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Novel sensing technology in fall risk
assessment in older adults: a systematic
review
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Abstract

Background: Falls are a major health problem for older adults with significant physical and psychological consequences.
A first step of successful fall prevention is to identify those at risk of falling. Recent advancement in sensing technology
offers the possibility of objective, low-cost and easy-to-implement fall risk assessment. The objective of this systematic
review is to assess the current state of sensing technology on providing objective fall risk assessment in older adults.

Methods: A systematic review was conducted in accordance to the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis statement (PRISMA).

Results: Twenty-two studies out of 855 articles were systematically identified and included in this review. Pertinent
methodological features (sensing technique, assessment activities, outcome variables, and fall discrimination/prediction
models) were extracted from each article. Four major sensing technologies (inertial sensors, video/depth camera,
pressure sensing platform and laser sensing) were reported to provide accurate fall risk diagnostic in older adults.
Steady state walking, static/dynamic balance, and functional mobility were used as the assessment activity. A diverse
range of diagnostic accuracy across studies (47.9% - 100%) were reported, due to variation in measured kinematic/
kinetic parameters and modelling techniques.

Conclusions: A wide range of sensor technologies have been utilized in fall risk assessment in older adults. Overall,
these devices have the potential to provide an accurate, inexpensive, and easy-to-implement fall risk assessment.
However, the variation in measured parameters, assessment tools, sensor sites, movement tasks, and modelling
techniques, precludes a firm conclusion on their ability to predict future falls. Future work is needed to determine a
clinical meaningful and easy to interpret fall risk diagnosis utilizing sensing technology. Additionally, the gap between
functional evaluation and user experience to technology should be addressed.
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Background
Falls are the leading cause of accidental death and injury
in older adults [1]. One in 3 older adults over the age of
65 and 1 in 2 over 85 years of age will experience a fall
in the next year and a significant portion of those that
fall will suffer an injury [2]. Given the adverse conse-
quence of falls in older adults, considerable research has
focused on identifying individual fall risk factors and
targeted fall prevention [2–6]. This collective research
has revealed that falls and fall-related injuries are

predictable and preventable with interventions targeting
modifiable risk factors such as muscle strength, balance
and mobility [7]. It is also maintained that effective fall
prevention programs are cost effective and an appropri-
ate method to maximize quality of life and maintain
independence of older adults [7]. The first step to an ef-
fective fall prevention program is to identify those at risk
of falling and then to determine the most appropriate in-
terventions to reduce or eliminate falls [2].
While the American Geriatric society as well as the

Centers for Disease Control and Prevention (CDC)
recommends screening of fall risk for older adults at
least annually by physicians [8], effective fall risk
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screening is still underutilized and not routinely inte-
grated into clinical practice. There are several reasons
for the lack of fall risk assessment in current practice
ranging from overreliance on unreliable subjective
measures, lack of cost-effective assessment technology
and clinical time constraints.
Therefore, accurate, inexpensive, easy to administer

fall risk assessments that can be undertaken regularly
are warranted. Novel technology, such as inertial sen-
sors, smartphone, low-cost video/depth camera, pressure
sensors and motion ambient sensors, offer an alternative
approach that can efficiently capture and analyze move-
ment data and may provide an easy-to-implement
objective fall risk assessment. Inertial sensor usually con-
tains miniaturized accelerometers and/or gyroscopes
that quantify movement pattern/abnormality by various
time and frequency domain parameters. Low cost video/
depth sensing camera (i.e. Microsoft Kinect™) provides
marker-less 3D motion tracking of body joints by using
its built-in and externally validated human skeleton
modelling algorithms. It successfully eliminates the need
for markers and calibration procedures characteristic of
traditional motion capture, thereby enabling fast and
patient-friendly 3D body motion analysis [9]. Low cost
pressure sensing platform (Wii board, pressure sensitive
insole / pad, etc.) provides critical information on pos-
tural stability as well as temporal pattern of stepping/gait
[10, 11]. Motion ambient sensing (Radar/Laser, etc.)
technology can unobtrusively track movement of differ-
ent body segments, and identify the movement
abnormality in impaired individuals. Mobile phone has
also been proposed as a potential instrument for
balance/mobility tracking by using its built-in inertial
sensor and/or camera [12–14].
To date, fall risk assessment technology has incorpo-

rated various screening tools, assessment activities,
outcome variables, and fall discrimination/prediction
models. There have been a few attempts to synthesize
fall risk assessment using wearable sensing technology.
A systematic review in 2013 by Howcroft and colleagues
[15] focused entirely on inertial sensors use in fall risk
assessment. It provided an overview of study methodolo-
gies, parameters derived and model effectiveness in faller
prediction/discrimination, and concluded inertial sensors
have the potential to provide objective fall risk assess-
ment in older adults. Another review by Shany and col-
leagues in 2012 [16] provided a practical discussion on
various issues concerning the use of using wearable sen-
sors in a fall risk assessment context (i.e. whether it
should or can be used in unsupervised environment). In
a separated review, Shany et al. [17] raised concerns of
over-inflated diagnostic accuracy in wearable sensor-
based fall risk testing, primarily due to small sample size,
questionable modelling decisions and inappropriate

validation methodologies. However, there is a lack of
knowledge about the use of other technologies (non-
wearable) in fall risk assessment. Rapid technology ad-
vancements and additional research in recent years ne-
cessitates a timely systematic review of technology used
in fall risk assessment. Consequently, the aim of this
paper is to systematically evaluate the use of technology
in performing fall risk assessments, and more specific-
ally, to evaluate the test, sensor, algorithm effectiveness
on predicting and/or discriminating older adult fallers
from non-fallers.

Methods
Search strategy and criteria
This systematic review was conducted in accordance to
the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis statement (PRISMA) [18]. Keyword
search was performed in PubMed, Web of Science,
Cochrane Library and CINAHL on May 2017. The
search algorithm included all possible combinations of
keywords (with wildcard characters and MeSH term)
from the following 4 groups: (fall risk* OR fall predict*
OR fall screen* OR fall assess*) and (walk OR locomot*
OR ambulat* OR mobility OR gait OR balance OR pos-
tural OR posture OR reaction time OR strength) and
(Aged OR geriatr* OR gerontol* OR senior OR elder*
OR old*) and (acceler* OR inertia* OR gyro* OR wear-
able OR camera OR sens* OR phone* OR technolog*
OR tool OR instrument*), Whereas articles with one or
more of the following keywords were excluded: (exercise
OR Intervention OR training OR free living OR daily
OR activity). Reference lists from the identified publica-
tions were reviewed to identify additional research arti-
cles of interest.
Studies that met all of the following criteria were in-

cluded in the review: 1) peer-reviewed publication in
English language; 2) published since 2011 (to avoid re-
dundant overlapping results with previous reviews con-
ducted in 2012 [16] and 2013 [15]); 3) objective fall risk
assessment conducted using commercially available
technology (Inertial sensor, Video/depth Camera, Wii
balance board, smartphone, pressure sensing insole, am-
bient sensing); 4) involvement of a geriatric population
(based on a mean participant age greater than 60 years);
5) fall risk identified through accepted methods
(physician screening, fall history, prospective fall inci-
dent tracking, or proven clinical fall risk assessment tool
(Berg Balance Scale - BBS, Timed Up and Go - TUG,
Short Physical Performance Battery - SPPB, Physiological
Profile Assessment - PPA, Tinetti Performance Oriented
Mobility Assessment - Tinetti, etc)); 6) the fall risk as-
sessment involves a structured routine of movement
sequence, and not free daily-living activity tracking; 7)
evaluate the effectiveness (i.e. accuracy, specificity,
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sensitivity) [19] of the technology in identifying high risk
faller. Studies were excluded from the review if they
meet one or more of the following criteria: 1) Proof of
concept on the technology use in movement tracking; 2)
technologies that focused on fall detection; 3) studies
that investigated fall risk solely in a neurological im-
paired population.
Titles and abstracts of the articles identified through

keyword search were screened against the study selec-
tion criteria. Potentially relevant articles were retrieved
for evaluation of the full text. The results of this search
are shown in Fig. 1.

Results
Study selection
Figure 1 depicts the article identification and selection
process. Eight hundred fifty-five unduplicated articles
were identified through keyword and reference search.
Eight hundred twenty-four articles were excluded
after title and abstract screening. The remaining 31
articles were full text read. A total of 9 articles were
excluded due to following reasons: 1) lack of diagnos-
tic accuracy measures (n = 8), 2) duplicated cohort
(i.e. studies based on identical samples) in assessment
(n = 1). The remaining 22 articles were included in
the review [10, 20–33].

Study analysis
Table 1 list the pertinent methodological features (faller
identification method, participant demographics, sensor
technology employed, sensor placement location if ap-
plicable, structured movement sequence used for fall risk
assessment, outcome parameters used, modelling tech-
nique and performance for faller discrimination/predic-
tion) from each included article.

Faller identification
Individuals at high risk of falls were identified with vari-
ous techniques including retrospective fall history (11/
22), prospective fall occurrence (7/22), validated clinical
assessment (5/22), or physician exam (1/22). Two stud-
ies combined the retrospective fall history and clinical
assessments scores to identify high-risk fallers [34, 35].
The length of fall history recall (6 months to 1 year) and
prospective fall occurrence follow up period (6 months
to 2 years), as well as the number of falls chosen for
faller classification (at least one fall, more than 2 falls,
one fall requiring medical attention) also varied between
studies.

Sensor/activities used for fall risk assessment
Inertial sensors were used in 17 investigations. Of those
17, 11 utilized a sensor placed on the lower back area
for quantifying center of mass movement [10, 22, 24, 26,

Fig. 1 Article selection flow chart

Sun and Sosnoff BMC Geriatrics  (2018) 18:14 Page 3 of 10



Ta
b
le

1
St
ud

y
C
ha
ra
ct
er
is
tic
s

A
ut
ho

r/
Ye
ar

Fa
lle
r

Id
en

tif
ic
at
io
n

M
et
ho

d

Po
pu

la
tio

n/
Sa
m
pl
e

Si
ze
/A
ge

(M
ea
n
±
SD

)
Te
ch
no

lo
gy

Se
ns
or

pl
ac
em

en
t

if
ap
pl
ic
ab
le

Te
st
Pr
ot
oc
ol

O
ut
co
m
e
M
ea
su
re
s

M
od

el
M
od

el
va
lid
at
io
n

A
cc
ur
ac
y

Sp
ec
ifi
ci
ty

Se
ns
iti
vi
ty

A
U
C

Ba
ut
m
an
s

et
al
.2
01
1
[3
4]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st
6-

m
on

th
,

or
TU

G
>
15

s,
or

Ti
ne

tt
i<

=
24

F
(n
=
40
,8
0.
6
±
5.
4)
,

N
F
(n
=
41
,7
9.
1
±
4.
9)
,

YA
(n
=
40
,2
1.
6
±
1.
9)

A
si
ng

le
Tr
i-a
xi
al

A
cc
el
er
om

et
er

Sa
cr
um

St
ra
ig
ht

lin
e

w
al
ki
ng

G
ai
t
Sp
ee
d,

St
ep

tim
e
sy
m
m
et
ry
,

st
ep

/s
tr
id
e

re
gu

la
rit
y

Lo
gi
st
ic

re
gr
es
si
on

.
O
nl
y
ga
it

sp
ee
d
w
as

ef
fe
ct
iv
e
fo
r

di
sc
rim

in
at
io
n

an
al
ys
is

N
A

77
78

78
0.
83

C
ab
y
et

al
.

20
11

[3
5]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st

1-
ye
ar
,w

ith
ad
di
tio

na
l

ph
ys
ic
ia
n

sc
re
en

in
g

F
(n
=
15
,8
0.
1
±
5.
3)
,

N
F
(n
=
5,
83
.2
±
4.
3)

10
Tr
i-a
xi
al

A
cc
el
er
om

et
er

se
ns
or

ne
tw

or
k

Kn
ee
,A
nk
le
,

El
bo

w
,W

ris
t,

Sh
ou

ld
er

St
ra
ig
ht

lin
e

w
al
ki
ng

67
ga
it
ac
ce
le
ra
tio

n
fe
at
ur
es

ex
tr
ac
te
d(
te
m
po

ra
l,

fre
qu

en
cy
,p

ow
er
,

an
d
co
rr
el
at
io
n

be
tw

ee
n
se
ns
or
s)

RB
FN

SV
M
,

KN
N
,N

B
Le
av
e-
on

e-
ou

t
cr
os
s
va
lid
at
io
n

75
-1
00

40
-1
00

93
-1
00

Ja
ns
en

et
al
.

20
11

[3
6]

Fa
ll
hi
st
or
y

(>
=
1)

un
kn
ow

n
le
ng

th
,

or
TU

G
>
15

s,
or

Ti
ne

tt
i<

=
24

F
(n
=
40
,8
0.
6
±
5.
4)
,

N
F
(n
=
40
,7
9.
0
±
5.
0)

A
si
ng

le
Tr
i-a
xi
al

A
cc
el
er
om

et
er

Sa
cr
um

St
ra
ig
ht

lin
e

w
al
ki
ng

22
ac
ce
le
ra
tio

n
fe
at
ur
es

5
gr
ou

ps
(s
te
p
co
un

t,
st
ep

tim
e,
st
ep

le
ng

th
,

st
ep

sy
m
m
et
ry

an
d

st
ep

RM
S)

N
B,
M
LP
,S
VM

,
LW

L,
D
ec
is
io
n

Tr
ee
,N

EA
T

Te
n-
fo
ld

cr
os
s

va
lid
at
io
n

(M
ax

va
lu
e)

61
-8
2

62
-8
4

58
-8
0

Li
u
et

al
.

20
11

[3
7]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st

1-
ye
ar

O
A
(n
=
68
,8
0.
1
±
4.
4;

M
F/
N
M
F
=
9/
59
)

M
F
(>

=
2
fa
lls
)

A
Tr
i-a
xi
al

A
cc
el
er
om

et
er

W
ai
st

TU
G
,A
ST
,S
TS
5

12
6
fe
at
ur
es

(t
em

po
ra
l,
en

er
gy
,

sp
ec
tr
al
)

Li
ne

ar
m
ul
tip

le
re
gr
es
si
on

,

Le
av
e-
on

e-
ou

t
cr
os
s
va
lid
at
io
n

78
90

59

M
ar
sc
ho

lle
k

et
al
.2
01
1
[3
8]

1-
ye
ar

pr
os
pe

ct
iv
e
fa
ll

oc
cu
rr
en

ce
(>

=
1)

O
A
(n
=
46
,8
1.
3;

F/
N
F
=
19
/2
7)

A
Tr
i-a
xi
al

A
cc
el
er
om

et
er

W
ai
st

TU
G
,S
tr
ai
gh

t
lin
e
w
al
ki
ng

Ki
ne

tic
En
er
gy
,

Pe
lv
is
Sw

ay
,

G
ai
t
va
ria
bi
lit
y,

St
ep

tim
e/
le
ng

th
,

nu
m
be

r
of

st
ep

s
fo
r

TU
G
,s
pe

ct
ra
l

de
ns
ity

pa
ra
m
et
er
s

D
ec
is
io
n
tr
ee
,

lo
gi
st
ic

re
gr
es
si
on

Te
n-
fo
ld

cr
os
s

va
lid
at
io
n

(m
ea
n
va
lu
e)

65
-8
0

78
-9
6

42
-7
4

0.
65
-

0.
87

Pa
te
rs
on

et
al
.

20
11

[4
0]

1-
ye
ar

pr
os
pe

ct
iv
e

fa
ll
oc
cu
rr
en

ce
(>

=
1)

F
(n
=
54
,6
9.
0
±
6.
9)

N
F
(n
=
43
,6
8.
4
±
7.
3)

Tw
o
Tr
i-a
xi
al

A
cc
el
er
om

et
er
s

Fo
ot

m
ou

nt
7
m
in

w
al
ki
ng

on
a
ci
rc
ui
t

St
rid

e
dy
na
m
ic

(F
ra
ct
al
Sc
al
in
g

In
de

x)

Lo
gi
st
ic

re
gr
es
si
on

N
A

67
58
.1

74
.1

W
ei
ss

et
al
.

20
11

[3
9]

Fa
ll
hi
st
or
y,
pa
st

1-
ye
ar

(>
=
2)

F
(n
=
23
,7
6.
0
±
3.
9)

N
F
(n
=
18
,6
8.
3
±
9.
1)

A
Tr
i-a
xi
al

A
cc
el
er
om

et
er

Lo
w
er

ba
ck

TU
G

D
ur
at
io
n
of

TU
G

an
d
su
bt
as
ks
,

ac
ce
le
ra
tio

n
ra
ng

e
an
d
Je
rk
.N

um
be

r
of

st
ep

s
fo
r
TU

G
,

ga
it
sp
ee
d

Lo
gi
st
ic

re
gr
es
si
on

N
A

63
.4
-8
7.
8

50
.0
-8
3.
3

65
.2
-9
1.
3

Ya
m
ad
a
et

al
.

20
11

[2
0]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st

1-
ye
ar

F
(n
=
16
,8
4.
8
±
10
.1
)

N
F
(n
=
29
,8
0.
2
±
6.
4)

W
ii
Ba
la
nc
e

Bo
ar
d

N
A

G
am

e-
ba
se
d

m
ea
su
re

in
se
at
ed
/s
ta
nd

in
g

G
am

e
sc
or
e

D
is
cr
im

in
at
e

an
al
ys
is

N
A

88
.6

Sun and Sosnoff BMC Geriatrics  (2018) 18:14 Page 4 of 10



Ta
b
le

1
St
ud

y
C
ha
ra
ct
er
is
tic
s
(C
on

tin
ue
d)

A
ut
ho

r/
Ye
ar

Fa
lle
r

Id
en

tif
ic
at
io
n

M
et
ho

d

Po
pu

la
tio

n/
Sa
m
pl
e

Si
ze
/A
ge

(M
ea
n
±
SD

)
Te
ch
no

lo
gy

Se
ns
or

pl
ac
em

en
t

if
ap
pl
ic
ab
le

Te
st
Pr
ot
oc
ol

O
ut
co
m
e
M
ea
su
re
s

M
od

el
M
od

el
va
lid
at
io
n

A
cc
ur
ac
y

Sp
ec
ifi
ci
ty

Se
ns
iti
vi
ty

A
U
C

G
re
en

e
et

al
.

20
12

[2
1]

2-
ye
ar

pr
os
pe

ct
iv
e
fa
ll

oc
cu
rr
en

ce
(>

=
2)

F
(n
=
83
,7
1.
8
±
6.
9)

N
F
(n
=
14
3,
71
.4
±
6.
6)

Tw
o
Tr
i-a
xi
al

In
er
tia
ls
en

so
rs

(a
cc
el
er
om

et
er
/

gy
ro
sc
op

e)

Sh
an
k

TU
G

44
fe
at
ur
es

(s
pa
tia
l/t
em

po
ra
l

ga
it
pa
ra
m
et
er
s,

an
gu

la
r
ve
lo
ci
ty

pa
ra
m
et
er
s,
tu
rn

pa
ra
m
et
er
s)

D
is
cr
im

in
at
e

cl
as
si
fie
r

Te
n-
fo
ld

cr
os
s

va
lid
at
io
n

(m
ea
n
va
lu
e)

73
-8
3

73
-9
6

56
-9
0

0.
74
-

0.
85

G
re
en

e
et

al
.

20
12

[2
2]

Fa
ll
hi
st
or
y

(>
=
2,
or

on
e

fa
ll
re
qu

iri
ng

m
ed

ic
al

at
te
nt
io
n)

in
pa
st
1-
ye
ar

F
(n
=
65
,7
4.
0
±
5.
8)

N
F
(n
=
55
,7
3.
3
±
5.
8)

A
Tr
i-a
xi
al

In
er
tia
ls
en

so
r

(a
cc
el
er
om

et
er
/

gy
ro
sc
op

e)

Lo
w
er

ba
ck

L3
St
an
di
ng

ba
la
nc
e
(E
O
/

se
m
i-
ta
nd

em
,

EC
/n
ar
ro
w

st
an
ce
)

RM
S
of

A
P/
M
L

ac
ce
le
ra
tio

n,
fre

qu
en

cy
va
ria
bi
lit
y,

sp
ec
tr
al
en

tr
op

y

SV
M

Te
n-
fo
ld

cr
os
s

va
lid
at
io
n

(m
ea
n
va
lu
e)

63
-7
2

58
-8
2

59
-6
7

Sc
hw

es
ig

et
al
.

20
12

[2
3]

1
ye
ar

pr
os
pe

ct
iv
e
fa
ll

oc
cu
rr
en

ce
(>

=
1)

O
A
(n
=
14
1,
82
.7
;

M
F/
N
M
F
=
17
/1
24
,

M
F
(>

=
3
fa
lls
)

Tw
o
Tr
i-a
xi
al

In
er
tia
ls
en

so
rs

(a
cc
el
er
om

et
er
/

gy
ro
sc
op

e)

Sh
oe

-
m
ou

nt
ed

St
ra
ig
ht

lin
e

w
al
ki
ng

Te
m
po

ra
lg

ai
t

pa
ra
m
et
er
s

Lo
gi
st
ic

re
gr
es
si
on

,
RO

C
cu
rv
e

N
A

42
-6
1

63
-1
00

0.
66
-

0.
7

Se
nd

en
et

al
.

20
12

[2
4]

Ti
ne

tt
i<

=
24

F
(n
=
50
,7
9
±
6)

N
F
(n
=
50
,7
4
±
5)

A
Tr
i-a
xi
al

A
cc
el
er
om

et
er

Sa
cr
um

St
ra
ig
ht

lin
e

w
al
ki
ng

sp
at
ia
l-t
em

po
ra
l

ga
it
pa
ra
m
et
er
s,

st
ep

tim
e

sy
m
m
et
ry
,

ha
rm

on
ic
ra
tio

,
in
te
r-s
tri
de

va
ria
bi
lit
y,

RM
S
ac
ce
le
ra
tio
n

Li
ne

ar
re
gr
es
si
on

,
RO

C
cu
rv
e

N
A

0.
67
-

0.
85

D
oh

en
y
et

al
.

20
13

[2
5]

Fa
ll
hi
st
or
y,
pa
st

1-
ye
ar

(>
=
2,

or
on

e
fa
ll

re
qu

iri
ng

m
ed

ic
al

at
te
nt
io
n)

F
(n
=
19
,7
4.
9
±
7.
0)

N
F
(n
=
20
,6
8.
4
±
6.
2)

Tw
o
Tr
i-a
xi
al

In
er
tia
ls
en

so
rs

(a
cc
el
er
om

et
er
/

gy
ro
sc
op

e)

St
er
nu

m
,

Th
ig
h

ST
S5

To
ta
lT
im
e,
Su
b-
ph
as
e

tim
e,
Sp
ec
tra
lE
dg
e

Fr
eq
ue
nc
y,
po
st
ur
al

sw
ay

(R
M
S

ac
ce
le
ra
tio
n)
,

Lo
gi
st
ic

re
gr
es
si
on

Le
av
e-
on

e-
ou

t
cr
os
s

va
lid
at
io
n

74
.4

80
68
.7

0.
70

D
oi

et
al
.

20
13

[2
6]

1
ye
ar

pr
os
pe

ct
iv
e
fa
ll

oc
cu
rr
en

ce
(>

=
1)

F
(n
=
16
,8
4.
8
±
5.
9)

N
F
(n
=
57
,7
9.
7
±
8.
2)

Tw
o
Tr
i-a
xi
al

A
cc
el
er
om

et
er

U
pp

er
/

lo
w
er

tr
un

k
St
ra
ig
ht

lin
e

w
al
ki
ng

H
ar
m
on

ic
Ra
tio

Lo
gi
st
ic

re
gr
es
si
on

,
RO

C
cu
rv
e

N
A

84
.2

68
.8

0.
81

Ri
va

et
al
.

20
13

[2
8]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st

1-
ye
ar

F
(n
=
44
,6
3.
3
±
6.
4)

N
F
(n
=
90
,6
2.
0
±
6.
1)

Tr
i-a
xi
al

A
cc
el
er
om

et
er

Lo
w
er

ba
ck

Tr
ea
dm

ill
w
al
ki
ng

H
ar
m
on

ic
Ra
tio

,
In
de

x
of

ha
rm

on
ic
ity
,

M
ul
tis
ca
le
En
tr
op

y,
Re
cu
rr
en

ce
qu

an
tif
ic
at
io
n

an
al
ys
is
pa
ra
m
et
er
s

Lo
gi
st
ic

re
gr
es
si
on

N
A

71
-7
2.
5

96
.6

16
.7
-2
1.
4

N
is
hi
gu

ch
i

et
al
.2
01
3
[2
7]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st

1-
ye
ar

F
(n
=
41
,7
5.
4
±
4.
6)

N
F
(n
=
11
1,
73
.5
±
4.
6)

La
se
r
Ra
ng

e
Fi
nd

er
N
A

C
ho

ic
e

St
ep

pi
ng

Te
st

St
ep

re
ac
tio

n
tim

e,
er
ro
r
ra
te
,s
te
pp

in
g

–r
es
po

ns
e
sc
or
e

Lo
gi
st
ic

re
gr
es
si
on

,
RO

C
cu
rv
e

N
A

69
.7

73
.0

0.
73

Sun and Sosnoff BMC Geriatrics  (2018) 18:14 Page 5 of 10



Ta
b
le

1
St
ud

y
C
ha
ra
ct
er
is
tic
s
(C
on

tin
ue
d)

A
ut
ho

r/
Ye
ar

Fa
lle
r

Id
en

tif
ic
at
io
n

M
et
ho

d

Po
pu

la
tio

n/
Sa
m
pl
e

Si
ze
/A
ge

(M
ea
n
±
SD

)
Te
ch
no

lo
gy

Se
ns
or

pl
ac
em

en
t

if
ap
pl
ic
ab
le

Te
st
Pr
ot
oc
ol

O
ut
co
m
e
M
ea
su
re
s

M
od

el
M
od

el
va
lid
at
io
n

A
cc
ur
ac
y

Sp
ec
ifi
ci
ty

Se
ns
iti
vi
ty

A
U
C

C
ol
ag
io
rg
io

et
al
.2
01
4
[2
9]

C
om

bi
na
tio

n
of

(T
in
et
ti
+
BB
S
+

BE
ST
es
t)
<
29

/
33

O
A
(n
=
66
,7
6
±
10
,

F/
N
F
=
22
/4
4)

YA
(n
=
13
,2
6
±
5)

M
ic
ro
so
ft

Ki
ne

ct
N
A

St
an
di
ng

ba
la
nc
e(
EO

,E
C,

N
ud

ge
d
on

fir
m

su
rfa
ce

or
fo
am

su
rfa
ce
),

Re
ac
hi
ng

fo
rw

ar
d,

St
an
d-
to

-S
it,

Si
t-
to
-
St
an
d,

A
ST

80
fe
at
ur
es

(C
O
M

po
st
ur
al
sw

ay
,C
he
st

Pi
tc
h
A
ng

le
,v
el
oc
ity

of
tr
an
sit
io
n,
ve
lo
ci
ty

of
st
ep
pi
ng

)

M
aj
or
ity

C
la
ss
ifi
er
,

D
ec
is
io
n
Tr
ee
,

SV
M
,K
N
N
,N

B

.6
32

bo
ot
st
ra
p

te
ch
ni
qu

e
47
.9
-8
4.
3

47
.8
-9
1.
3

47
.7
-8
3.
1

Si
m
ila

et
al
.

20
14

[3
1]

BB
S
<
=
49

O
A
(n
=
20
,7
6.
8
±
5.
6)

YA
(n
=
19
,2
7.
5
±
4.
4)

N
P
(n
=
15
,5
5.
2
±
7.
3)

Tr
i-a
xi
al

A
cc
el
er
om

et
er

Lo
w
er

ba
ck

BB
S,
st
ra
ig
ht

lin
e
w
al
ki
ng

Re
su
lta
nt

ac
ce
le
ra
tio
n

in
ea
ch

ta
sk
,g
ai
t

pa
tte
rn

as
m
ea
su
re
d

by
av
er
ag
ed

ac
ce
le
ra
tio
n
in

ea
ch

st
ep

KN
N
,

RO
C
cu
rv
e

N
A

60
.8
-8
7.
2

62
-9
6.
6

42
.1
-8
9.
5

0.
66
-

0.
89

Ka
rg
ar

et
al
.

20
14

[3
0]

Ph
ys
ic
ia
n

ex
am

in
at
io
n

O
A
(n
=
12
,6
5
-9
0;

F/
N
F
=
7/
5)

M
ic
ro
so
ft

Ki
ne

ct
N
A

TU
G

N
um

be
r
of

st
ep

s
of

TU
G
,s
te
p
tim

e,
tu
rn

du
ra
tio

n

SV
M

Le
av
e-
on

e-
ou

t
cr
os
s
va
lid
at
io
n

67
.4

67
.5

67
.3

Kw
ok

et
al
.

20
15

[3
2]

1
ye
ar

pr
os
pe

ct
iv
e

fa
ll
oc
cu
rr
en

ce
(>

=
1)

F
(n
=
18
,7
0.
7
±
5.
2)

N
F
(n
=
55
,6
9.
7
±
7.
8)

W
ii
ba
la
nc
e

bo
ar
d

N
A

St
an
di
ng

ba
la
nc
e
(E
O
)

M
ea
n
sw

ay
ve
lo
ci
ty

Lo
gi
st
ic

re
gr
es
si
on

,
RO

C
cu
rv
e

N
A

0.
67
-

0.
71

H
ow

cr
of
t
et

al
.

20
16

[1
0]

Fa
ll
hi
st
or
y

(>
=
1)

in
pa
st

6-
m
on

th

F
(n
=
24
,7
6.
3
±
7.
0)

N
F
(n
=
76
,7
5.
2
±
6.
6)

Pr
es
su
re

se
ns
in
g
in
so
le
,

Tr
i-a
xi
al

A
cc
el
er
om

et
er
s

H
ea
d,

Pe
lv
is
,

Sh
an
k,

Sh
oe

Si
ng

le
/D
ua
l

ta
sk

st
ra
ig
ht

lin
e
w
al
ki
ng

CO
P
pa
th

pa
ra
m
et
er
s,

te
m
po
ra
lg
ai
t

pa
ra
m
et
er
s,

H
ar
m
on
ic
Ra
tio
,

M
ax
im
um

Ly
ap
un
ov

ex
po
ne
nt
(lo
ca
l

dy
na
m
ic
st
ab
ilit
y)

M
LP
,N

B,
SV
M

H
ol
d
ou

t
m
et
ho

d
(7
5%

tr
ai
ni
ng

se
t,
25
%

te
st
se
t)

72
-8
4

73
.7
-1
00

33
.3
-1
00

H
ow

cr
of
t
et

al
.

20
17

[3
3]

6-
m
on

th
pr
os
pe

ct
iv
e
fa
ll

oc
cu
rr
en

ce
(>

=
1)

F
(n
=
28
,7
5.
0
±
8.
2)

N
F
(n
=
47
,7
5.
3
±
5.
5)

Pr
es
su
re

se
ns
in
g
in
so
le
,

Tr
i-a
xi
al

A
cc
el
er
om

et
er
s

H
ea
d,

Pe
lv
is
,

Sh
an
k,

Sh
oe

Si
ng

le
/D
ua
l

ta
sk

st
ra
ig
ht

lin
e
w
al
ki
ng

C
O
P
pa
th

pa
ra
m
et
er
s,

te
m
po

ra
lg

ai
t

pa
ra
m
et
er
s,

H
ar
m
on

ic
Ra
tio

,
M
ax
im

um
Ly
ap
un

ov
ex
po

ne
nt
(lo
ca
l

dy
na
m
ic
st
ab
ili
ty
)

M
LP
,N

B,
SV
M

H
ol
d
ou

t
m
et
ho

d
(7
5%

tr
ai
ni
ng

se
t,
25
%

te
st
se
t)

49
.2
-5
6.
5

52
.7
-6
6.
6

27
.0
-4
6.
3

O
A
O
ld
er

A
du

lt,
YA

Yo
un

g
A
du

lt,
N
P
N
eu

ro
lo
gi
ca
lP

at
ie
nt
,F

Fa
lle
r,
N
F
N
on

-F
al
le
r,
M
F
M
ul
tip

le
Fa
lle
r;
N
M
F
N
on

-M
ul
tip

le
Fa
lle
r

Sun and Sosnoff BMC Geriatrics  (2018) 18:14 Page 6 of 10



31, 33, 34, 36–39]. Six studies utilized sensors placed
bilaterally on lower limb (foot/shoe/shank/ankle) for
recording spatial/temporal gait parameters [10, 21, 23,
33, 35, 40], and 3 used a body sensor network (>3 sen-
sors on various anatomical landmarks: head, shoulder,
wrist, elbow, knee, pelvis, ankle/shank) for quantifying
limb and trunk kinematics [10, 33, 35]. Sternum sensor
has also been used for quantifying trunk movement [25,
26], while thigh sensor was used in one study for quanti-
fying the transition of sitting to standing [25]. In all
studies, inertial sensors were secured on participant via
belt, tape or band.
Given inertial sensor’s unique benefit in unconstrained

range of measurement, steady state walking (over
ground/treadmill) was used as the primary assessment
activity for 12 studies [10, 23, 24, 26, 28, 31, 33–36, 38,
40], while the Timed Up and Go (TUG) (n = 4) [21, 37–
39], five time sit to stand(5STS) (n = 2) [25, 37], standing
balance (n = 1) [22] and alternate step test (AST) (n = 1)
[37] were also used in the assessment procedure.
Two depth camera (e.g. Kinect™) based fall risk assess-

ment studies were identified [29, 30]. Due to its capture
range (0.5 m −4.5 m), TUG [30], Standing balance,
Sit-to-Stand transition and AST [29] were used as the
fall risk assessment activities.
Two force-sensitive platform (Wii balance board)

based fall risk assessment studies were identified [20,
32]. The tasks involved were standing balance [32] and
seated/standing Wii balance gaming [20]. One laser-
based fall risk assessment study used the choice stepping
test as the fall risk screening activity [27].
Two studies done by the same research group utilized

a pressure-sensing insole in conjunction with the inertial
body-sensor network for steady-state walking assessment
[10, 33].

Outcome variables extracted
For steady state walking assessment, 8 of 12 studies re-
ported spatial-temporal gait parameters (step time, step
length, etc) and/or its variability (SD, CV) [10, 23, 24,
33, 35, 36, 38, 40], 5 of 11 studies reported harmonic ra-
tio (an indicator for gait smoothness and overall stabil-
ity) [10, 24, 26, 28, 33]. Other variables include gait
speed [34], energy-related measures [38], frequency-
domain measures [28, 38] local dynamic stability [10,
33], stride fractal scaling index [40] and gait symmetry
[10, 24, 33, 34].
For test involving TUG assessment, extracted variables

included time to complete the task and its subtasks
(Sit-to-Stand, Stand-to-Sit, and turning) [37, 39], number
of steps taken [30, 37, 39], cadence [37, 39],gait speed
[37], temporal and spatial gait parameters and/or its
variability [21, 30, 37, 39], acceleration/angular velocity/

jerk amplitude [21, 37, 39], energy-related measures
[37], and frequency-domain measures [37].
For standing postural sway assessment, the inertial

sensor based study reported RMS acceleration, fre-
quency variability, and spectral entropy as the outcome
variables [22], whereas the depth camera based study re-
ported COM sway area, sway velocity, and the stochastic
parameter of COM sway [29]. The Wii based study re-
ported COP sway velocity as the outcome measures [32].
For fall risk assessment involving other dynamic tests

(alternate step test, forward reaching, Stand-to-Sit,
Sit-to-Stand transition, dynamic balance game, and
choice reaction stepping), outcome measures included
the duration of movement [25, 27, 37],velocity of
movement [29], acceleration amplitude [25, 31], jerk
amplitude [37], energy-related measures [37], and
frequency-domain measures [25, 37], reaction time [27],
error rate [27] and specific performance scores [20, 27].

Modelling technique and effectiveness in faller discrimination
A diverse collection of quantitative models/methods
were employed to predict fall risk, which included: logis-
tic regression, linear regression, Radial Basis Function
Network classifier (RBFN), Support Vector Machine
(SVM), Naïve Bayesian classifier, Multi-layer perceptron,
Locally Weighted Learning, Decision Tree, Cluster
analysis, k-Nearest Neighbor (kNN), neural networks,
neuro evolution of augmenting topologies (NEAT), and
discriminate analysis. Logistic regression was the most
used modeling techniques (N = 10) for fall prediction
modelling, although non-linear classification model was
employed in recent publications.
Table 1 reports the effectiveness of diagnostic analysis

(i.e. accuracy, sensitivity, specificity and area under curve
for the ROC curve). Non-linear statistical classifier was
primarily used in studies using inertial sensor and depth
camera, due to the vast set of parameters extracted from
the measured movement sequence. Whereas the Wii
balance board and laser range finder measurement only
provide a few features that require no advance modelling
for fall risk identification. Due to the variation in assess-
ment tools, movement routine, outcome variables
extracted and modelling methods used, a diverse range
of diagnostic performance was observed (Accuracy:
47.9-100%, Sensitivity: 16.7-100%, Specificity: 40-100%,
AUC 0.65-0.89). In term of classification technique,
naive Bayesian classifier, SVM, discriminate classifier,
kNN, Decision tree, NEAT and logistic regression have
been reported to achieve above 80% accuracy, although
the direct comparison between classifiers cannot be
achieved due to different tasks, parameters and popula-
tions. It is also worth noting that only 50% of studies
were conducted with recommended model validation
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procedures such as Leave-one-out cross validation,
Ten-fold cross validation, .632 bootstrap technique, and
hold-out validation. Consequently, the diagnostic
performance of studies without appropriate model
validation could be over-inflated.

Discussion
This systematic review examined the existing evidence
from 2011 to 2017 regarding sensor technology used in
fall risk assessment in older adults. By measuring move-
ment during selected structured movements (walking,
stepping, sit-to-stand, stand-to-sit, TUG, BBS, etc.), the
sensing technology has been shown as viable assessment
tool for fall risk assessment. Overall, these devices
provide an accurate, inexpensive, and easy-to-administer
objective fall risk assessment.
Over half of the reviewed papers used the retrospect-

ive fall history and/or clinical assessment tools as the
standard for identifying individuals at high risk for falls.
However, even though widely used as standard methods,
the clinical assessment tools (TUG, Tinetti, BBS, etc.)
still do not achieve 100% diagnostic accuracy. Further-
more, the retrospective fall recall may also suffer from
the lack of reliability due to patient’s poor recollection
[41]. In addition, a history of falling may lead to gait
pattern changes due to injury or fear of falling [17].
Thus, prospective fall occurrence tracking should be uti-
lized in future fall risk assessment research with a
follow-up period of at least 6 months after initial
assessment.
A vast number of movement-derived variables were re-

ported in the inertial sensor and depth camera based fall
risk assessment investigations. They ranged from dur-
ation of movement to movement smoothness. Such
diverse measurements resulted in a diverse range of pre-
diction/discrimination accuracy across studies. A large
pool of variables may not be clinical relevant, or con-
founding with other existing variables [17], thus a selec-
tion of proper variables based on research evidence is
necessary. Additionally, lack of appropriate model valid-
ation procedures (50% studies without cross-validation
or holdout procedure) may yield over-inflated diagnostic
accuracy, and are unlikely to maintain its reported per-
formance during everyday use in relevant populations
[17]. This observation highlights the need for proper
guideline and standardized procedures of model
construction/validation in future research [17].
It is worth noting that most if not all inertial sensor

based fall risk assessment reviewed in this work used the
sensor as a stand-alone recording device, thus require
additional personnel to guide the user through the as-
sessment routine, operate the system and interpret the
data. Although with technological advances including
increasing computing power, and integrated human

interface devices (display, touch screen, voice command,
etc.), this limitation may be minimized in the future. In
contrast, the Kinect and Wii based systems, due to its
compatible computer/gaming console, can provide auto-
mated interaction with the user, thus potentially allowing
the user to complete the structured fall risk assessment
without additional supervision. However, this unsuper-
vised movement may raise other concerns such as safety
and compliance.
Smartphone technology, although equipped with iner-

tial sensors/camera, computing power and display to
conduct an interactive assessment, has not been vali-
dated as a diagnostic tool for fall prediction [14]. How-
ever, numerous studies have validated its accuracy in
balance and mobility tracking [12, 13], and several
proof-of-concept have been proposed to investigate fall
risk/ provide fall prevention intervention [42, 43].Other
proof-of-concept studies that utilizing depth camera and
radar sensing to provide in-home movement monitoring
and fall risk assessment have also been reported in
recent years [6, 44–46]. In the long term, such ambient
sensing technology may provide an unsupervised, auto-
mated fall risk screening tool in a community and/or
assisted living settings. Several studies have also reported
that IMU sensor and wireless pressure insole devices
can continuously monitor daily-living activity, and derive
gait parameters for diagnostic proposes [11, 47].
The primary goal of all existing technologies is to facili-

tate the identification of those at a risk of falling, and thus
provide appropriate fall prevention intervention. Only lim-
ited investigation has been conducted to understand the
seniors’ acceptance in using the technology [43, 48, 49].
Overall, it has been suggested that older adults have a gen-
eral interest in their health and fall risk [49], and self-
control, independence and perceived need for safety are
important motivations to use the technologies [48]. Add-
itionally, cost and privacy have also been reported as im-
portant elements that ensure continued use of
technologies among older adults [48]. It is also important
to consider that older adults do not want equipment to
identify them as ‘fallers’ or in need of help [48]. Conse-
quently, proper ‘age-friendly’ branding and user-centered
design need to be considered in future research. Regarding
the clinician acceptance of sensing technology use, min-
imal preparation time, simple interface and real time re-
sult display have been reported as key factors for
continued use of technologies [50]. The disconnect be-
tween clinical functionality and user experience evaluation
remains a significant gap and warrants attention.

Conclusions
To date, a wide range of sensor technologies have been
utilized in fall risk assessment in older adults. Overall,
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these devices have the potential to provide an accurate,
inexpensive, and easy-to-administer, objective fall risk
assessment. However, the variation in measured parame-
ters, assessment tools, sensor sites, movement tasks, and
modelling techniques, precludes a firm conclusion on
their ability to predict future falls. There is potential that
these assessments can be undertaken regularly both in
clinical and in non-clinical settings. To generate clinic-
ally meaningful and easy to interpret information, proper
sensor-based predictors need to be identified. Addition-
ally, a gap between clinical functionality and user experi-
ence remains.
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