain) and
is expressed in neurons (and not glia) (Supplementary Material,
Fig. S3d) and its downregulation is associated with premature
senescence in mouse models, cell cultures and human brain
tissue (41,42). Lastly, DYRK1A is the top eQTL-nominated gene

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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from our co-localization analysis, which aligns with prior eQTL-
based gene nominations in this locus (19). It is expressed in all
brain cell types, but more so neurons than glia (Supplementary
Material, Fig. S3e).

Lastly, the gene Fc Fragment of IgG Receptor IIa (FCGR2A)
codes for an IgGFc receptor protein expressed on the surface of
immune response cells and is important for phagocytosis and
debris clearing (43). Our fine-mapping analyses revealed three
Consensus SNPs, two of which (rs6658353 and rs7551957) fell
within a microglia-specific enhancer (to the exclusion of other
cell type–specific epigenomic peaks) in the FCGR2A locus. While
the Consensus SNP did fall within multiple interactome assay
anchors (PLAC-seq, Cicero, HiChIP-FitHiChIP) (24,25), the data
did not associate it with a specific gene. FCGR2A was never-
theless the closest to the enhancer that the Consensus SNPs
were located in. Furthermore, the Consensus SNP rs6658353 falls
within an SPI1 (a well-established transcriptional regulator in
microglia) TFBM, and its PD risk allele (G→C) greatly disrupts
its binding (Fig. 4d; P < 1 x 10−4, allele diff. = 0.89). FCGR2A itself
is very highly expressed in both microglia and macrophages
(Supplementary Material, Fig. S3f), as is SPI1 (Supplementary
Material, Fig. S3g).

Functional enrichment

To efficiently verify the functionality of the fine-mapped SNPs,
we employed an functional enrichment validation strategy
across a diverse set of functional annotations (i.e. validation
datasets), including 1) heritability enrichment scores derived
from the L2-regularized S-LDSC regression (44–46) step in
PolyFun (20), 2) probability scores from IMPACT, an elastic net
logistic regression model that integrates 503 cell type–specific
epigenomic annotations to predict each variant’s functional
impact in the context of a particular tissue and cell type,
primarily through the disruption of TFBM (47), 3) per-variant
P-values from tests of genotypes impact on gene expression
from the survey of regulatory elements (SuRE) massively parallel
reporter assay (MPRA) (48), as well as 4) predictions from deep
learning models, Basenji (49) and DeepSEA (50), trained on
blood-, brain- or non–tissue-specific annotations (51).

Specifically, we tested two hypotheses within each valida-
tion dataset (H1 and H2). H1: fine-mapped (e.g. UCS, Consensus)
SNPs have greater functional impact and thus are more likely
to impact disease risk, than GWAS lead SNPs. H1 was tested
using pairwise Wilcoxon rank-sum tests on per-Locus means of
each SNP group. H2: fine-mapped SNPs more frequently have
greater functional impact than randomly selected SNPs than
do GWAS lead SNPs. H2 was tested using 10 000 boot-strapped
iterations to compare functional annotations from each resam-
pled SNP group to those of randomly sampled SNPs. In addition
to the four main SNP groups defined above, we also compared
SNP groups called without any functional fine-mapping (i.e.
PolyFun+SuSIE) to avoid circularity, as some of the validation
datasets (i.e. IMPACT, Basenji and DeepSEA) used annotations
that were also used in the PolyFun baseline model. These addi-
tional SNP groups were 5) UCS (-PolyFun) and 6) Consensus (-
PolyFun). All P-values listed below are post-adjustment, unless
otherwise specified. While an in-depth analysis of inter-tool
performance is beyond the scope of this study, we do provide
extended functional enrichment validation results comparing
tool-specific CS95% (Supplementary Material, Figs S4 and S5). See
Methods and Supplementary Methods for extended details on
these analyses.

Relative to GWAS lead SNPs, UCS SNPs had significantly
greater h2 enrichment scores (H1 P = 3.2x10−6, H2 P = 6.2x10−88,
mean = 1.46; Fig. 5a), IMPACT probability scores (H1 P = 0.0053,
H2 P = 3.7x10−238, mean = 0.69; Fig. 5b) and functional impact
probability in all 28 deep learning model-tissue-assay combi-
nations (H1 P < 0.05; H2 P < 2.7 x 10−303, mean = 0.0056; Fig. 5d).
The significant gain in predicted functionality remained true for
UCS (-PolyFun) SNPs: h2 enrichment (H1 P = 1 x 10−5, H2 P = 7.3 x
10−132, mean = 1.37), IMPACT probability scores (H1 P = 0.046, H2
P = 2.2 x 10−308, mean = 0.68) and functional impact probability
in all 28 deep learning model-tissue-assay combinations (H1
adj. P < 0.05; H2 norm. P = 2.7 x 10−303, mean = 0.0056; Fig. 5d).
Likewise, Consensus SNPs also showed significantly greater
functional impact than GWAS lead SNPs: h2 enrichment (H1
P = 0.00052, H2 P = 9.3x10−239, mean = 1.68), IMPACT probability
scores (H1 P = 0.00031, H2 P = 2.2 x 10−308, mean = 0.74) and
functional impact probability in 18/28 deep learning model-
tissue-assay combinations (H1 P < 0.05; H2 P = 2.7 x 10−303,
mean = 0.0053; Fig. 5d). While the H1 test of SuRE MPRA did
not show significant differences between SNP groups, the
bootstrapping test revealed that there was indeed significantly
greater impact on gene expression in UCS, UCS (-PolyFun) and
Consensus SNPs (H2 P = 2.7 x 10−303). This is perhaps due to the
ability of the bootstrapping approach to approximate the true
underlying distribution, thus better guarding against sampling
error. While Consensus SNPs were not significantly greater than
UCS or UCS (-PolyFun) in any of the H1 or H2 tests, they still have
fewer SNPs on average (∼3 per locus) making them better suited
for follow-up wet laboratory experiments.

Discussion
Using a suite of complementary fine-mapping tools and
validating using multiple independent lines of evidence,
we identified 1–4 high-confidence consensus SNPs in most
known PD-associated loci. These Consensus SNPs have a high
probability of being causal in PD, often through the disruption
of regulatory elements. Co-localization tests and brain cell
type–specific chromatin accessibility and histone modifications
allowed us to explore the locus-specific mechanisms by which
the Consensus SNPs exert their effects. We showed that PD
risk alleles in Consensus SNPs likely alter the functioning of
microglia-specific enhancers in the loci LRRK2 (Fig. 3a) and
FCGR2A (Fig. 4b,d), specifically through disrupting an SPIB-
binding motif in the latter. We also identified Consensus SNPs
affecting an oligodendrocyte-specific MBNL2 enhancer (Fig. 3b)
and a neuron-specific DYRK1A enhancer (Fig. 3a), the latter
of which is mediated through altered binding with PATZ1.
Additionally, in two loci (KCNIP3 and TRIM40), our Consensus
SNPs were missense mutations, both of which were found to
contain missense mutations (2 and 6, respectively) and the
former of which was significant in a Bonferroni-corrected rare
coding variant burden analysis (3).

The fine-mapped SNPs identified in this study consistently
demonstrate higher functional relevance than GWAS lead
SNPs according to multiple lines of evidence, including h2

enrichment, predictions from a suite of high-accuracy machine
learning models, cell type–specific epigenomic assays and high-
throughput variant-editing experimental assays. In particular,
Consensus SNPs have the advantages of high functional enrich-
ment, high coverage across all loci (100%) and relatively small
set sizes (1–4 SNPs per locus), making them ideal candidates
for further experimental validation. This remains true even
after multiple testing correction, rigorous bootstrapped testing

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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Figure 5. Functional enrichment. Functional enrichment validation was performed by statistically comparing each SNP group. For each validation (panel), per-locus

mean values were computed for each SNP group (each represented by a point). Significance labels are from Holm-adjusted P-values of pairwise Wilcoxon rank-sum

tests. Significance key: ns: P > 0.05, ∗: P ≤ 0.05, ∗∗ : P ≤ 0.01, ∗∗∗ : P ≤ 0.001, ∗∗∗∗ : P ≤ 0.0001. (a) Mean PolyFun-implemented (20) S-LDSC (44–46) heritability (h2) enrichment

per locus per SNP group. (b) For each locus, the annotation with the highest mean IMPACT score across all SNPs in that locus was selected (to reduce noise from less

relevant annotations). (c) SuRE MPRA results. Negative log10-transformed mean P-values from Wilcoxon rank-sum tests comparing gene expression changes between

reference and alternative allele genotypes. Cell lines (i.e. HepG2 and K562) are separated into columns. (d) Deep learning model predictions of the epigenomic impact

that mutating each genomic position would have. Tissue-specific models (i.e. Blood and Brain) were trained on datasets from only that tissue. Non-tissue-specific (NTS)

models were also trained using all tissues together. For the purposes of readability, we collapse values across assays and remove outliers above the 75% percentile (see

Supplementary Material, Fig. S4 for full view).

regimes and removing any functionally informed fine-mapping
results during UCS identification to avoid circularity in our
validation strategy. Together, these multiple lines of evidence
support our hypotheses that high-quality fine-mapped SNPs are
much more likely to be causal for PD than simply selecting the
SNPs with the smallest P-values, or random SNPs.

The present study has several limitations and could further
be improved upon in the future by addressing the following: 1)

our LD reference panels did not come from the same participants
as the original PD GWAS studies, which reduces the accuracy
of fine-mapping (26); 2) not all fine-mapped variants are medi-
ated via cell type–specific enhancers/promoters, and thus future
studies would benefit from exploring other mechanisms not
explored here such as splicing (e.g. in MAPT) (52,53); 3) the PD
GWAS was conducted using almost entirely genotyping data
(as opposed to whole-genome sequencing), which can introduce

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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substantial bias and miss rare variants as a consequence of
imputation procedures; 4) the functional genomic annotations
used in this study are far from a complete representation of
all PD-relevant tissues, brain regions (e.g. substantia nigra), cell
types and assay modalities across varying PD stages and clinical
subtypes and 5) functional experiments would further validate
these results. It is also possible that our consensus fine-mapping
procedure missed certain causal SNPs (false negatives). However,
this is difficult to resolve with certainty as we can currently
only infer causality through functional and phenotypic impacts.
Therefore, the best assessment of false-negative rates comes
from simulation studies presented in the original publications
of each fine-mapping tool, where accuracy and precision can
be directly estimated. Despite these challenges, we hope these
results will continue to be a resource for future studies with
better powered, more diverse datasets across a variety of tissues,
cell types and physiological conditions.

In summary, we have fine-mapped almost all known PD-
associated loci using a suite of complementary fine-mapping
methods and identified putative mechanisms of actions through
which they increase risk of PD, including cell type and regulatory
element type. Furthermore, our consensus fine-mapping strat-
egy, implemented in echolocatoR (21), can easily be applied to any
other GWAS/QTL summary statistics, opening up many oppor-
tunities for rapid and robust identification of causal genetic
variants. This sets the stage to further our understanding of
PD through uncovering potential shared genomic mechanisms
underlying both PD and other neurological diseases, such as
Alzheimer’s disease. Lastly, all SNP-wise fine-mapping results,
LD matrices, merged annotations and plots from this study
have been made available through a dedicated web applica-
tion (https://rajlab.shinyapps.io/Fine_Mapping_Shiny), opening
many opportunities to explore each locus in greater depth and,
importantly, to validate putative causal SNPs through experi-
mental validation (e.g. CRISPR-cas9 editing in patient-derived
iPSC models).

Materials and Methods
All variant-level annotations, tools and analyses used in our
pipeline were integrated into echolocatoR (21), either directly or
via APIs, and run in R v3.6.3. See Supplementary Methods for a
more detailed description of each dataset.

GWAS

Full genome-wide GWAS summary statistics from Nalls and
colleagues (3) were provided by the authors and by 23andMe. If
unspecified, we identified the lead GWAS SNP as the one with
the lowest corrected P-value within that locus. Then, for each
locus, we gathered all SNPs within 2-Mb windows (i.e. ± 1 Mb
flanking the lead GWAS SNP) and filtered out SNPs with a minor
allele frequency (MAF) < 0.05. We focused on common variants
in order to maximize the relevance of these results to a larger
proportion of the PD population.

Fine-mapping

Statistical fine-mapping was performed on each locus separately
with ABF (16), FINEMAP (16–18) and SuSiE (23). Functional fine-
mapping was performed using PolyFun+SuSiE (20,23), which
computes SNP-wise heritability-derived prior probabilities using
an L2-regularized extension of stratified LD SCore (S-LDSC)
regression (44–46). For PolyFun+SuSiE, we used the default UK

Biobank baseline model composed of 187 binarized epigenomic
and genic annotations (54). In all subsequent analyses presented
here, loci that fall within the HLA region or the Tau/17q21.31
region were excluded due to the particularly complex LD
architectures (22).

While the specifics of each fine-mapping model differ from
tool-to-tool, they are united by several key features: 1) they are
Bayesian models; 2) they provide the PP that each SNP is a causal
SNP, on a scale from 0 to 1 and 3) they provide CS of SNPs
that have been identified as having a high PP of being causal,
which we have set at a threshold of PP ≥ 0.95 for all tools (see
Supplementary Methods for details). We only included tools that
met the following criteria: 1) can take into account LD and 2) can
operate using only summary statistics, which are more widely
accessible and perform comparably to models using individual-
level genotype data (5). By running all of these tools on each PD
locus, we reduced the average number of candidate SNPs per
locus from ∼ 5000 to 8 (Fig. 2). For all fine-mapping models, we
set the (maximum) number of causal SNPs to five, except for ABF,
which can only assume a single causal SNP.

As ABF can only assume a single causal SNP, and thus cannot
model scenarios where this is more than one true causal SNP, or
for that matter, scenarios where two or more SNPs are indistin-
guishable due to perfect LD. SNPs with PP ≥ 0.95 were considered
part of the ABF credible set and added to the overall cross-
tool Credible Set. However, we decided to exclude this method
when identifying Consensus SNPs because it almost exclusively
returned the lead SNP, suggesting this simpler algorithm was not
offering any additional information beyond which SNP had the
lowest GWAS P-value.

LD

LD correlation matrices (in units of r) were acquired for each
locus from the UK Biobank (UKB) reference panel, pre-calculated
by Weissbrod et al. (20). We also acquired LD from the 1000
Genome Project (1KG), both Phases 1 and 3 (55), by downloading
the relevant variant call files (VCF) from the 1KG file transfer
protocol (FTP) server using Tabix (56) and then using the R
package snpStats (57) set to the default parameters to calculate
all pairwise r values. For both the UKB and 1KG reference panels,
individuals of non-European ancestry were removed to best
match the populations in the PD GWAS data. Any SNPs that
could not be identified within the LD reference were necessarily
removed from subsequent analyses.

eQTL

echolocatoR (21) uses another R package developed by our labo-
ratory, catalogueR, to automatically query all 110 eQTL datasets
(from 20 studies) in the eQTL Catalogue (58) via an API. This com-
prised the majority of the eQTL datasets used in this study as
they have all been uniformly re-analyzed using the exact same
pipeline with standardized formatting. This includes data from
the Genotype-Tissue Expression (GTEx) project V8 (59), including
13 brain regions: amygdala, anterior cingulate cortex (BA24),
caudate, cerebellar hemisphere, cerebellum, cortex, frontal
cortex (BA9), hippocampus, hypothalamus, nucleus accumbens,
putamen, spinal cord (cervical c-1) and substantia nigra. We
also obtained genotype gene expression data from the Multi-
Ethnic Study of Atherosclerosis (MESA) (60), which contains eQTL
data in monocytes from multiple subpopulations: 233 African
American (AFA), 578 European (CAU) and 352 Hispanic (HIS)
individuals.

(21)
https://rajlab.shinyapps.io/Fine_Mapping_Shiny
(21)
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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Co-localization

A GWAS-QTL locus pair was considered ‘co-localized’ if the
following criterion were met, where the PP that the signals are
associated with their respective traits and shared is PP.H4 and
the PP that the signals are associated with their respective traits
but not shared is PP.H3:

(PP.H3 + PP.H4 > 0.8) &
(

PP.H4
PP.H3

≥ 2
)

This provides a more robust means of identifying whether
the signal in a GWAS dataset can be considered the same as the
signal within a QTL dataset, as opposed to simply looking at the
number of overlapping significant QTLs that can be confounded
by factors such as LD (61).

Transcription factor binding motifs

We ran motifbreakR (40) on select Consensus SNPs, which 1)
identifies whether a given variant falls within binding motifs
or one or more transcription factors (TFBM) and 2) calculates
how much each allele of that variant impacts motif binding.
Motifs are compiled by a supporting package, MotifDb, which
contains a comprehensive database of positional weight matri-
ces (PWM) (n = 9933) from 14 TFBM databases gathered from
multiple organisms (n = 16 species) and assay types (including
ChIP-seq). For each variant, motifbreakR first queries the PWM
databases to identify any motifs that the variant may fall within
and returns metrics assessing how much each allele of that
variant disrupts (or enhances) binding in the putative TFBM(s).
Particularly important metrics include pct_ref/_alt: the propor-
tion of maximum binding affinity of the motif to a given TF (0
to 1 scale) afforded by the variant’s reference/alternative alleles
(respectively), and allele diff .: the difference in the proportion of
binding affinity between the reference (pct_ref) and alternative
(pct_alt) alleles (−1 to 1 scale). Next, motifbreakR applies a robust
background correction regime to compute P-values. This is a
computationally expensive but nevertheless important step as
it helps guard against false positives, a substantial concern
as many motifs have similar sequences and/or promiscuously
bind to multiple transcription factors. Lastly, we applied the
Benjamini-Hochberg procedure to compute false discovery rate
(FDR) to account for querying multiple variants (62).

Functional enrichment

S-LDSC heritability, IMPACT, SuRE MPRA and deep learning
annotations. For all S-LDSC heritability scores, IMPACT scores,
SuRE MPRA P-values and deep learning epigenomic predictions
(collectively referred to as validation annotations), we calculated
the mean of the respective values per locus per SNP group
(GWAS lead, UCS (-PolyFun), UCS, Consensus). Mean was used
as opposed to max values, to avoid bias due to differences
in SNP group sizes. We evaluated independence between SNP
groups using a series of pairwise Wilcoxon rank-sum tests with
multiple-testing adjusted P-values (Holm-Bonferroni method)
(Fig. 5).

To ensure the robustness of these results, we also employed
a bootstrapping hypothesis testing procedure, analogous to that
proposed by Tibshirani and Efron (63). For 10 000 iterations in
each SNP group, repeated separately for each validation annota-
tion, we sampled (with replacement) 20 per-locus validation
annotation means of the SNP group of interest and used a

Wilcoxon rank-sum test (coin::wilcox_test in R) to determine
whether their validation annotation values significantly differed
from that of 20 randomly sampled SNPs (Random). Importantly,
our Random samples were taken only from the 2-Mb windows
defining our PD loci (as opposed to the whole genome), as an
appropriate background to which compare the SNP groups.
Resampling 10 000 times ensures that these results are not
merely due to chance. Finally, we used a generalized linear model
(using the R stats::glm function) to test whether the normalized
test statistic distribution (z-value) of each fine-mapped SNP
group (UCS (-PolyFun), UCS, Consensus (-PolyFun), Consensus) was
significantly different from the GWAS lead z-value distribution.
This bootstrapping procedure can easily be replicated using a
single echolocatoR function, VALIDATION.bootstrap (21).

Lastly, we repeated enrichment tests for each SNP group
against each combination of bulk brain tissue and cell type–
specific epigenomic peaks, regulatory elements and interac-
tomes (Supplementary Material, Fig. S6).

Cell type–specific epigenomic annotations. We conducted a
series of negative binomial enrichment tests, with the XGR::
xGRviaGenomicAnno function in R (64), using the following
annotations: 1) cell type–specific epigenomic peaks (scATAC,
ATAC, H3K27ac, H3K4me3), 2) cell type–specific regulatory
regions (enhancers, promoters), 3) cell type–specific interactome
anchors (PLAC, cicero), 4) bulk brain epigenomic peaks (ATAC)
and 5) bulk brain interactome anchors (HiChIP_FitHiChIP) (24,25).
We conducted these tests separately for each combination of
assay/regulatory element and cell type. Furthermore, enrich-
ment tests were repeated separately for each SNP group. All
SNPs within any 2-Mb locus were used as the background. These
same epigenomic datasets were used in summary plots (Fig. 2)
and track plots (Figs 3 and 4). Annotations for missense variants
were gathered from biomaRt (65,66) and HaploReg (67).

Active promoters and enhancers from Nott et al (24) were
defined as follows. H3K4me3 and H3K27ac ChIP-seq data were
collected for each purified cell type. Then, within each cell
type, peaks were called using MACS2 (68). Active promoters
were defined as the intersection between H3K4me3 peaks and
H3K27ac peaks that were within 2 kb of the nearest transcription
start site (TSS). Active enhancers were defined as H3K27ac peaks
that were not within H3K4me3 peaks.

Supplementary Material
Supplementary Material is available at HMG online.

Data and Code Availability
A significant subset of the PD GWAS summary statistics can be
found in the Supplementary Materials of the original publica-
tion (3). For full summary statistics, please contact the respec-
tive authors of that publication. eQTL Catalogue data are freely
accessible through the main website (https://www.ebi.ac.uk/e
qtl) or through the catalogueR software (https://github.com/RajLa
bMSSM/catalogueR).

All results of this study (fine-mapping, co-localization, plots)
are accessible through the echolocatoR Fine-mapping Portal (21),
which the authors have created to easily share and visualize the
results of this study and others by our laboratory (https://rajlab.
shinyapps.io/Fine_Mapping_Shiny).

R scripts containing all of the analyses conducted in this
study are also made freely available on GitHub: https://github.
com/RajLabMSSM/Fine_Mapping

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab294#supplementary-data
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https://github.com/RajLabMSSM/catalogueR
https://rajlab.shinyapps.io/Fine_Mapping_Shiny
https://rajlab.shinyapps.io/Fine_Mapping_Shiny
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Code for the echolocatoR Fine-mapping Portal (21) is also avail-
able on GitHub: https://github.com/RajLabMSSM/Fine_Mapping_
Shiny

echolocatoR and catalogueR (21) are an open-source R packages
that can be installed through the following GitHub repositories:

https://github.com/RajLabMSSM/echolocatoR
https://github.com/RajLabMSSM/catalogueR
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