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Abstract

Recently, model-assisted designs, including the Bayesian optimal interval

(BOIN) design with optimal thresholds to determine the dose for the next

cohort, have been proposed for cancer phase I studies. Model-assisted designs

are useful because of their good performance as model-based designs in addi-

tion to their algorithm-based simplicity. In BOIN, escalation and de-escalation

based on boundaries can be understood as a type of change point detection

based on a sequential test procedure. Notably, the sequential test procedure is

used in a wide range of fields and is known for its application to control charts,

statistical monitoring methods used for detecting abnormalities in manufactur-

ing processes. In control charts, abnormalities are detected if the control chart

statistics are observed to be outside of the optimal boundaries. The cumulative

sum (CUSUM) statistic, which is developed for control chart applications,

derives higher power under the same erroneous judgment rate. Hence, it is

expected that a more efficient model-assisted design can be achieved by the

application of CUSUM statistics. In this study, a model-assisted design based

on the CUSUM statistic is proposed. In the proposed design, the dose for the

next cohort is decided by CUSUM statistics calculated from the counts of the

dose-limiting toxicity and pre-defined boundaries, based on the CUSUM con-

trol chart scheme. Intensive simulation shows that our proposed method per-

forms better than BOIN, and other representative model-assisted designs,

including modified toxicity probability interval (mTPI) and Keyboard, in terms

of controlling over-dosing rates while maintaining similar performance in the

determination of maximum tolerated dose.
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1 | INTRODUCTION

A phase I clinical trial design aims to identify the maximum tolerated dose (MTD) of a new drug, which is
defined as the dose with a dose-limiting toxicity (DLT) probability closest to the target probability. Traditionally,

Received: 18 October 2021 Revised: 28 May 2022 Accepted: 31 May 2022

DOI: 10.1002/pst.2247

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.

1324 Pharmaceutical Statistics. 2022;21:1324–1341.wileyonlinelibrary.com/journal/pst

https://orcid.org/0000-0002-4384-5148
mailto:thatayam@its.jnj.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/pst


phase I dose-finding designs can be classified as algorithm-based and model-based methods.1,2 Algorithm-based
designs, including 3 + 3 and biased-coin designs3 and their extensions,4,5 are based on simple, easy to understand, and
pre-specified rules to govern dose escalation and de-escalation. However, its poor operational characteristics, including
a lower probability of MTD selection, are well known.4–6 To overcome the poor operational characteristics of most
algorithm-based designs, model-based designs have been proposed.4–7 These methods are based on statistical models,
such as logistic regression models, in which the dose is escalated and de-escalated based on DLT probabilities estimated
using a statistical model. The most famous model-based method is the continual reassessment method (CRM).7 The
escalation with overdose control design8 has also been implemented in practice. These model-based methods have been
actively studied and have many extensions.9–17 However, they are conceptually and computationally complicated.
Model-based designs require computation for model fitting and MTD estimation as soon as new observations become
available. This characteristic of model-based methods renders them a hurdle for implementation by investigators.18–22

Recently, as a new category of dose-finding design, model-assisted designs have been developed to combine the
simplicity of algorithm-based designs with the superior performance of model-based designs. As reported in an ear-
lier seminal study, Ji et al.18 proposed modified toxicity probability interval (mTPI) method. However, mTPI has
drawbacks that limit distinct interpretation and lead to a high risk of overdosing patients.19 Keyboard design was
also proposed, to overcome mTPI design drawbacks.19 As another variation of model-assisted design, the Bayesian
optimal interval (BOIN) design was proposed.20 Compared with the mTPI and Keyboard designs, the BOIN design
is more straightforward and transparent. The dose escalation and de-escalation in the BOIN design are determined
by comparing the observed DLT rate at the current dose with a pair of fixed dose escalation and de-escalation
boundaries. The BOIN design has been expanded to the design for dose finding in combination drug settings,22

considers both efficacy and toxicity,23,24 and expands to consider delayed toxicity outcomes.25 Recently, Mu et al.26

proposed a generalized BOIN design that accommodates various existing toxicity grade scoring systems under a
unified framework. As mentioned above, several model-assisted designs have been studied. Notably, model-
assisted designs have been implemented in actual trials, and their implementations are increasing because of their
simplicity and transparency.27 For model-assisted designs, Zhou et al.1 summarized the features of model-assisted
methods, including mTPI, Keyboard design, and BOIN, and compared the operation characteristics with CRM via
extensive simulations.

In the BOIN design, dose escalation and de-escalation are achieved solely based on the pre-determined bound-
ary and observed DLT rate at the current dose. Dose escalation or de-escalation occurs when the point estimate of
the DLT is observed outside the boundary. The boundary for dose escalation and de-escalation in BOIN is deter-
mined by minimizing incorrect decisions regarding dose assignment. The incorrect decisions in the method are
dose escalation or de-escalation, when the current dose is the true MTD, or staying at the current dose, when the
current dose is not the true MTD. Because the dose assignment decision is made based on the point estimate of the
DLT rate and the pre-specified boundary, the probability of making an incorrect decision can be defined as a func-
tion of the threshold values of the boundary. The boundary thresholds in the other BOIN extensions are deter-
mined using the same type of derivation.20,22–26 These boundary-based escalation and de-escalation rules used in
BOIN and its variants can be considered as a type of change point detection based on a sequential test procedure,
in which the likelihood ratio is a test statistic.

The most famous sequential hypothesis test is the sequential probability ratio test (SPRT) that was proposed by
Wald28 for statistical quality control problems; that is, sampling inspection. The SPRT has a larger power than ordi-
nal statistical testing with a fixed type I error.28–30 This class of tests has been developed and used in a wide range
of research areas. In quality control research, the cumulative sum (CUSUM) statistic was developed for statistical
quality control charts to detect process abnormalities in the manufacturing process.30–33 The CUSUM statistic has
several desirable characteristics compared to the SPRT that lead to higher power, with the same probability of erro-
neous detection.

In this study, we propose a CUSUM interval (CUSUMIN) design for cancer phase I dose-finding studies as a new
model-assisted design. In this study, we propose a method for cancer phase I dose finding studies of a single agent and
discuss our proposed method. The advantages of the CUSUM statistic are expected to improve the operational charac-
teristics of model-assisted designs for cancer phase I dose-finding studies. Intensive simulation shows that our proposed
method is superior to BOIN, mTPI, and Keyboard in the sense that the proposed method provides the lowest probability
of overdosing, while maintaining similar performance in MTD selection.

In the next section, we introduce CUSUM statistics and propose a CUSUMIN design. We present simulation studies
to examine the operational characteristics of the new method in Section 3, followed by a discussion.
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2 | CUSUMIN: CUSUM INTERVAL DESIGN

We propose CUSUMIN design for phase I cancer studies as a simple and transparent model-assisted design. CUSUMIN
design is based on the theory of CUSUM control charts. Control charts, which are used in manufacturing processes for
stabilizing the quality of products, are well known in the statistical quality control field, but not in clinical research. In
Section 2.1, we briefly introduce CUSUM statistics, which are used in our proposed method, and we propose CUSUMIN
design in Section 2.2.

2.1 | CUSUM statistics and control charts

CUSUM control charts were first proposed by Page31 for quality control in the manufacturing process. In general, con-
trol charts are used to monitor processes and detect abnormal trends (shifts) in their quality characteristics. Control
charts are generally run charts with decision lines that reflect whether or not a process is normal. The statistics calcu-
lated by process outcomes, (usually quality characteristics in the quality control field), are plotted on charts along the
time course (or sequence of the products), and abnormal trends are detected if the statistic exceeds the thresholds,
which are called control limits, to identify potential process abnormalities. In quality control, a process is called in-
control if it is normal, and a process is called out-of-control if it is abnormal. There are many types of control charts,
and CUSUM control charts are recommended by Hawkins and Olwell,32 as a frequently used control chart due to its
superior performance.

Although various control charts have been developed for various distributions, we assume a case in which the pro-
cess outcomes have a binomial distribution. When we monitor the number of defectives as a quality characteristic, pro-
cess outcomes are the number of defectives, and those are usually assumed to be independently distributed in the
binomial distribution. In the context of clinical trials, it is usually assumed that the number of patients per cohort who
experience DLT is independently distributed in the binomial distribution.

We assume an allowable defective rate of π0 in a manufacturing process, which is considered in-control. The role of
control charts is to detect when the defective rate of the process departs from π0: When the defective rate departs from
π0, the process is considered out-of-control. The principle of this detection is basically statistical hypothesis testing. The
in-control state is the null hypothesis H0 : π¼ π0. The out-of-control state is the alternative hypothesis H1 : π≠ π0. This
two-sided hypothesis is used in order to detect insufficient defective rates as well as excessive defective rates, consider-
ing both fraud and low sensitivity of inspection. If process outcomes (binomial variates) are used directly, well-known
hypothesis testing based on binominal distribution including normal approximations is used. Hence, in the context of
process monitoring, if the i-th outcome (the number of defectives) is within the critical values, which are the upper and
lower control limits, the process is in-control. Otherwise, the process is out-of-control. This control chart, in which the
i-th outcome is directly plotted, is called the Shewhart type control chart, which is different from the CUSUM control
chart. In CUSUM statistics, information from past outcomes are accumulated and plotted in the CUSUM control chart,
which is more powerful than the Shewhart type control chart.32

In CUSUM control charts, CUSUM statistics are plotted along the time course. Here, let C�
i and Cþ

i be the CUSUM
statistics for the i-th outcome. C�

i is the statistic for detecting a downward shift: π< π0. Cþ
i is the statistic for detecting

an upward shift: π> π0. If outcomes from the process have binomial distributions, the CUSUM statistics C�
i and Cþ

i are
defined as:

C�
i ¼min 0,C�

i�1þmi�nik
�
u

� �
, ð1Þ

Cþ
i ¼max 0,Cþ

i�1þmi�nik
þ
u

� �
, ð2Þ

where, mi is the outcome (number of defectives) in the i-th sample, and ni is the sample size. Here, C�
0 ¼Cþ

0 ¼ 0, and
C�
i�1 and Cþ

i�1 are the CUSUM statistics for the (i�1Þ-th binomial outcomes plotted in the CUSUM control chart. The
hypothesis that a process is in-control, H0, is rejected if C�

i < h� or Cþ
i > hþ is true, and the process is considered to be

out-of-control.
Here, h� and hþ are prespecified thresholds (control limits) used to determine whether a process is in-control. The

k�u and the kþu are the reference values for effectively detecting the downward and upward step shifts, respectively.
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These reference values are determined by the π0,π1 < π0ð Þ, and π2 > π0ð Þ parameters. The parameters π1, and π2 are the
defective rates in which we are interested in quickly detecting the downward and upward step shifts, which are in point
alternative hypotheses. The reference values are formulated based on the theory of SPRTs for binomial outcomes, as
follows:

k�u ¼�
log 1�π1

1�π0

� �
log π1 1�π0ð Þ

π0 1�π1ð Þ
� � , ð3Þ

kþu ¼�
log 1�π2

1�π0

� �
log π2 1�π0ð Þ

π0 1�π2ð Þ
� � : ð4Þ

The detailed derivation of k�u and kþu is provided in Appendix A.
Page31 explicitly recognized that the detection rule in CUSUM control charts resulted in a sequence of Wald sequen-

tial tests. The primary difference between the SPRT and the detection rule in CUSUM charts is that the hypothesis that
the process is in-control is never accepted in CUSUM charts. As with other control charts, the CUSUM control charts
do not accept the in-control and stop-sampling hypotheses. Instead, the in-control decision can be considered evidence
that the null hypothesis is favored, and the SPRT is restarted at that time.

The control limits h� and hþ play the same role as critical values in hypothesis testing. In control charts, the control
limits h� and hþ are set to have the desired power within a specified erroneous detection rate. In a control chart, detec-
tion performance and erroneous detection rate are assessed by average number of plots by exceeding the control limits
for the first time from the start of control chart, called average run length (ARL).32,33 A larger value of ARL in the in-
control state is desirable since it means that the control chart has a low probability of falsely detecting an out-of-control
state in a truly in-control process. On the other hand, a smaller expected ARL in the out-of-control state is desirable
since it means that the control chart can detect an out-of-control state quickly. Thus, ARL in the in-control state and
ARL in the out-of-control state correspond to type I error and power in hypothesis testing. Notably, CUSUM has the
smallest expected run length for out-of-control among all tests, with the same in-control ARL.34 That is, CUSUM can
detect an out-of-control state more quickly than other control charts while maintaining the same ARL in the in-control
state.

Finally, we present an example of a CUSUM control chart for binomial outcomes. We assume that the in-control
defective rate is π0 ¼ 0:05, and the out-of-control rates which we are interested in detecting quickly are π1 ¼ 0:01 and
π2 ¼ 0:10. One hundred products are randomly drawn from the manufacturing process and inspected daily, so the sam-
ple size is ni ¼ 100, and then the reference parameters are k�u ¼ 0:02499 and kþu ¼ 0:07236. The control limits are set as
h� ¼�4 and hþ ¼ 4, which holds that the ARL for in-control is 113.6. The CUSUM control chart is shown in Figure 1,
and the individual values of the CUSUM statistics, along with the time course, are shown in Table 1. C�

3 departs from
the zero line. However, because the plot is above h�, the process is still considered in-control. Cþ

i rises at the sixth plot
(Cþ

6 ), and Cþ
7 exceeds the upper control limit hþ ¼ 4. Then, the process is now considered out-of-control, and the defec-

tive rate increases again at the seventh plot.

FIGURE 1 An example of a CUSUM control chart
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2.2 | CUSUMIN design framework

The dose finding study setting is similar to the control chart setting. In the dose-finding study, the assignment to the
dose should be continued if the current dose is the MTD. However, if the current dose is not the MTD, dose escalation
or de-escalation should be performed as soon as possible. In manufacturing process quality control, if processes depart
from the in-control state, the out-of-control state should be detected as quickly as possible, and the corrective action
should be conducted to restore the process to the in-control state. In addition, the in-control processes should be
maintained. Thus, the treatments that achieve the MTD correspond to in-control, and the other doses correspond to
out-of-control. As described in Section 2.1, CUSUM can detect an out-of-control state more quickly than other control
charts while maintaining the same ARL in the in-control state. Therefore, the proposed method can be expected to pro-
vide a higher probability of detecting incorrect assignments early while maintaining a higher probability of correct
assignments than the BOIN design during consecutive patient assignments, that is, the method provides a better bal-
ance of maintaining and changing doses.

Assuming that the single agent dose finding study includes J pre-specified doses, and has a target toxicity rate of ϕ,
and a true toxicity rate that increases monotonically with dose levels, where pj is the true toxicity rate at the respective
dose level j j¼ 1,…,Jð Þ, then the true toxicity rate satisfies the relationship p1 ≤ p2 ≤…≤ pJ , with respect to the dose
level. If nj is the total number of patients treated at dose level j and mj patients are those who have experienced toxicity,
then bpj ¼mj=nj is the observed toxicity rate at dose level j.

The CUSUM statistic is defined at each dose level. Hence, we generalize Equations (1) and (2) to Equations (5) and
(6) for the i-th cohort i¼ 1,…,Ij

� �
in the dose level j,:

C�
i,j ¼min 0,C�

i�1,jþmi,j�ni,jk
�
u

� �
, ð5Þ

Cþ
i,j ¼max 0,Cþ

i�1,jþmi,j�ni,jk
þ
u

� �
: ð6Þ

Here, C�
0,j ¼Cþ

0,j ¼ 0, C�
i�1,j and Cþ

i�1,j are the CUSUM statistics for the i�1-th cohort in dose level j, ni,j is the number of
patients of the i-th cohort for dose level j, and mi,j is the number of patients who experienced DLT in the i-th cohort for
dose level j. The CUSUM statistics of the previous cohort, C�

i�1,j and Cþ
i�1,j, are updated based on the newly observed

outcomes of ni,j and mi,j, and then CUSUM statistics for the i-th cohort in dose level j are obtained. This formulation is
a simple expression fixed to dose level j for ease of understanding; a more strictly mathematical expression is shown in
Appendix B.

In the dose-finding study setting, the hypothesis that the process is in-control, H0j, is considered as pj ¼ϕ. The alter-
native two point-hypotheses are H1j : pj ¼ϕ1 and H2j : pj ¼ϕ2, where ϕ1 and ϕ2 are the values which we need to detect:
subtherapeutic dose and too toxic dose, respectively. Though we have J CUSUM statistics, it is possible to detect
whether the toxicity probability of each dose level departs from the target toxicity ϕ since the reference values k�u , k

þ
u

and control limits h�,hþ are the same for all the dose levels. Thus, if the current dose is the MTD, the CUSUM statistics
(5) and (6) are expected to be within the control limits. If the current dose level is lower than the MTD, the CUSUM sta-
tistic C�

i,j goes down and the current dose level is found to be lower than the MTD if the C�
i,j exceeds the lower control

TABLE 1 Individual values of CUSUM control chart example

Day Sample size N of defect C�
i Cþ

i

1 100 4 0 0

2 100 6 0 0

3 100 1 �1.49854222 0

4 100 2 �0.49854222 0

5 100 3 0 0

6 100 9 0 1.76416232

7 100 10 0 4.52832463
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limit h�. If the current dose level is higher than the MTD, Cþ
i,j goes up and the current dose level is found to be higher

than the MTD if the Cþ
i,j exceeds the upper control limit hþ. Consequently, by replacing π0, π1, and π2 of the reference

values in (3) and (4) with ϕ,ϕ1,andϕ2, respectively, the reference value equations become:

k�u ¼�
log 1�ϕ1

1�ϕ

� �
log ϕ1 1�ϕð Þ

ϕ 1�ϕ1ð Þ
� � , ð7Þ

kþu ¼�
log 1�ϕ2

1�ϕ

� �
log ϕ2 1�ϕð Þ

ϕ 1�ϕ2ð Þ
� � : ð8Þ

Note, throughout the study, we specify that ϕ1 ¼ 0:6ϕ and ϕ2 ¼ 1:4ϕ which are the recommended thresholds in the orig-
inal BOIN paper.20

We propose a model-assisted design based on CUSUM control charts theory, herein called CUSUMIN (CUSUM
INterval) design. The algorithm is as follows:

i. Patients in the first cohort are treated at the lowest dose level 1.
ii. At the current dose level j, ni,j is the total number of patients in i-th cohort of dose level j; mi,j patients have experi-

enced DLT in i-th cohort of dose level j. The CUSUM statistics, C�
i�1,j and Cþ

i�1,j, are updated to C�
i,j and Cþ

i,j based
on ni,j and mi,j.

iii. The next dose level, j0, is determined using the following rules:

1ð Þ if Ci,j
þ ≥ hþ and Ci,j

� > h�, j0 ¼ j�1

2ð Þ if Ci,j
þ ≤ hþ and Ci,j

� ≥ h�, j0 ¼ j

3ð Þ if Ci,j
þ ≤ hþ and Ci,j

� < h�, j0 ¼ jþ1

4ð Þ if Ci,j
þ > hþ and Ci,j

� < h�, j0is determined as :

if Ci,j
þ�hþ

�� ��< Ci,j
��h�

�� �� j0 ¼ jþ1

Otherwise j0 ¼ j�1

Here, h� and hþ are the optimal boundaries in CUSUMIN design, and are determined so that the design has good oper-
ational characteristics according to the study objectives. The relationships between Ci,j

�, Ci,j
þ and h�, hþ for each above

condition (1)–(4), are depicted in Figure 2.

FIGURE 2 Relationship of CUSUM statistics and the boundaries
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(ii) and (iii) are repeated until the total number of treated patients reaches the maximum sample size or the trial is
terminated because of excessive toxicity. Liu and Yuan20 proposed implementing the following safety rule, to terminate
the study early if the study agent is excessively toxic in BOIN.

If pr pj >ϕjnj,mj

� �
>0:95 and nj ≥ 3, dose levels j and higher are eliminated from the trial, and the trial is termi-

nated if the first dose level is eliminated. We assume that mj follows a binomial distribution and that pj follows a
vague beta prior pj �Beta 1,1ð Þ.

We implement the same safety rule for CUSUMIN.
As in BOIN,20 after the trial is completed, an isotonic regression is performed to ensure that the estimated

toxicity rates satisfy the monotonicity assumption and that the MTD is selected based on the regression estima-
tor. epj refers to the isotonic regression estimate of the observed toxicity rate bpj for dose level j. The MTD, j�, is selected
as the dose whose isotonic regression estimator of toxicity rate is closest to the target toxicity rate of ϕ, as described
below:

j� ¼ arg min
j¼ 1,…,Jð Þ

epj�ϕ
��� ���:

If multiple doses are tied for epj� , we select the highest dose level that satisfies epj� <ϕ or the lowest dose level that sat-
isfies epj� >ϕ. The isotonic estimator can be obtained by applying the pooled adjunct violator algorithm35,36 to bpj.

As shown by the algorithm above, the dose for the next cohort is decided only by CUSUM statistics and the
predefined interval of the CUSUM control chart in CUSUMIN. The computation of CUSUM statistics and dose escala-
tion/de-escalation are as simple as in BOIN.

Though h� and hþ are determined by the ARLs for in-control and out-of-control in the field of control charts, this is
not appropriate in dose finding because there the primary indicator is not the ARL. In this study, the optimal thresholds
h� and hþ are determined to ensure that the CUSUMIN design performs well in terms of the MTD selection probabil-
ity, the probability of assigning patients to the MTD, and controlling the probability of overdosing. Thus, we propose to
define a utility function u h�,hþ

� �
and search for the optimal interval via simulation studies. Generally, the utility func-

tion can be expressed as follows: The optimal thresholds are determined as the thresholds that maximize the utility
function by grid search in terms of h�,hþ

� �
.

u h�,hþ
� �¼ f 1 r1jh�,hþ

� �þ f 2 r2jh�,hþ
� �þ f 3 r3jh�,hþ

� �
: ð9Þ

Here, r1,r2, and r3 are the factors that comprise the utility, that is, the MTD selection probability, the probability of
assigning patients to the MTD, and the overdosing probability. In addition, f 1, f 2, and f 3 are the functions of these

FIGURE 3 (A) Fifty randomly selected scenarios. (B) The distribution of DLT rates according to dose level from the 10,000 scenarios

with five dose levels

1330 HATAYAMA AND YASUI



factors, respectively. The functions must be determined through discussions with investigators, to reflect the impor-
tance of the factors. If we assume that the importance of the factors in the study are in order of the probability of assig-
ning a patient the MTD, the probability of MTD selection, and the overdosing control, then the following functions can
specify f 1, f 2, and f 3:

f 1 ¼�5� r01� r1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r01 1� r01ð Þp , f 2 ¼�3� r02� r2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 1� r02ð Þp , f 3 ¼

r03� r3
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03 1� r03ð Þp : ð10Þ

Here, r01,r02, and r03 are MTD selection, assigning patients to MTD, and the overdose probability in BOIN, respectively.
Our proposed method is developed in the same framework as BOIN; the study phase, study aim, and importance of
simplicity and transparency for investigators are included; and the utility functions are set as a form of comparison with
the BOIN method. Practically, as described above, u h�,hþ

� �
and r01,r02, and r03 are evaluated by simulation in the same

setting.

3 | SIMULATION STUDY

To examine the performance of our proposed method, we make comparisons of its operational characteristics with
BOIN design via simulation studies. For fair comparison, we explore the optimal thresholds for the BOIN design in the
simulation studies in the same manner as for the CUSUMIN design. As comparative model-assisted design methodolo-
gies, mTPI design and Keyboard design are also compared in this simulation.

3.1 | Simulation settings

In the simulation studies, we generate true dose-toxicity scenarios based on the pseudo-uniform algorithm proposed by
Clertant and O0Quigley,37 to avoid cherry-picking scenarios biased toward specific methods. Given a target toxicity rate
ϕ and total dose level J, true dose-toxicity scenarios are generated as follows:

TABLE 2 Optimal boundaries and the value of utility function for CUSUMIN designs and BOIN designs

Number of doses Method

Target ϕ

0.2 0.25 0.3

5 doses BOIN Optimal boundaries for Original
BOIN (ϕ1, ϕ2)

(0.12, 0.28) (0.15, 0.35) (0.18, 0.42)

Optimal boundaries for Original
BOIN (ϕ1, ϕ2)

(0.065, 0.25) (0.08125, 0.35) (0.1425, 0.525)

Value of Utility function u(h �, h+) 2.26 12.74 6.13

CUSUMIN Optimal boundaries (h�, h +) (�1.3, 0.9) (�1.2, 2.7) (�0.8, 0.8)

Value of Utility function u(h �, h+) 11.92 11.21 2.02

r01, r02, r03 (%) 53.37, 50.59, 17.66 56.30, 45.48, 18.76 54.05, 44.09, 18.94

8 doses BOIN Optimal boundaries for Optimal
BOIN (ϕ1, ϕ2)

(0.12, 0.28) (0.15, 0.35) (0.18, 0.42)

Optimal boundaries for Optimal
BOIN (ϕ1, ϕ2)

(0.04, 0.25) (0.08125, 0.425) (0.1425, 0.4875)

Value of Utility function u(h �, h+) 10.66 16.42 4.80

CUSUMIN Optimal boundaries (h�, h +) (�0.9, 0.6) (�0.6, 0.8) (�0.8, 1.9)

Value of Utility function u(h �, h+) 17.17 4.12 5.81

r01, r02, r03 (%) 44.87, 39.09, 18.39 46.65, 34.45, 17.26 42.99, 32.19, 18.31
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i. Select dose level k from J dose levels as the MTD with equal probabilities.
ii. Sample M�Beta max J�k;0:5f g,1ð Þ, where, k is the selected dose level in the previous step (i) and set an upper

bound B¼ϕþ 1�ϕð Þ�M for the toxicity probabilities.
iii. Repeat sampling J toxicity probabilities uniformly on 0,B½ � until these correspond to a scenario in which the dose

level k is the MTD.

Repeat (i)–(iii) until a sufficient number of scenarios is generated. In these scenarios, the MTD can be defined as the
dose whose DLT rate is closest to the target toxicity rate ϕ. In our simulation, MTD is defined as the dose whose DLT
rate is closest to the target toxicity ϕ with pk�ϕj j<0:05.

In the simulation studies, we consider the target toxicity rates of ϕ¼ 0:20,0:25, 0:30 and dose levels of J ¼ 5 and 8,
with a maximum sample size of 36 patients, in 12 cohorts of three patients.

Under each setting, 10,000 scenarios are randomly generated, and trials are conducted once for each scenario. In
Figure 3, 50 randomly selected scenarios and the distribution of the toxicity probabilities by dose level from the 10,000
scenarios with ϕ = 0.20 and J ¼ 5 are displayed. The results exhibit a variety of dose-toxicity curve shapes.

For CUSUMIN design, the optimal thresholds h�,hþ
� �

are determined in the simulation. In this simulation study,
we use the utility function Equation (9) with Equation (10) described in Section 2.2. To evaluate Equation (9), we first
evaluate r01,r02, and r03 via simulation, and then evaluate Equation (9) in the range of h�,hþ

� �¼ �4,0½ �� 0,4½ �, with a
width of 0.1 for each threshold. In the BOIN design, ϕ1 ¼ 0:6ϕ and ϕ2 ¼ 1:4ϕ are used for the boundaries as rec-
ommended in the original BOIN paper.20 We call this design the Original BOIN hereafter. In the simulation studies, for
fair comparison, we evaluate the BOIN design with boundaries ϕ1,ϕ2ð Þ optimized based on the same utility function
used for the CUSUMIN design. For optimizing boundaries of the BOIN design, the utility function (9) can be described
as the function of ϕ1 and ϕ2, u ϕ1,ϕ2ð Þ¼ f 1 r1jϕ1,ϕ2ð Þþ f 2 r2jϕ1,ϕ2ð Þþ f 3 r3jϕ1,ϕ2ð Þ. We evaluate u ϕ1,ϕ2ð Þ in the range
of ϕ1,ϕ2ð Þ¼ 0:025kϕ, 1þ0:025kð Þϕ½ �2, k¼ 1,…,39ð Þ. The optimal thresholds for the BOIN design are determined as the
thresholds that maximize the utility function by grid search in terms of ϕ1,ϕ2ð Þ, the same way as for the CUSUMIN
design. We call the BOIN design with optimized boundaries the Optimal BOIN hereafter to distinguish it from the Orig-
inal BOIN. The optimal thresholds h�,hþ

� �
and ϕ1,ϕ2ð Þ, the values of the utility function, and r01,r02, and r03, which

are used for evaluation of Equation (9), are shown in Table 2. For the comparison, the optimal threshold for Original
BOIN are also shown in Table 2.

We also evaluate mTPI design and Keyboard design to provide more information about the position of our proposed
method. We apply the same safety rule and MTD selection rule as in CUSUMIN design also to Original BOIN, Optimal
BOIN, mTPI, and Keyboard for the comparison of operational characteristics.

R for Windows, release 4.1.0 is used for the simulation studies.

TABLE 5 Optimal boundaries and the value of utility function of CUSUMIN designs and BOIN designs for sensitivity analysis

Number of doses Method

Target ϕ

0.2 0.25 0.3

5 doses BOIN Optimal boundaries for Optimal
BOIN (ϕ1, ϕ2)

(0.04, 0.22) (0.08125, 0.35) (0.1125, 0.45)

Value of Utility function u(h �, h+) 3.60 14.22 6.58

CUSUMIN Optimal boundaries (h�, h +) (�1.3, 0.9) (�1.2, 2.7) (�0.8, 0.8)

Value of Utility function u(h �, h+) 17.06 17.11 9.26

r01, r02, r03 (%) 53.37, 50.59, 17.66 56.30, 45.48, 18.76 54.05, 44.09, 18.94

8 doses BOIN Optimal boundaries for Optimal
BOIN (ϕ1, ϕ2)

(0.04, 0.25) (0.08125, 0.425) (0.1425, 0.4875)

Value of Utility function u(h �, h+) 10.64 11.49 5.55

CUSUMIN Optimal boundaries (h�, h +) (�1.0, 2.8) (�0.6, 0.8) (�0.8, 1.9)

Value of Utility function u(h �, h+) 18.56 7.75 12.13

r01, r02, r03 (%) 44.87, 39.09, 18.39 46.65, 34.45, 17.26 42.99, 32.19, 18.31
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3.2 | Results

The CUSUMIN design is evaluated by comparing it with the Original BOIN design and the Optimal BOIN design. In
addition, for reference, mTPI design and Keyboard design are also compared with the proposed design. The measures
we evaluate include the MTD selection rate, percentage of patients treated at MTD, percentage of patients treated above
MTD, and percentage of the study in which over 60% of patients are treated above MTD (hereinafter, risk of overdosing
60%) for 10,000 randomly generated scenarios with target toxicity rates ϕ¼ 0:20,0:25, and 0:30, and dose levels J ¼ 5
and 8.

The simulation results of each method across 10,000 scenarios with five dose levels are shown in Table 3. Among all
target toxicity rates, the percentages of patients treated above MTD and the values of risk of overdosing 60% for the
CUSUMIN design are the lowest among the designs. The mTPI design is the worst in terms of overdosing: its values of
risk of overdosing 60% are the largest among the designs, and the percentage of patients treated above MTD is the larg-
est in almost cases. The percentages of patients treated above MTD of Optimal BOIN are the second lowest, and risk of
overdosing 60% shows almost the same result (slightly higher when target toxicity is 0.25). The assignment of
CUSUMIN designs is noticeably safer. For example, in the case of ϕ¼ 0:2, the percentage of patients treated above
MTD in the CUSUMIN design is 7.48, while those of Original BOIN, Optimal BOIN, mTPI and Keyboard are 17.66,
16.29, 23.31, and 17.26, respectively. This tendency is shown throughout the target toxicity rates. The MTD selection
rates of the CUSUMIN design are similar to those of the other designs throughout the target toxicity rates. This shows
that CUSUMIN design provides safer dose escalation and de-escalation while achieving similar performance on selec-
tion of MTD. It is also observed that its percentage of patients treated at MTD is slightly lower than those of the other
designs, due to the safer dose assignment, which CUSUMIN provided.

We evaluate the case of eight dose levels in the same way. The results are shown in Table 4. The same trends which
are shown with five dose levels is observed. The percentage of patients treated above MTD and risk of overdosing 60%
of CUSUMIN are the lowest among the designs, and those of Optimal BOIN is the second lowest among the designs.
MTD selection rates of the CUSUMIN design are similar to the other designs. The percentage of patients treated at
MTD is slightly lower than for the other designs, due to the safer dose assignment which CUSUMIN provided. In the
eight doses case, CUSUMIN design still provides safer dose escalation and de-escalation among the designs while pro-
viding similar MTD selection rates throughout the target toxicity rates.

Although we use the utility function (9) with (10), the optimal threshold depends on the utility function. Thus, the
performance of the CUSUMIN design and of Optimal BOIN vary according to the specification of the utility function.
To evaluate the sensitivity of the utility function specification, we conduct a sensitivity analysis using the utility func-
tion (9) with the different f 1, f 2, and f 3 variables shown below.

f 1 ¼�3� r01� r1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r01 1� r01ð Þp , f 2 ¼�2� r02� r2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 1� r02ð Þp , f 3 ¼

r03� r3
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r03 1� r03ð Þp : ð11Þ

In this sensitivity analysis, we specify the utility function with importance in the order of the MTD selection rate, assig-
ning patients to MTD, and the overdosing control. The optimal thresholds h�,hþ

� �
and ϕ1,ϕ2ð Þ, the values of utility

function, and r01,r02, and r03 which are used for evaluation of Equation (11), are shown in Table 5. Almost all thresholds
produced the same results as in Table 2 and are displayed in bold. In addition, actual performance results of Optimal
BOIN and CUSUMIN are almost always the same as in Tables 3 and 4 and are displayed in Tables 6 and 7 in bold.
These results further demonstrated that CUSUMIN design provides a safer and more accurate dose escalation/de-
escalation rule, while maintaining a similar MTD selection rate. Our findings confirm that the CUSUMIN design is
robust against the specification of the utility function.

4 | DISCUSSION

We developed CUSUMIN as a new method of model-assisted design based on a framework similar to that of BOIN. The
proposed method is based on the CUSUM statistics, which was originally created for control charts for manufacturing
process monitoring, as an extension of SPRT. Intensive simulation shows that our proposed method is superior to
BOIN, mTPI, and Keyboard in the sense that the proposed method provides the lowest probability of overdosing among
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the designs evaluated in this study, while maintaining similar performance in MTD selection. The characteristics of our
proposed method, providing safer assignment while maintaining MTD selection performance, are attractive from the
point of view of protecting the patient from the risk of overdosing. The proposed method can provide more accurate
patient assignments than BOIN using CUSUM statistics. Theoretically, a more accurate patient assignment to the dose
can be understood as an advantage of the characteristics of CUSUM statistics. This statistic, which is created for control
charts, has proven to be optimal in the sense that CUSUM has the smallest expected run length of out-of-control among
all tests with the same in-control ARL.34 This is why the proposed method can provide a higher probability of detecting
incorrect assignments early while maintaining a higher probability of correct assignments than the BOIN design during
consecutive patient assignments, that is, the method provides a better balance of maintaining and changing the doses.

The dose determination in our proposed method is achieved by comparing CUSUM statistics and boundaries, and
the calculation of CUSUM statistics is simple. The rule of dose determination is completely pre-defined and transparent,
similar to those of other model-assisted designs.

To implement our proposed method, the CUSUM statistics boundaries must be determined in advance. In this
study, we used the utility function to determine the optimal boundaries of the CUSUMIN design. The utility function
in this study consists of the following factors: MTD selection probability, probability of assigning patients to MTD, and
overdosing probability. The utility function varies among studies, indications, drug properties, and so forth, and it is
necessary to determine the appropriate utility function by discussion with investigators. In this study, we evaluated the
sensitivity of the utility function via a sensitivity analysis of the simulation studies. The sensitivity analysis confirms
that the CUSUMIN design is robust against the specification of the utility function.

We evaluated the performance of our proposed method via intensive simulation studies, in which 10,000 random
scenarios are used to avoid cherry-picking scenarios toward specific methods. The optimal boundaries for CUSUM
designs are determined according to the simulation results of the 10,000 generated random scenarios to ensure that the
design has good performance in terms of safety, accuracy of MTD selection, and assignment of a large portion of
patients to MTD, on average, to the various 10,000 scenarios. We determined the optimal boundaries for BOIN design
based on the same utility function used for CUSUMIN design, to perform a fair comparison. Though we examined the
performance of our proposed method mainly based on random scenarios, if the feasible specific dose toxicity curve is
available from an analogous prior study with similar drugs or pre-clinical information when the study is planned, the
optimal boundaries can be determined based on several specific dose toxicity curve scenarios. We conducted an addi-
tional simulation to evaluate the performance of the CUSUMIN design with respect to specific dose toxicity curves. The
results of the additional simulation are shown in Table S3 of the web-based appendix. As expected, the CUSUMIN
design is shown to reduce the probability of overdosing compared with BOIN and the other model-assisted designs,
while maintaining similar performance in MTD selection.
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APPENDIX A

The CUSUM statistics and the derivation of k�
u and kþ

u

In Appendix A, we explain that the CUSUM statistics can be understood as an expansion of the SPRT, and derive the
parameters k�u and kþu .

The relationship of CUSUM and SPRT
Consider a simple null hypothesis, the state of in-control (H0 : π¼ π0Þ and a simple alternative hypothesis, the state of
out-control (H1 : π¼ π1 ≠ π0). Associated with each hypothesis is a probability density function, f 0 xð Þ and f 1 xð Þ, respec-
tively. Let Xif g be a sequence of independent observations with length n. The log-likelihood ratio in terms of f 0 xð Þ and
f 1 xð Þ based on Xif g can be expressed as follows:

log Λn ¼
Xn
i¼1

log
f 1 Xið Þ
f 0 Xið Þ :

Let A and B A<Bð Þ be the selected boundaries for the SPRT. The SPRT tests the hypothesis based on the
following rule.28,32

(i) log Λn ≤A Accept H0

(ii) log Λn ≥B Accept H1

(iii) A< log Λn <B Samples new observation

The primary difference between CUSUM and SPRT is that the hypothesis of in-control, H0, is never accepted in
CUSUM. That is, it is never judged that the process is in-control and stops sampling. Instead, CUSUM restarts the test
each time the evidence favors the null hypothesis H0. This CUSUM rule, the restarting of the test, can be described
algebraically, as below.32

C�
i ¼min 0,C�

i�1þ log
f 1 Xið Þ
f 0 Xið Þ �A

� 	
, 　　　 if π0 < π1ð Þ

Cþ
i ¼max 0,Cþ

i�1þ log
f 1 Xið Þ
f 0 Xið Þ �A

� 	
:　　　 if π0 > π1ð Þ

C�
0 ¼Cþ

0 ¼ 0
� �

In CUSUM, A¼ 0 is used as the boundary to favor H0.
32 Therefore, Cþ

i and C�
i are simplified as follows:

C�
i ¼min 0,C�

i�1þ log
f 1 Xið Þ
f 0 Xið Þ

� 	
, 　　　 if π0 < π1ð Þ ðA1Þ

Cþ
i ¼max 0,Cþ

i�1þ log
f 1 Xið Þ
f 0 Xið Þ

� 	
:　　　 if π0 > π1ð Þ ðA2Þ

The derivation of k�
u AND kþ

u

Here, we introduce the parameters π1 and π2 as the defective rates of interest for detecting downward and upward step
shifts quickly, which are in point alternative hypotheses. Thus, the simple hypotheses can be expressed as follows:

H0 : π¼ π0
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H1 : π¼ π1 π1 < π0ð Þ

H2 : π¼ π2 π2 > π0ð Þ

In this study, we analyze binary toxicity outcomes based on binomial distribution. The density functions f 0 xð Þ, f 1 xð Þ,
and f 2 xð Þ associated with H0, H1, and H2, can be written as f 0 xð Þ¼ binomial ni,π0ð Þ, f 1 xð Þ¼ binomial ni,π1ð Þ, and
f 2 xð Þ¼ binomial ni,π2ð Þ, where, ni is the sample size of i-th sequence (cohort size in this study). The likelihood ratio in
terms of f 0 xð Þ and f 1 xð Þ based on the observation Xi is expressed as

log
f 1 Xið Þ
f 0 Xið Þ ¼ nilog

1�π1
1�π0

þXilog
π0 1�π1ð Þ
π1 1�π0ð Þ¼ log

π0 1�π1ð Þ
π1 1�π0ð Þ Xiþnilog

1�π1
1�π0



log

π0 1�π1ð Þ
π1 1�π0ð Þ

� 	
ðA3Þ

Replace log1�π1
1�π0

=logπ0 1�π1ð Þ
π1 1�π0ð Þ by k

�
u in (A3), the expression of (A4) is obtained.

log
f 1 Xið Þ
f 0 Xið Þ ¼ log

π0 1�π1ð Þ
π1 1�π0ð Þ Xi�nik

�
u

� � ðA4Þ

Similarly, the likelihood ratio in terms of f 0 xð Þ and f 2 xð Þ is given by (A5).

log
f 2 Xið Þ
f 0 Xið Þ ¼ log

π0 1�π1ð Þ
π1 1�π0ð Þ Xiþnilog

1�π2
1�π0



log

π0 1�π2ð Þ
π1 1�π0ð Þ

� 	
¼ log

π0 1�π2ð Þ
π2 1�π0ð Þ Xi�nik

þ
u

� � ðA5Þ

Since logπ0 1�π1ð Þ
π1 1�π0ð Þ and logπ0 1�π2ð Þ

π2 1�π0ð Þ are constants, it is equivalent to use Xi�nik
�
u and Xi�nik

þ
u instead of log f 1 Xið Þ

f 0 Xið Þ and
log f 2 Xið Þ

f 0 Xið Þ for the test, because the boundaries h� and hþ are optimized using Xi�nik
�
u and Xi�nik

þ
u . Then, (A1) and

(A2) are simplified to (A6) and (A7), respectively.

C�
i ¼min 0,C�

i�1þXi�nik
�
u

� �
, ðA6Þ

Cþ
i ¼max 0,Cþ

i�1þXi�nik
þ
u

� �
: ðA7Þ

The above confirms that k�u and kþu are expressed by Equations (3) and (4), respectively. The constants h� and hþ are
determined as the optimal boundaries for the normalized values of C�

i and Cþ
i .

APPENDIX B

To avoid complicated expressions in the CUSUMIN description, formulas (5) and (6) provide simple expressions. The
strictly mathematical expression is as follows:

Let ij be the index of the cohorts treated at dose level j. Thus, if k cohorts have been treated, then k¼PJ
j¼1ij. Let

mj ij
� �

be the number of patients with DLT in the ij-th cohort ij ¼ 0,…, Ij
� �

in dose level j, where m1 0ð Þ¼ � � � ¼mJ 0ð Þ¼ 0.
We expand the CUSUM statistics C�

i and Cþ
i to C�

j ij
� �

and Cþ
j ij
� �

for the ij-th cohort at dose level j,

C�
j ij
� �¼min 0,C�

j ij�1
� �þmj ij

� ��nj ij
� �

k�u
� �

,

Cþ
j ij
� �¼max 0,Cþ

j ij�1
� �þmj ij

� ��nj ij
� �

kþu
� �

:

Here, C�
j 0ð Þ¼Cþ

j 0ð Þ¼ 0, C�
j ij�1
� �

and Cþ
j ij�1
� �

are the CUSUM statistics for ij�1
� �

-th cohort at dose level j, nj ij
� �

is the number of patients in the i-th cohort at dose level j, and mj ij
� �

is the number of patients who experienced DLT in
i-th cohort at dose level j. CUSUM statistics for i-th cohort at dose level j are updated based on the CUSUM statistics of
the previous cohort C�

j ij�1
� �

and Cþ
j ij�1
� �

, and the newly observed outcomes of nj ij
� �

and mj ij
� �

.
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